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Figure 1: Gertboard and Raspberry Pi 

The Gertboard is an input/output (I/O) extension board for the Raspberry Pi computer. It fits onto the 
GPIO (general purpose I/O) pins of the Raspberry Pi (the double row of pins on the upper left corner) 
via a socket on the back of the Gertboard. A bit of care is required when putting the two devices 
together. It is easy to insert just one row of pins into the socket, but all of the pins need to be 
connected. The Gertboard gets its power from those GPIO pins, so you will need a power supply for 
the Raspberry Pi (RPi) that is capable of supplying a current of at least 1A. 

The Gertboard has collection of functional blocks (the major capabilities of the board) which can be 
connected together in a myriad of ways using header pins. The functional blocks are: 

• 12x buffered I/O 
• 3x pushbuttons 
• 6x open collector drivers (50V, 0.5A) 
• 18V, 2A motor controller 
• 28-pin dual in line ATmega microcontroller 
• 2-channel 8, 10, or 12 bit Digital to Analogue converter 
• 2-channel 10 bit Analogue to Digital converter 

The location of these blocks on the Gertboard is shown in Figure 2.  
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Figure 2: Functional blocks diagram: the key blocks are identified by coloured boundary marking. Please note that 

the appearance of some components can vary. 

This annotated photo of a populated (fully assembled) Gertboard shows where the functional blocks 
are located. Some of the blocks have two areas marked. For example, the turquoise lines showing the 
Atmel ATmega chip not only surround the chip itself and the header pins next to it (on the lower left) 
but also surround two header pins near the bottom of the board, in the middle. These two pins are 
connected to the Atmel chip and provide an easy way to interface the GPIO signals from the 
Raspberry Pi (which are in the black box) with the Atmel chip. 

There is no connection (other than power and ground) between the different functional blocks on the 
Gertboard. The many headers (the rows of pins sticking up from the board) allow you to make these 
connections, using straps and jumpers. See Figure 11 on page 18 for an example of how these are 
used to connect the various blocks together. 
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Figure 3: Photograph showing straps (the coloured wires) above, and jumpers below. Straps connect two parts of 

Gertboard together, whilst jumpers conveniently connect two adjacent pins together. 

 

Labels and Diagrams 
As you get to know the Gertboard and make connections between the various blocks, you will be 
guided extensively by the white labels on the circuit board. At this point, we would like to introduce 
the diagram, shown in Figure 5, which we will use to show you how to wire up your Gertboard for the 
test programs. 
 

 
Figure 4: Photograph of the Gertboard 
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Figure 5: Diagram representing a bare Gertboard circuit board. The blue elements correspond to the white lines and 

text, and the gray elements correspond to the silver coloured pads. 

The diagram in Figure 5 is created from the files that were used to design the Gertboard circuit board. 
The blue in the diagram is generated from the silkscreen file, which indicates where the white text and 
lines on the circuit board will be. The grey in the diagram is generated from the solder mask file, 
which roughly corresponds to where the silver conductive areas on the top of the circuit board will be. 
We will be using this blue and grey diagram as a basis for our wiring diagrams, which show you the 
pins that need to be connected together for each of the test programs. We use these diagrams because 
they are much clearer than a photo of the fully assembled board. 

Have a close look at the white text on the photo of the Gertboard in Figure 4 (or the white text on your 
own board or the blue text in the diagram in Figure 5). These labels provide information that is 
required in order to connect together the various blocks of the Gertboard. Almost all of the 
components have labels, and more importantly, the pins in the headers have labels. It isn’t necessary 
to be too concerned about many of the components, such as resistors and capacitors (labelled with Rn 
and Cn, where n is some number). However the labels for headers, integrated circuits, diodes, and 
switches are important. 

Diodes are labelled Dn. The ones that you will be interested in are D1 through D12, the LEDs (light 
emitting diodes). The LEDs are near the top of the board, on the left. The labels for them are a bit 
crowded. Each LED has a resistor next to it and thus each label Dn has an Rm next to it. The LEDs 
are easy to find when you have the board powered up, as they are a row of bright red lights. See 
below, in the section Power on the GertboardPower  (page 9) for information on how to provide 
power to the Gertboard.  

Pushbutton switches are labelled S1, S2, and S3 (they are located just beneath the LEDs). 
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Figure 6: Two examples of ICs – an 8-pin and a 20-pin dual-inline package (DIP). In this package style, pin 1 is always 
identified as the first pin anticlockwise from the package notch marking. 

Integrated circuits (also known as ICs or chips), are marked Un. For example the I/O buffer chips are 
U3, U4, and U5 (these are near the middle of the board), while the Atmel microcontroller is U8 (this 
is below and to the left of U3 to U5). It is important to understand IC pin numbering. If the chip is 
orientated so that the end with the semi-circle notch is to the left, then pin 1 is the leftmost pin in the 
bottom row. Pin numbers increase in an anti-clockwise direction from there, as shown in Figure 6. 
Knowing this means that the schematics in Appendix A can always be related to the pins on the ICs 
on the Gertboard. 

Headers (the rows of pins sticking up from the board) will be a frequently used component on the 
Gertboard. They are labelled Jn. For example, there is a collection of headers along the left edge of 
the board. They allow you to access the three chips on the left side of the board: J28 on top for the 
analogue to digital chip, J29 below that for the digital to analogue chip, and J25 below that for the 
Atmel microcontroller. It is a bit difficult to see the boundary between these headers on a fully 
assembled board; it’s much clearer on the blue and grey diagram in Figure 5. On the Gertboard circuit 
board, each header with more than two pins has pin 1 marked with a square around it and a dot next to 
it. The dot is most useful on the assembled board, but these dots don’t appear in the blue and grey 
diagram, so you can use the squares to find pin 1 there. 

Not everything labelled Jn is a collection of pins. J1, at the bottom of the board, is the location of the 
socket that connects the Gertboard to the Raspberry Pi. J19, at the top of the board (right of centre) is 
a block of screw terminals that allow you to easily connect wires from a power supply and a motor. 

Power on the Gertboard 
Power pins are marked with their voltage, e.g. 5V or 3V3 (this means 3.3V). A 5V power supply 
comes onto the board from the Raspberry Pi, and if you need this voltage it can be accessed from the 
lower pin (marked 5V) on header J24 on the lower right-hand corner of the board. Ground is marked 
with GND or a  symbol. 

The supply voltage (the voltage that acts as high or logical 1 on the board) is 3.3V. This is generated 
from the 5V power pin in the J1 header by the components in the lower right corner of the board. To 
send the 3.3V power supply to the components on the Gertboard, you need to install a jumper over the 
top two pins of the header J7. It is near the lower right corner of the board; see the photo and diagram 
in Figure 7.  The open collector and motor controllers can handle higher voltages and have points to 
attach external power supplies. 

1 2 3 4
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Figure 7: Power jumper installed in header J7: photo on left, diagram on right 

The diagram on the right of Figure 7 above is our first example of a wiring diagram based on the blue 
and grey circuit board diagram. These diagrams indicate pins via black circles around the locations of 
pins on the board, and show connections as black lines between the circles. The diagram does not 
indicate directly whether the two pins should be joined by straps (wires) or jumpers. Generally, if the 
two pins are right next to each other, use a jumper, and if they are further apart, use a strap.  

GPIO Pins 
The header J2, to the right of the text ‘Raspberry Pi Gertboard’ on the board, provides access to all the 
I/O pins on the GPIO header. There are 26 pins in J1 (the socket which connects the Gertboard to the 
Raspberry Pi) but only 17 pins in J2: 3 of the pins in J1 are power (3.3V and 5V) and ground, and 6 
are DNC (do not connect). The labels on these pins, GP0, GP1, GP4, GP7, etc, may initially seem a 
little arbitrary, as there are some obvious gaps, and the numbers do not correspond with the pin 
numbers on the GPIO header J1. These labels are important however: they correspond with the signal 
names used by the BCM2835, the processor on the Raspberry Pi (RPi). Signal GPIOn on the 
BCM2835 datasheet corresponds to the pin labelled GPn on header J2. At least, this was true of the 
first version of the Raspberry Pi (“rev1”). Starting in September 2012, revision 2 Raspberry Pis 
(“rev2”) were starting to be shipped. On the rev2 RPis, some of the GPIO pins have been changed. 
The GPIO port that used to be controlled by GPIO21 is now controlled by GPIO27, and the ports that 
used to be controlled by GPIO0 and GPIO1 are now controlled by GPIO2 and GPIO3. The rest have 
remained the same. The first three columns of Table 1 below summarize the current situation. 

Some of the GPIO pins have an alternate function that are made use of in some of the test programs. 
These are also shown in Table 1, in the last two columns. The ports that have nothing in the “Alt 
function” column are only used as general purpose input/output in the code. In the C test programs, 
we use macros to gain access to the alternative functions of the GPIO ports. This is explained in the 
section on analogue to digital and digital to analogue converts (D/A and A/D tests in C, page 35). In 
Python, we use packages to provide access to the alternative functions.  

We mention the I2C bus use of GPIO0 and GPIO1 (or GPIO2 and GPIO3 for rev2 RPis) in Table 1 
not because the I2C bus is used in the test programs, but because each of them has a 1800Ω pull-up 
resistor on the Raspberry Pi, and this prevents them from being used with the pushbuttons (see the 
section on Buffered I/O, LEDs, and Pushbuttons for more information). 
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Label on GB Port on RPi1 Port on RPi2 Alt function (which alt) Purpose 
GP0 GPIO0 GPIO2 SDA 

I2C bus 
GP1 GPIO1 GPIO3 SCL 
GP4 GPIO4 GPIO4   
GP7 GPIO7 GPIO7 SPI_CE1_N (alt 0) 

SPI bus 
GP8 GPIO8 GPIO8 SPI_CE0_N (alt 0) 
GP9 GPIO9 GPIO9 SPI_MISO (alt 0) 

GP10 GPIO10 GPIO10 SPI_MOSI (alt 0) 
GP11 GPIO11 GPIO11 SPI_SCLK (alt 0) 
GP14 GPIO14 GPIO14 TXD0 (alt 0) 

UART 
GP15 GPIO15 GPIO15 RXD0 (alt 0) 
GP17 GPIO17 GPIO17   
GP18 GPIO18 GPIO18 PWM0 (alt 5) pulse width modulation 
GP21 GPIO21 GPIO27   
GP22 GPIO22 GPIO22   
GP23 GPIO23 GPIO23   
GP24 GPIO24 GPIO24   
GP25 GPIO25 GPIO25   

Table 1: GPIO ports corresponding to “GP” labels, and alternative functions of GPIO ports 
 (GB means Gertboard, RPi1 means Raspberry Pi rev1, RPi2 means Raspberry Pi rev2) 

Schematics 
Whilst there are some circuit diagrams, or schematics, in the main body of the manual for some of the 
functional blocks of the board, they are simplifications of the actual circuits. While these simplified 
diagrams and the explanations in the text will be good enough for most uses of the Gertboard, there 
will occasionally be questions that can only answered by knowing exactly what is on the board. Thus 
we have attached the full schematics at the end of this manual as Appendix A. These pages are in 
landscape format. The page numbers A-1, A-2, etc, are in the lower left corner of the pages (if you 
hold them so that the writing is the right way up). 

There are test programs for the Gertboard written in C and in Python. C provides the most direct 
access to the Gertboard functionality, but it is not a language that is very accessible to the beginner 
programmer. Several packages have been written to allow Python code to access the Raspberry Pi 
GPIO pins and alternative functions of these pins such as Serial Peripheral Interface (SPI) bus and 
pulse width modulation (PWM). Using these packages, you can access most of the functionality of the 
Gertboard with Python. At the time of writing, the only major functional block that (to our 
knowledge) cannot be programmed with Python is the Atmel microcontroller. 

C Code Overview 
To download the Gertboard C software, go to http://www.element14.com  and search for 
“Gertboard” using the box at the top of the screen. The link you want will probably be called 
something like “Application Library for Gertboard”. From there you can download the file containing 
the C code; it will have a name like gertboard_sw_20120725.zip. As you can tell by the file 
extension .zip, this is a zip file, which means that it is a compressed collection of different files, all 
packed together into a single file. 
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To retrieve the original software, put the file where you want your Gertboard software to end up on 
your Raspberry Pi computer, then extract the files by typing the following in one of the terminal 
windows on your RPi (substituting the name of the actual file you have downloaded for the file name 
we are using in this example): 
 
   unzip gertboard_sw_20120725.zip 
 
A new directory, gertboard_sw, will be created. Change to this directory (by typing cd 
gertboard_sw) and list the contents (ls). You will see a set of C files and a makefile. C files are 
software files, but they need to be compiled to run on the processor on your system. In the case of 
Raspberry Pi, this is an ARM11. The makefile tells the computer how to compile the code, so all 
you need to do it type: 
 
   make all 

This compiles the C code into executable programs. To run a program (for example the program 
leds which tests the LEDs), type: 

   sudo ./leds 

The sudo is there because accessing the GPIO ports requires special privileges, and so you need to 
make an extra effort (by typing sudo) to execute it. The ./ before leds means that the program 
leds  is in the current directory. 
 
Each functional block has at least one test program that goes with it. Each test program is compiled 
from two or more C files. The file gb_common.c (which has an associated header file 
gb_common.h) contains code used by all of the functional blocks on the board. Each test has a C 
file that contains code specific to that test (thus you will find the main function here). Some of the 
tests use a special interface (for example the SPI bus), and these tests have an additional C file that 
provides code specific to that interface (these files are gb_spi.c for the SPI bus and gb_pwm for 
the pulse width modulator). 

In each of the sections about the individual functional blocks, the code specific to the tests for that 
block is explained. Since all of the tests share the code in gb_common.c, an overview of that code 
will be given here. In order to use the Gertboard via the GPIO, the test code first needs to call 
setup_io. This function allocates various arrays and then calls mmap to associate the arrays with 
the devices that it wants to control, such as the GPIO, SPI bus, PWM (pulse width modulator) etc. 
The result of this is that it writes to these arrays control the devices or sends data to them, and reads 
from these arrays get status bits or data from the devices. At the end of a test program,  restore_io 
should be called, which undoes the memory map and frees the allocated memory. 

In gb_common.h, gb_spi.h, and gb_pwm.h there are a number of macros that give a more 
intuitive name to various parts of the arrays that have been mapped. These macros are used to do 
everything from setting whether a GPIO is used as input or output to controlling the clock speed of 
the pulse width modulator.  
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Macro name T Explanation Page no. 
INP_GPIO(n) E activates GPIO pin number n (for input) 13 
OUT_GPIO(n) E used after above, sets pin n  for output 13 
SET_GPIO_ALT(n, a) E used after INP_GPIO, select alternate function for pin 29 
GPIO_PULL W set pull code 19 
GPIO_PULLCCLK0 W select which pins pull code is applied to 19 
GPIO_IN0 R get input values 19 
GPIO_SET0 W select which pins are set high 21 
GPIO_CLR0 W select which pins are set low 21 

Table 2: Commonly used macros, their type, purpose, and location within this manual. 

Table 2 shows a summary of the more commonly used macros and gives the page number on which 
its use is explained in more detail. The T column below gives the ‘type’ of the macro. This shows how 
the macro is used. ‘E’ means that the command is executed, as in: 
     INP_GPIO(17); 

‘W’ means that that the command is written to (assigned), as in: 
     GPIO_PULL = 2; 

‘R’ means that that the command is read from, as in: 
     data = GPIO_IN0; 

The macro INP_GPIO(n) must be called for a pin number n to allow this pin to be used. By default 
its mode is set up as an input. If it is required that the pin is used for an output, OUT_GPIO(n)must 
be called after INP_GPIO(n). 

Python Code Overview 
The Python software (along with the bits of this manual describing the Python programs) was written 
by Alex Eames of Raspi.TV. We are very grateful to him for his help.  

This software is written in Python 2.7 and is compatible with all current revisions of the Raspberry Pi 
computer and Gertboard. It requires sudo user privileges to use the SPI and GPIO ports.  

The Python code relies on several packages to access the various functions of the Gertboard. To use 
the GPIO ports you need to have either RPi.GPIO or WiringPi for Python installed (or both). To use 
the digital to analogue and analogue to digital converters, which use the SPI bus, you need to install a 
module called py-spidev. Instructions for how to do this are included with the Python programs. 

To obtain the Python Gertboard software with a browser or on a computer other than your Raspberry 
Pi, visit http://raspi.tv/downloads. To get it directly on your internet-connected Raspberry Pi, first 
change directory to where you want the programs installed, then from the command line type: 

   wget http://raspi.tv/download/GB_Python.zip 

This should download the small file GB_Python.zip. Then type: 
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   unzip GB_Python.zip 
   cd GB_Python 
   ls 

The ls lists all the files in the directory. Most of them end in .py and are Python programs. The file 
README.txt contains (amongst other info) instructions on how to install the packages you need to 
run the Python programs.  

Once you have the necessary packages installed, you can run the programs. For example, if want to 
run the program leds-rg.py, which tests the LEDs (using the RPi.GPIO package, see below) type: 

   sudo python leds-rg.py 

There are two General Purpose Input Output (GPIO) packages for Python: RPi.GPIO and WiringPi 
for Python. The programs that come in two versions (like leds-rg.py and leds-wp.py) are 
using these different packages.  

It is desirable to have the both these packages because neither of them yet offers a fully finished set of 
capabilities (but most of the capabilities are covered between them). RPi.GPIO’s weakness is the lack 
of hardware PWM (pulse width modulation) used with the motor program. WiringPi’s weakness is the 
lack of pull-up facility required to use the buttons. If you want to use the full functionality of the 
board you will need to install both. For some of the programs (for example, leds and ocol) no 
special features are used, and you can use either package. The programs using the RPi.GPIO package 
are the ones called filename-rg.py, whilst the ones using the WiringPi for Python package are 
the ones called filename-wp.py. 

Here is a list of all the Python test programs (at time of writing): 

buttons-rg.py – buttons program using RPi.GPIO 
leds-rg.py – leds program using RPi.GPIO 
leds-wp.py – leds program using WiringPi 
butled-rg.py – button and LED program using RPi.GPIO 
motor-rg.py – motor program using software PWM and RPi.GPIO 
motor-wp.py – motor program using hardware PWM and WiringPi  
ocol-rg.py – relay switching program using RPi.GPIO 
ocol-wp.py – relay switching program using WiringPi  
atod.py – test for analogue to digital converter using SPI with spidev 
dtoa.py – test for digital to analogue converter using SPI with spidev 
dad.py – test for both D/A and A/D using SPI with spidev 
potmot.py – test using A/D and motor using WiringPi and spidev 

There are 12 pins which can be used as input or output ports. Each can be set to behave either as an 
input or an output, using a jumper. Note that the terms ‘input’ and ‘output’ here are always with 
respect to the Raspberry Pi: in input mode, the pin inputs data to the RPi; in output mode it acts as 
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output from the RPi. It is important to keep this in mind as the Gertboard is set up: an output from the 
Gertboard is an input to the Raspberry Pi, and so the input jumper must be installed. 

 

Figure 8: The circuit diagram for I/O ports 4-12. 

The triangle symbols in the diagram above represent buffers; they propagate logical values (low and 
high) in the direction the triangle is pointing. The rectangles are resistors, the black triangle and line 
with arrows coming out is an LED, and the hollow circles are header pins. In order to make the port 
function as an input to the Raspberry Pi you install the input jumper (shown in the diagram as a staple 
shape labelled ‘input’): then the data flows from the ‘I/O’ point to the ‘Raspi’ point. To make the port 
function as an output, the output jumper must be installed: then the data flows from the ‘Raspi’ point 
to the ‘I/O’ point. If both jumpers are installed, it won’t harm the board, but the port won’t do 
anything sensible. 

In both the input and output mode the LED will indicate what the logic level is on the ‘I/O’ pin. The 
LED will be on when the level is high and it will be off when the level is low. There is a third option 
for using this port: if neither the input nor output jumper is placed the I/O pin can be used as a simple 
logic detector. The I/O pin can be connected to some other logic point (i.e. one that is either at 0V or 
3.3V) and the LED will show if the connect point is high or low. 

The resistor on the right side of Figure 8 is a pull-up. If it were not there, the LED would turn off and 
on with the smallest of electronic changes, for example, when the board is simply touched. Turning 
the LED on when it is not being driven prevents this seemingly random behaviour and also serves as 
an indicator that your Gertboard is receiving power properly. Note that if the output jumper is 
installed but the ‘Raspi’ point is not driven, the random behaviour will return. 

There is a series resistor between the input buffer (the left-pointing triangle) and the ‘Raspi’ point. 
This is to protect the BCM2835 (the processor on the Raspberry Pi) in case the user programs the 
GPIO as output but leaves the input jumper in place. The BCM2835 input is a high impedance input 
and thus a 1K series resistor will not produce a noticeable change in behaviour when it is used as 
input. 

Pushbuttons 
The Gertboard has three pushbuttons; these are connected to ports 1, 2, and 3. The circuit for these 
ports is shown in Figure 9. This circuit is essentially the same as that in Figure 8 with the addition of a 
pushbutton switch and resistor on the left side. When the button is pressed, the ‘Raspi’ point is 
connected to ground (through a resistor) and so reads low. 
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Figure 9: The circuit diagram for I/O ports 1, 2, and 3 (with pushbutton). 

In order to use a pushbutton, the input jumper must not be installed, even if the intention is to use this 
as an input to the Raspberry Pi. If it is installed, the output of the lower buffer prevents the pushbutton 
from working properly.  To make clear what state each button is in,  the output jumper can be 
installed, and then the LED will now show the button state (LED on means button up, LED off means 
button down). To use the pushbuttons, a pull-up must be set on the Raspberry Pi GPIO pins used 
(described below, page 19) so that they are read as high (logical 1) when the buttons are not pressed. 

Locating the I/O Ports on the Gertboard 
In the functional blocks location diagram (Figure 2 on page 6), the components implementing the 
buffered I/O are outlined in red. The ICs containing the buffers are U3, U4, and U5 near the centre of 
the board. The LEDs are labelled D1 to D12; D1 is driven by port 1, D2 by port 2, etc. The 
pushbutton switches (the silver rectangular devices with black circles) are labelled S1 to S3; S1 is 
connected to port 1 and so on.  

The pins corresponding to ‘Raspi’ in Figure 8 and  Figure 9 above are B1 to B12 on the J3 header 
above and to the right of the words ‘Raspberry Pi’ on the board (B1 to B3 correspond to the ‘Raspi’ 
points in Figure 9, and B4 to B12 correspond to the ‘Raspi’ points in Figure 8). They are called 
‘Raspi’ because these are the ones that are usually connected to the pins in header J2, which are 
directly connected to the pins in J1, and which are then finally connected to the GPIO pins on the 
Raspberry Pi. The pins corresponding to the ‘I/O’ point on the right of the circuit diagrams above are 
BUF1 to BUF12 in the (unlabeled) single row header at the top of the Gertboard.  

On the Gertboard schematic, I/O buffers are on page A-2. The buffer chips U3, U4, and U5 are clearly 
labelled. It should be clear that ports 1 to 4 are handled by chip U3, ports 5 to 8 by chip U4, and ports 
9 to 12 by chip U5. The ‘Raspi’ points in the circuit diagrams above are shown as the signals BUF_1 
to BUF_12 on the left side of the page, and the ‘I/O’ points are BUF1 to BUF12 to the right of the 
buffer chips. The input jumper locations are the blue rectangles labelled P1, P3, P5, P7, etc to the left 
of the buffer chips, and the output jumper locations are the blue rectangles labelled P2, P4, P6, P8, 
etc, to the right of the buffer chips. The pushbutton switches S1, S2, and S3 are shown separately, on 
the right side of the page near the middle. Below the pushbuttons, the pull-up resistors are shown.  

The buffered I/O ports can be used with (almost) any of the GPIO pins; they just have to be connected 
using straps. So for example, if you want to use port 1 with GPIO17 a strap is placed between the B1 
pin in J3 and the GP17 pin in J2. Beware that the pushbuttons cannot be used with GPIO0 or GPIO1 
(GP0 and GP1 in header J2 on the board) as those two pins have a 1800Ω pull-up resistor on the 
Raspberry Pi. When the button is pressed the voltage on the input will be 
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This is not an I/O voltage which can be reliably seen as low. 

The output and input jumper locations are above and below the U3, U4, and U5 buffer chips. The 
input jumpers need to be placed on the headers below the chips (shown on the board with the ‘in’ text; 
they are separated from the chip they go with by four small resistors), and the ‘output’ jumpers need 
to be placed on the headers above the chips (with the ‘out’ text). If viewed closely (it is clearer on the 
blue and grey diagram), it is possible to see that each row of 8 header pins above and below the buffer 
chips is divided up into 4 pairs of pins. The pairs on U3 are labelled B1 to B4, the ones on U4 are B5 
to B8, and the ones on U5 are B9 to B12. The B1 pins are for port 1, B2 for port 2, etc. 

To use port n as an input (but not when using the pushbutton, if n is 1, 2, or 3), a jumper is installed 
over the pair of pins in Bn in the row marked ‘in’ (below the appropriate buffer chip). To use port n as 
an output, a jumper is installed over the pair of pins in Bn in the row marked ‘out’ (above the 
appropriate buffer chip).  

  

Figure 10: Example of port configuration where ports 1 to 3 are set to be outputs and ports 10 and 11 are set to be 
inputs. 

As a concrete example, in Figure 10 ports 1, 2, and 3 are configured for output (because of the 
jumpers across B1, B2, and B3 on the ‘out’ side of chip U3). Ports 10 and 11 are configured for input 
(because of the jumpers across B10 and B11 on the ‘in’ side of U5). Figure 10 also demonstrates why 
we use diagrams instead of photos to show you how to wire up your Gertboard. The input jumper on 
B10 is almost impossible to see because it is shorter than the others. 

In the test programs, the required connections are printed out before the tests are started. The input 
and output jumpers are referred to in the following way: U3-out-B1 means that there is a jumper 
across the B1 pins on the ‘out’ side of the U3 buffer chip. So the 5 jumpers in the picture above would 
be referred to as U3-out-B1, U3-out-B2, U3-out-B3, U5-in-B10, and U5-in-B11. 

Testing the Pushbuttons 
There are test programs for the buttons in both C and Python. The C version is called buttons, and 
the Python version is called buttons-rg.py. To run these tests, the Gertboard must be set up as in 
the photo in Figure 11. (The wiring diagram in Figure 12 shows the same thing more clearly.) There 
are straps connecting pins B1, B2, and B3 in header J3 to pins GP25, GP24, and GP23 in header J2 
(respectively). Thus GPIO25 will read the leftmost pushbutton, GPIO24 will read the middle one, and 
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GPIO23 will read the rightmost pushbutton. The jumpers on the ‘out’ area of U3 (U3-out-B1, U3-out-
B2, U3-out-B3) are optional: if they are installed, the leftmost 3 LEDs will light up to indicate the 
state of the switches. 

 

Figure 11: Photo showing connections for the buttons test. Whilst the image above is clear, it isn’t very good at 
showing exactly how the straps and jumpers are placed. 

 

Figure 12: Wiring diagram for buttons test. This type of diagram is much more effective at showing the connections 
that need to be made, so from now on, we will use these diagrams to show wiring arrangements. 
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In the diagram in Figure 12, black circles show which pins are being connected, and black lines 
between two pins indicate that jumpers (if they are adjacent) or straps (if they are further apart) are 
used to connect them. 

The code specific to the buttons test is buttons.c. In the main routine, the connections 
required for this test are firstly printed to the terminal (a text description of the wiring diagram above). 
When the user verifies that the connections are correct, setup_io (described on page 12) is called  
to get everything ready. 

setup_gpio is then called, which gets GPIO pins 1 to 3 ready to be used as pushbutton inputs. It 
does this by first using the macro INP_GPIO(n) (where n is the GPIO pin number) to select these 3 
pins for input. 

Then pins are required to be pulled high: the buttons work by dropping the voltage down to 0V when 
the button is pressed, so it needs to be high when the button is not pressed. This is done by setting 
GPIO_PULL to 2, the code for pull-up. Should it ever be required, the code for pull-down is 1. The 
code for no pull is 0; this will allows this pin to be used for output after it has been used as a 
pushbutton input. To apply this code to the desired pins, set GPIO_PULLCCLK0 = 0X03800000. 
This hexadecimal number has bits 23, 24, and 25 set to 1 and all the rest set to 0. This means that the 
pull code is applied to GPIO pins 23, 24, and 25. A short_wait allows time for this to take effect, 
and then GPIO_PULL and GPIO_PULLCLK0 are set back to 0. 

Back in the main routine, a loop is entered in which the button states are read (using macro 
GPIO_IN0), grabbing bits 23, 24, and 25 using a shift and mask logical operations, and, if the button 
state is different from before, it is printed out in binary: up (high) is printed as ‘1’ and down (low) is 
printed as ‘0’. This loop executes until a sufficient number of button state changes have occurred. 

After the loop,  unpull_pins is called, which undoes the pull-up on the pins, then call 
restore_io in gb_common.c to clean up. 

This program (buttons-rg.py) is only available using the RPi.GPIO package at the moment 
because the pull-up facility in WiringPi for Python is not yet available. The buttons cannot be used 
without this facility.  

First the program imports the RPi.GPIO module it needs to handle GPIO control. Then the command 
GPIO.setmode(GPIO.BCM)sets up the BCM numbering scheme for the pins. The result of this is 
that the pin numbers in the Python code are the numbers that the BCM2835 (the Raspberry Pi 
processor) uses to refer to the pins. Otherwise, the numbers in the Python code will refer to the pin 
numbers in the J1 header (which is the same as their placement in the P1 header on the RPi). 

The next two lines set up ports 23-25 with pull-up: 

   for i in range(23,26): 
       GPIO.setup(i, GPIO.IN, pull_up_down=GPIO.PUD_UP) 
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Note that because of the way Python for loops work, the end point of the loop must be set to one 
beyond the last item in the range that you want to cover. So in order to set port 25, the end point of the 
loop command must be set to 26. 

Next, the wiring instructions appear on the screen. Once the user confirms that the wiring is ok, the 
initial values for variables button_press and previous_status are set.  

Next a while loop runs until 19 button presses/releases have occurred. For each iteration of this 
loop, the status of each button is read and, if pressed, a 1 is stored in a list variable called 
status_list. If not pressed, a 0 is stored. 

Then the status_list values are all checked against the previous_status. If there’s a 
change, this line 

   if current_status != previous_status:  

executes a small section of the program that displays the new values on the screen, increments the 
value of the iterator button_press, and the loop starts again from the top. Now it’s one button 
press closer to the end-point of 19. 

The while loop is enclosed in a try block: 

try: 
   <while block> 
except KeyboardInterrupt:        

This enables the program to reset the ports if CTRL+C is pressed to terminate the program early. 

If the program ends normally, after 19 button presses, the ports will be reset anyway. If we hadn’t 
included the try: except: block, a keyboard interrupt (ctrl-c) would close the program but leave 
the ports open. This would give errors if you tried to use the ports again. 

Suggested tweaks to experiment with. Try changing these one at a time and see what they do... 

• while button_press < 20: – change the 20 to some other number 
• button_press += 1 – change the 1 to some other number 

Testing the LEDs 
The C test program for the LEDs is called leds. The Python versions are leds-rg.py and 
leds-wp.py. To set up the Gertboard to run this test, see the wiring diagram in Figure 13. Every 
I/O port is connected up as an output, so all the ‘out’ jumpers (those above the buffer chips) are 
installed. Straps are used to connect the following (where all the ‘GP’ pins are in header J2 and all the 
‘B’ pins are in header J3): GP25 to B1, GP24 to B2, GP23 to B3, GP22 to B4, GP21 to B5, GP18 to 
B6, GP17 to B7, GP11 to B8, GP10 to B9, GP9 to B10, GP8 to B11, and GP7 to B12. In other words, 
the leftmost 12 ‘GP’ pins are connected to the ‘B’ pins, except that GP14 and GP15 are missed out: 
they are already set to UART mode by Linux, so it’s best if they are not touched. 
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If there aren’t enough jumpers or straps to wire these connections all up at once, don’t worry. Just 
wire up as many as possible and run the test. Once it’s finished the straps/jumpers can be moved and 
the test can be run again. Nothing bad will happen if you write to an unconnected  pin. 

 

Figure 13: The wiring diagram for the LED test program 

The test code in leds.c first calls setup_io to get everything ready. Then setup_gpio is 
called, which prepares 12 GPIO pins to be used as outputs (as all 12 I/O ports will require 
controlling). All of the GPIO signals except GPIO 0, 1, 4, 14, and 15 are used. To set them up for 
output, first call INP_GPIO(n) (where n is the GPIO pin number) for each of the 12 pins to activate 
them. This also sets them up for input, so then call OUT_GPIO(n) afterwards for each of the 12 pins 
to put them in output mode.  

LEDs are switched on using the macro GPIO_SET0: the value assigned to GPIO_SET0 will set 
GPIO pin n to high if bit n is set in that value. When a GPIO pin is set high, the I/O port connected to 
that pin goes high, and the LED for that port turns on. Thus, the line of code “GPIO_SET0 = 
0x180;” will set GPIO pins 7 and 8 high (since bits 7 and 8 are set in the hexadecimal number 
0x180). Given the wiring setup above, ports 11 and 12 will go high (because these are the ports 
connected to GP7 and GP8), and thus the rightmost two LEDs will turn on. 

To turn LEDs off, use macro GPIO_CLR0. This works in a similar way to GPIO_SET0, but here the 
bits that are high in the value assigned to GPIO_CLR0 specify which GPIO ports will be set low (and 
hence which ports will be set low, and which LEDs will turn off). So for example, given the wiring 
above, the command “GPIO_CLR0 = 0x100;” will set GPIO8 pin low, and thus turn off the LED 
for port 11, which is the port connected to GP8. (In leds.c the LEDs are always all turned off 
together, but they don’t have to be used this way.) 
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The test program flashes the LEDs in three patterns. The patterns are specified by a collection of 
global arrays given values using an initializer. The number in each of the arrays says which LEDs will 
be turned on at that point in the pattern – so, pattern value is submitted sequentially to produce the 
changing pattern, switching all the LEDs off between successive pattern values. Each pattern is run 
through twice. The first pattern lights the LEDs one at a time in sequence, left to right. The second 
pattern does the same but when it reaches the rightmost LED, it then reverses direction and lights 
them in sequence right to left. The third pattern starts at the left end and at each step switches on one 
more LED until they are all lit up, then starting at the left it switches them off one by one until they 
are all off. 

Finally, the test program switches off all the LEDs and then finally calls restore_io to clean up all 
the LEDs to a predictable final state. 

This test is available for both RPi.GPIO and WiringPi for Python. The only differences between the 
leds-rg.py and leds-wp.py programs are the ways the GPIO ports are driven and cleaned up, 
and the Raspberry Pi board revision checker.  

In the programs, first the Raspberry Pi board revision is checked and, based on the result, the correct 
ports for the LEDs are defined in a list called ports. Since we need to go both forwards and 
backwards, we then make a copy of the list, name it ports_rev and reverse it. Then we set up the 
ports for output by iterating through the list ports. 

After that, we define the main "engine" of this script, the function led_drive(), which requires 
three arguments (reps, multiple, direction). 

1. reps defines how many times to run the process (1 or 3 in this demo) 
2. multiple defines whether or not to switch an led off before switching on the next one (1 = 

leave it on, i.e. multiple LEDs lit) 
3. direction defines whether to use the forward or reverse ports list (ports for forwards, 

ports_rev for reverse) 

There are eight calls to the led_drive() function, so we've saved a lot of program lines by reusing 
the same code multiple times. All the calls to the led_drive() function are enclosed in a try: 
except: block. This ensures that if you exit via CTRL-C, the GPIO ports will be reset or "cleaned 
up". This avoids false warnings, the next time you want to use them, that the ports are already in use 
by another program. 

Suggested tweaks to experiment with. Try changing these one at a time and see what they do... 

• led_drive(3, 0, ports)  –  change the 3 
• led_drive(3, 0, ports)  –  change ports to ports_rev 
• led_drive(3, 0, ports)  –  change the 0 to a 1 
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Testing I/O 

Our two examples so far have only used the ports to access the pushbuttons and LEDs. The next 
example, called butled (for BUTton LED) in C, or butled-rg.py (in Python), will show one of 
the ports serving just as an input port. The idea is that one port (along with its button) is used to 
generate a signal, and software then sends that signal to another port which it is used as just an input. 
We read both ports in and print them on the screen. 
 

 

 
Figure 14: The wiring diagram for test program butled which detects a button press, and then displays that button 

state on the screen and on an LED. 

The wiring for this test is shown above. Pin GPIO23 controls I/O port 3, and GPIO22 controls I/O 
port 6, so GP23 in header J2 is connected to pin B3 in header J3, and GP22 is connected to B6. Now 
for the interesting part. The pushbutton on port 3 is going to be used here, but the LED for port 3 
should not be used, so therefore the output jumper for port 3 (which would be placed at U3-out-B3) is 
not installed. 

Looking at the schematic on page A-2, it is clear that the output buffer for port 3 goes to pin 14 of 
buffer chip U3. This is connected to pin 1 of U3-out-B3 (shown as P6 in the schematic). It is not 
obvious which header pin on the board is pin 1, but as it’s connected (on the circuit board) to pin 14 
of the chip, we can guess that it’s the one right above pin 14. A simple experiment shows that this is 
indeed the right pin, so we connect this pin to the BUF6 pin at the top of the board. This allows the 
switch to generate a signal which is then sent to port 6. A jumper is installed across U4-in-B6 to allow 
that signal to be input from the board. The value of the switch from port 3 is also read in, and these 
two should be the same (most of the time). 
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In butled.c we use INP_GPIO to set GPIO22 and GPIO23 to input and GPIO_PULL and 
GPIO_PULLCLK0 to set the pull-up on GPIO23. This is described in more detail on page 19, in the 
buttons test. Then the GPIO values are repeatedly read in, and the binary values of GPIO22 and 
GPIO23 are printed out (with GPIO23 first), if they have changed since the last cycle. So if ‘01’ is 
displayed on the monitor, we can see that GPIO23 is low and GPIO22 is high. (Note that the LED for 
port 6, labelled D6, should be off when switch 3 is pressed and on when switch 3 is up.)  

Now, if the values for GPIO22 and GPIO23 are always the same, ‘00’ and ‘11’ will only ever be 
printed out. But occasionally we see ‘01’ or ‘10’. Note that when this occurs, the first digit changes to 
the new value, and then immediately afterwards the second digit changes. But the values of both 
GPIO22 and GPIO23 are read out simultaneously, so why do we ever have different values on the two 
GPIO pins? The answer is that signal from the pushbutton (which is connected to GPIO23) takes a 
small amount of time to propagate through the buffers to get to GPIO22. Sometimes we take a reading 
after GPIO23 has changed, but insufficient time has passed for GPIO22 to change state and follow it! 

This program (butled-rg.py) also only works with RPi.GPIO at the moment. It is a very similar 
program to buttons, but with two less buttons in use and an LED wired into the circuit, which lights 
on button press. 

Two GPIO ports are used. One (23) is pulled HIGH for the button and the other (22) is configured as 
a regular input. In the main while loop, the program polls both ports and, if there is a change,  
increments the variable button_press and displays the new values on the screen. The strap from 
U3-out-B3 pin 1 to  BUF6 in the top header connects the LED to the button, causing it to light and the 
other input port (22) to go HIGH when the button is pressed. The values are displayed on the screen 
as with the buttons program. 

Now, if the values for GPIO22 and GPIO23 are always the same, ‘00’ and ‘11’ will only ever be 
printed out. But occasionally we see ‘01’ or ‘10’. Note that when this occurs, the second digit changes 
to the new value, and then immediately afterwards the first digit changes. This is opposite of the 
behaviour of the C program, where the first digit sometimes changes before the second. Why is it 
acting differently? In the Python code, the values are read in by this line of code: 

   status_list = [str(GPIO.input(23)),str(GPIO.input(22))] 

This causes GPIO23 to be read before GPIO22. If the button is pressed or released between these two 
reads, GPIO23 will still have the old value, but the new value will be read from GPIO22. The new 
value won’t be read from GPIO23 until the next time through the while loop. 

The Gertboard uses six ports of a ULN2803a to provide open collector drivers. These are used to turn 
off and on devices, especially those that are powered by an external power supply and need a different 
voltage or higher current than that available on the Gertboard. Basically, an open collector connects 
the ground side of an external circuit to ground on the board, thus giving the circuit power. The 
ULN2803A can withstand up to 50V and drive 500mA on each of its ports. Each driver has an 
integrated protection diode (the uppermost diode in the circuit diagram in Figure 15). 
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Raspi
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Figure 15: Circuit diagram of each open collector driver. 

The ‘common’ pin is, as the name states, common for all open collector drivers. It is not connected to 
anything else on the Gertboard. As with all devices the control for the open collector drivers (the 
‘Raspi’ point) can also be connected to the ATmega controller to, for example, drive relays or motors. 

The open collector drivers are in the schematics on page A-3. 

In the Gertboard functional block diagram (Figure 2 on page 6), the area containing the components 
for the open collector drivers are outlined in yellow. The pins corresponding to ‘Raspi’ in Figure 15 
are RLY1 to RLY6 pins in the J4 header; the pins corresponding to ‘common’ are the ones marked 
RPWR in the headers on the right edge of the board; and the pins corresponding to ‘OUT’ are the 
RLY1 to RLY6 pins in the headers J12 to J17. How these are then used is demonstrated by the test 
wiring and code examples. 

Testing the Open Collector Drivers 
The C program ocol (for open collector) allows the functional testing of the open collector drivers. 
The Python version comes in two flavours, ocol-rg.py and ocol-wp.py.  

We needed something for the driver to switch on and off, so we created a little circuit consisting of 
two large LEDs and a resistor in series. (This is the small circuit to the right of the Gertboard in 
Figure 16.) Once connected, the forward voltage across each of these LEDs is a little above 3V, so we 
used a 9V battery as a power supply and calculated a series resistance of around about 90Ω to set a 
suitable current flow through the LEDs. You can of course use any circuit you like to test this; just 
make sure that the voltage of your power supply is appropriate for your circuit (and that it is within 
the 50V, 500mA limit of the driver). 

To turn the circuit off and on using the open collector driver (say you want to use driver 1), first check 
that your circuit works with the external power supply you are using. Then, leave the positive side of 
your circuit attached to the positive terminal of the power supply, but in addition connect it to one of 
the RPWR pins in the headers on the right edge of the board (they are all connected together). 
Disconnect the ground side of the circuit from the power supply and connect it instead to RLY1 in 
header J12 on the right of the board. Attach the ground terminal of the power supply to any GND or  
pin on the board. Now, we need a signal to control the driver. For the ocol test we use GPIO4 to 
control the open collector (you could of course use any logic signal), so connect GP4 in header J2 to 
RLY1 in J4. (To test a different driver, say n, connect the ground side of the circuit up to RLYn in the 
headers on the right of the board and connect GP4 in header J2 to RLYn in J4.)  
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Now, when RLY1 in J4 is set low, the circuit doesn’t receive any power and thus is off. When RLY1 
in J4 goes high, the open collector driver uses transistors to connect the ‘ground’ side of the circuit to 
the ground on the board, and since this is connected to the ground terminal on the power supply, the 
power supply powers your circuit: it is just turned off and on by the open collector driver. 

 

Figure 16: Wiring diagram to test the open collector drivers. On the right is a small test circuit made up of two LEDs 
in series with a 90 Ω resistor, and a 9V battery acting as power supply. 

You may wonder why you need to connect the positive terminal of the power supply to the open 
collector driver (via the RPWR pin). The reason for this is that if the circuit happens to contain an 
component that has electrical inductance, for example a motor or a relay, when the power is turned off 
this inductance can cause the voltage on RLYn pin on the right of the board to quickly rise to a higher 
voltage than the positive terminal of the power supply, dropping quickly afterwards. The chip itself 
has an internal diode connecting the RLYn pin to RPWR (this is the diode at the top of Figure 15). 
This allows current to flow to the top (positive side) of your circuit, allowing the energy to dissipate 
and preventing damage. 

The ocol test is very simple. First, it prints out the connections required on the board (and with your 
external circuit and power supply), and then it calls setup_io to get the GPIO interface ready to use 
and setup_gpio to set pin GPIO4 to be used as an output (using the commands INP_GPIO(4); 
OUT_GPIO(4); as described on page 13). Then in it uses GPIO_SET0 and GPIO_CLR0 
(described on page 21) to set GPIO4 high then low 10 times. Note: the test asks which driver should 
be tested, but it only uses this information to print out the connections that need to be made. 
Otherwise it ignores your response. 

The two open collector programs ocol-wp.py and ocol-rp.py are identical apart from the 
GPIO system used. In the programs, the function which_channel() handles the user channel 
selection. Once a suitable input is obtained, correct wiring instructions are displayed. Once enter is 
pressed, to confirm the wiring is done, the program switches the chosen open collector port on and off 
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ten times with a 0.4 second delay between each change. At the end, or on (CTRL-C) keyboard 
interrupt, the GPIO ports are reset. 

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do... 

• vary the 0.4 in sleep(0.4)  
• change the 10 in for i in range(10): 
• see what happens if you try to tell it you want to use driver 7 (when using the program) 
• change the error message displayed when choosing the wrong port number to an “alternative” 

one of your choice 

The Gertboard has a ROHM BD6222HFP motor controller. The motor controller is for brushed DC 
motors and can handle a maximum voltage of 18V and max current of 2A. 

The controller has two input pins, A and B (labelled MOTA and MOTB on the board). The pins can 
be driven high or low, and the motor responds according to the table below. The speed of the motor 
can be controlled by applying a pulse-width-modulated (PWM) signal to either the A or B pin. 

A B Motor action 
0 0 no movement 
0 1 rotate one way 
1 0 rotate opposite way from above 
1 1 no movement 

Table 3: Truth table showing the behaviour of the motor controller under different logic combinations. 

The motor controller IC has internal temperature protection. Current protection is provided by a fuse 
on the Gertboard. The motor controller is in the schematics on page A-4. 

On the Gertboard functional block diagram (Figure 2 on page 6), the area containing the components 
for the motor controller are outlined in purple. The motor controller and screw terminals are near the 
top of the board, and there are two pins for the control signals in J5, a small header just above GP4 
and GP1 in header J2. The MOTA and MOTB pins in J5 are the inputs to the motor controller – these 
are digital signals (low and high). The screw terminals at the top of the board labelled MOTA and 
MOTB are the outputs of the motor controller: they actually provide the power to the motor. The 
motor will probably need more power (a higher voltage or current) than that provided by the 
Gertboard. The screw terminals at the top labelled MOT+ and  allow the connection of an external 
power supply to provide this: the motor controller directs this power to the MOTA and MOTB screw 
terminals, modulating it according to the MOTA and MOTB inputs in J5. 

If you just want to turn the motor off and on, in either direction, this is achieved by simply choosing 
two of the GPIO pins and installing straps between them to the MOTA and MOTB motor controller 
inputs. Then, to control the motor, the pins are set high or low as in Table 3. To control the speed of 
the motor however, pulse width modulation (PWM) is required. This is a device that outputs a square 
wave that flips back and forth from on to off very rapidly, as shown in Figure 17. 
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Figure 17: An example of a PWM output. Here the output is on for 50% of the time, so it has a duty cycle of 50%. 

With a PWM, you can control the amount of time the output is high vs. when it is low. This is called 
the duty cycle and is expressed as a percentage. Figure 17 above shows a 50% duty cycle; the one in 
Figure 18 below is 25%. 

 

 

Figure 18: In this PWM example, the duty cycle is 25%. 

There is a PWM in the BCM2835 (the Raspberry Pi processor), and its output can be accessed via 
GPIO18 (it is alternate function 5). If this is connected to one of the motor controller inputs (MOTA 
has been used in our motor test), and the other motor controller input (MOTB in our test) is set to a 
steady high or low, the speed and direction of the motor can be controlled.  

 

Figure 19: The motor direction is set by MOTB. Whilst MOTA has a duty cycle of 25%, the motor receives power 
whenever MOTA and MOTB are different, thus it receives power for 75% of the time. 

For example, in Figure 19 above we are alternating between A low/B high and A high/B high (the 
second and fourth lines of the table above). When A is low, the motor will receive power making it 
turn one way; when A is high it will not receive power. The end result for the 25% duty cycle shown 
here is that the motor will turn one way at roughly ¾ speed.  

 

Figure 20: In this example, the motor will run in the opposite direction at around 25% speed. 

If on the other hand you set MOTB low, as in Figure 20 above, then when A is high the motor will 
receive power making it turn in the other direction, and when A is low the motor will not receive 
power. The result for the 25% duty cycle is that it will turn in the other direction at about ¼ speed. 

Testing the Motor Controller 
The C test program for the motor controller is called motor. In Python there are two versions, 
motor-rg.py and motor-wp.py. To set up Gertboard for this, connect GP17 in J2 to the MOTB 
pin (the MOTB pin in J5, not the one at the top of the board), and GP18 to MOTA in J5. The motor 
leads need to be connected to the MOTA and MOTB screw terminals at the top of the board, and the 
power supply for the motor needs to be connected to the MOT+ and  screw terminals. This is shown 
in Figure 21. 
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Figure 21: The wiring diagram for the test program motor. 

The PWM is controlled by a memory map, like the GPIO and SPI bus. This memory map is part of 
the setup_io function in gb_common.c, so that is whether the PWM is used or not. Further setup 
code is found in, gb_pwm.c, with an associated header file gb_pwm.h. The function setup_pwm 
in gb_pwm.c sets the speed of the PWM clock, and sets the maximum value of the PWM to 1024: 
this is the value at which the duty cycle of the PWM will be 100%. It also makes sure that the PWM is 
off. The two routines set_pwm0 and force_pwm0 set the value that controls the duty cycle for the 
PWM. set_pwm0 sets the value (first checking that it is between 0 and 1024), but as there are only 
certain points in the PWM cycle where a new value is picked up, if a second value is written again 
quickly the first will have no effect. The force_pwm0 routine takes two arguments, a new value and 
a new mode. It disables the PWM, then sets the value, then re-enables it with the given mode setting, 
with delays in strategic places to allow the new values to be picked up. The pwm_off routine simply 
disables the PWM. 

The code for the motor program is in motor.c. In the main routine, first the connections that must 
be made on the board to run this program are printed out, then call setup_io to get the GPIO 
interface ready for use. setup_gpio is then called to set GPIO18 up for use as the PWM output and 
GPIO17 up for normal output. For the latter, both INP_GPIO and OUT_GPIO are used, see page 13 
for more info. To set up GPIO18, first use INP_GPIO(18) to activate the pin. One of the alternate 
functions for GPIO18 is to act as the output for the PWM; this is alternative 5. Thus use the macro 
SET_GPIO_ALT(18, 5) to select this alternate use of the pin. (See table Table 6-31 from the 
BCM2835 datasheet, or the online version at http://elinux.org/RPi_BCM2835_GPIOs, for more 
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details about alternative functions of the GPIO pins. For a summary of the alternate function of GPIO 
pins used on the Gertboard, see Table 1 on page 11.) 

We set the output of GPIO17 low (to make sure that the motor doesn’t turn) and then initialize the 
PWM by calling setup_pwm. We enable the PWM by setting the mode to PWM0_ENABLE using 
force_pwm0. Since GPIO17 (motor controller B input) is set low, when the duty cycle on the PWM 
(motor controller A input) is high enough, the motor will turn the ‘opposite way’ as described in the 
motor table on page 27. 

A loop now starts where the PWM is started, first with a very low duty cycle (because the value 
passed to set_pwm0 is low), then gradually increasing this to the maximum (which is set to 0x400 – 
1024 – in setup_pwm). Then the value sent to the PWM is decreased to slow the motor down. Then 
GPIO17 is set high, so that the motor will get power on the low phase of the PWM signal. The PWM 
is re-enabled with the mode PWM0_ENABLE|PWM0_REVPOLAR. The reverse polarization flag flips 
the PWM signal, so that a low value sent to the PWM results in a signal that is high most of the time 
(rather than low most of the time). That way the same code can be used to slowly ramp up the speed 
of the motor (but in the ‘one way’ direction as in the table on page 27), then slow it down again. 
Finally the PWM is switched off, and the GPIO interface is closed down. 

The motor-rg.py and motor-wp.py programs are rather different because the RPi.GPIO 
package does not yet support hardware pulse-width modulation (PWM), but WiringPi for Python does 
(it works, although it's still undocumented). Thus motor-rg.py (the RPi.GPIO  version) uses 
software PWM, which is found in the function run_motor().  If you try both programs, you'll 
probably get smoother results with motor-wp.py (the WiringPi for Python version). 

Both versions use the Python 3 print() function, which is imported like this 

   from __future__ import print_function 

Without this function, it would be difficult to prevent line-breaks and spaces in the on-screen output. 
It means that all print statements need to be written as print() instead of just print because they 
are now function calls and not statements. 

After importing the required modules, we define which ports to use (18 and 17), how many times to 
run each loop (Reps), PWM cycle time (Hertz), frequency for motor loop time period (Freq). 
Then the ports are set up as outputs and set to OFF (0). 

Next the function 

   run_motor(Reps, pulse_width, port_num, time_period) 

 is defined. This controls the GPIO port switching on and off for precise periods of time. The port 
port_num is switched on for time pulse_width, then switched off for time time_period, and 
all of that is repeated Reps times (400 in this case). The main loop in run_motor()is inside a 
try: except: block. This is an important safety precaution to ensure the motor is switched off on 
keyboard interrupt. (This is even more important with hardware PWM in the other version). The 
run_motor() function is called many times from the run_loop() function. Each loop of 400 
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repetitions is just one step up or down in motor speed: 400 repetitions at 2000 Hertz represents just 
0.2 seconds. 

Then we define the run_loop() function  

   run_loop(startloop, endloop, step, port_num, printchar) 

The arguments startloop and endloop are the % time for the switched port to be ON at the start 
and end of the loop. step is the size of the increment for each successive loop. port_num is the 
port we’re switching (17 or 18).  printchar is the acceleration/deceleration indication character 
('+' or '-'). The run_loop() function handles the repeated calls to the run_motor() function 
causing it to run its 400 cycles for each set of values defined. 

After the functions are defined, wiring instructions are printed out and the computer waits for a key 
press of enter to confirm the user is ready. Then the run_loop() function is called four times to 
drive the motor speed from 5% to 95% and back again in each direction. After this, both ports are set 
to OFF (False) and then reset. 

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do... 

• run_loop(5, 95, 1, 18,'+') –  change + to something else 
• run_loop(5, 95, 1, 18,'+') –  change 5 to a higher number < 95 
• run_loop(5, 95, 1, 18,'+') –  change 95 to a lower number (but still greater than 

what you changed the 5 to) 

The Raspberry Pi has one available hardware PWM port (GPIO18). We will use port 17 to control 
motor direction and port 18 to handle the pulsing. 

The first part of the program imports the required modules, including the Python 3 print() 
function (explained above in the section on motor-rg.py). After initialising WiringPi, port 18 is 
set to PWM mode with wiringpi.pinMode(18,2) and port 17 is set up for normal output. Then 
both ports are set to 0 (OFF). Wiring instructions are then printed out and the computer waits for user 
confirmation. When the user is ready, the program defines three functions that are used repeatedly. 

display(printchar) handles the correct display of the motor acceleration/deceleration 
indicators using the imported Python 3 print() function. 

reset_ports() handles the resetting of the ports on program exit. This is not built into WiringPi 
for Python so it needs to be defined here. This is particularly important in the motor program as it 
avoids an uncontrollable “motor running” situation on program exit. This is an important safety 
consideration if you’re going to run things with propellers etc. 

loop(start_pwm, stop_pwm, step, printchar) handles the main PWM control loop. 
As before, this is called in four different ways (increasing speed then decreasing speed with motor 
going one way, then increasing and decreasing speed with motor going the other way). start_pwm 
is the 0-1024 PWM value to start the loop with. stop_pwm is the 0-1024 PWM value to end the loop 
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with. step is the incremental/decremental PWM value for each successive loop. printchar is the 
character to denote motor accelerating or decelerating.  

The main body of the program contains four calls to loop() to demonstrate acceleration and 
deceleration in each of two different rotational directions, with a short “aesthetic” pause in between 
each loop, defined by rest = 0.013 (0.013s). When port 17 is 0, the motor rotates in one 
direction. When port 17 is 1, it rotates the other way. As usual, the main body is contained in a try: 
except: block to enable safe port reset, before exit, on keyboard interrupt. 

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do... 

• rest = 0.013 – change 0.013 to 0 and see why it’s there 
• loop(140, 1024, 1, '+') – change 140 to a positive number nearer 0 
• loop(140, 1024, 1, '+') – change 1024 to a lower number > 140 
• loop(140, 1024, 1, '+') –  change + to another character 

In the Gertboard functional blocks diagram (Figure 2 on page 6), the components implementing the 
converters are outlined in orange. Both the digital to analogue converter (D/A) and analogue to digital 
converter (A/D) are 8-pin chips from Microchip, although oddly they are in different sorts of 
packages. The A/D (labelled U6 on the circuit board) is in a dual in-line package whilst the A/D 
(U10) is surface mounted. Each supports 2 channels.  

Both use the SPI bus to communicate with the Raspberry Pi. The SPI pins on the two chips are 
connected to the pins labelled SCLK, MOSI, MISO, CSnA, and CSnB in the header just above J2 on 
the board (thus in the functional blocks diagram, these pins are also outlined in orange). SCLK is the 
clock, MOSI is the output from the RPi, and MISO is the input to the RPi. CSnA is the chip select for 
the A/D, and CSnB is the chip select signal for the D/A (the ‘n’ in the signal name means that the 
signal is ‘negative’, thus the chip is only selected when the pin is low). Both A/D and D/A chips have 
a 10K pull-up resistor on their chip-select pins, so the devices will not be accessed if the chip-select 
pins are not connected. 

The SPI pins are conveniently located just above GP7 to GP11 in header J2, because one of the 
alternate functions of these pins is to drive the SPI signals. For example, the ‘ALT0’ (alternative 0) 
function of GPIO9 is SPI0_MISO, which is why the pin labelled MISO is just about the pin labelled 
GP9. Thus to use the A/D and D/A, simply put jumpers connecting pins GP7 to GP11 to the SPI pins 
directly about them (although technically you only need CSnA for the A/D and CSnB for the D/A).  

In the schematics, the D/A and A/D converters are on the upper left of page A-6. 

Digital to Analogue Converter 
The Gertboard uses an MCP48x2 digital to analogue converter (D/A) from Microchip. The device 
comes in three different types: 8, 10 or 12 bits. The one you get on your board is determined by 
availability of parts. To see which one you have, look very closely at the small chip in location U10. It 
should have a number 48x2 stamped on it, where x is either 0, 1, or 2.If x is 0, you have the 8-bit 
version. If it’s 1 you have the 10 bit version, and if it’s 2 you have the 12-bit one. These chips are all 
pin-compatible and are written to in the same way. In particular, the routine that writes to the D/A 
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assumes that writes are in 12 bits, so it is important that the value is selected appropriately (details are 
below in the section “Testing the D/A and A/D”). The maximum output voltage of the D/A – the 
output voltage when you send an input of all 1s – is 2.04V. 

The analogue outputs of the two channels go to pins labelled DA0 (for channel 0) and DA1 (for 
channel 1) in the J29 header on the left edge of the board. Just next to these pins are ground pins 
(GND) to provide a reference. 

Analogue to Digital Converter 
The Gertboard uses a MCP3002 10-bit analogue to digital converter from Microchip. It supports 2 
channels with a sampling rate of ~72k samples per second (sps). The maximum value (1023) is 
returned when the input voltage is 3.3V. 

The analogue inputs for these two channels are AD0 (for channel 0) and AD1 (for channel 1) in the 
J28 header. Just next to these pins are ground pins (GND) to provide a reference. 

Testing the D/A and A/D  
According to the data sheet for the D/A, the value on the output pin, Vout, is given by the following 
formula (assuming the 8-bit MCP4802): 

 

Vout for channel 0 is DA0 in J29; for channel 1 it’s DA1.  

 

Figure 22: The wiring diagram for the dtoa test. 

To test the D/A, a multi meter is required. The C test program for this is dtoa. The Python version is 
dtoa.py. To set up Gertboard for this test, jumpers are placed on the pins GP11, GP10, GP9, and 
GP7 connecting them to the SPI bus pins above them. Attach the multi meter as follows: the black 
lead needs to be connected to ground. You can use any of the pins marked with  or GND for this. 
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The red lead needs to be connected to DA0 (to test the D/A channel 0 which is shown below) or DA1 
(for channel 1).  Switch the multimeter on, and set it to measure voltages from 0 to around 5V. All 
this is shown in Figure 22. 

The C test program for the A/D is called atod; the Python version is atod.py. To run this test a 
voltage source on the analogue input is required. This is most easily provided by a potentiometer (a 
variable resistor). The two ends of the potentiometer are connected, one side to high (3.3V, which you 
can access from any pin labelled 3V3) and the other to low (GND or ), and the middle (wiper) part 
to AD0 (for channel 0 as shown below) or AD1 (for channel 1). To use the SPI bus jumpers should be 
installed on the pins GP11, GP10, GP9, and GP8 connecting them to the SPI bus pins above them. 
This is shown in Figure 23. 

 

Figure 23: Wiring diagram for the test program atod. 

Even without a multi meter or a potentiometer, it is still possible to test the A/D and D/A by sending 
the output of the D/A to the input of the A/D. The test that does this is called dad, for digital-
analogue-digital. To set the Gertboard up for this test, hook up all the SPI bus pins (connecting GP11 
though GP7 with jumpers to the pins above them) and put a jumper between pins DA1 and AD0, as in 
the diagram below. 
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Figure 24: The wiring diagram for the dad test, which allows you to test the A/D and D/A converters together, 
without the aid of a multimeter or potentiometer. 

Since the D/A and A/D converters both use the SPI bus, the common SPI bus code has been placed 
into a separate file, gb_spi.c. There is also an associated header file, gb_spi.h, which contains 
many macros and constants needed for interacting with the SPI bus, as well as the declarations for the 
functions in gb_spi.c. These functions are setup_spi, read_adc, and write_dac. 
setup_spi sets the clock speed for the bus and clears status bits. read_adc takes an argument 
specifying the channel (should be 0 or 1) and returns an integer with the value read from the A/D 
converter. The value returned will be between 0 and 1023 (i.e. only the least significant 10 bits are 
set), with 0 returned when the input pin for that channel is 0V and 1023 returned for 3.3V. 

The write_dac routine takes two arguments, a channel number (0 or 1) and a value to write. The 
value written requires some explanation. The MCP48xx family of digital to analogue converters all 
accept a 12 bit value. The MCP4822 uses all the bits; the MCP4812 ignores the last two; and the 
MCP4802 ignores the last four. Since any of those chips might appear on the Gertboard (depending 
on availability), write_dac is written in so that it will work with all three, so it simply sends to the 
D/A the value it was given. If Gertboard is fitted with the MCP4802, it can only handle values 
between 0 and 255, but these must be in bits 4 through 11 (assuming the least significant bit is bit 0) 
of the bit string it is sent. Thus if the desired number to be sent to the D/A is between 0 and 255, it 
must be multiplied by 16 (which effectively shifts the information 4 bits to the left) before sending 
this value to write_dac. 

To test the D/A, the dtoa program first asks which channel to use and prints out the connections 
needed to make on  Gertboard to run the program. Then it calls setup_io to get the GPIO ready to 
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use, then calls setup_gpio to choose which pins to use and how to use them. In setup_gpio, as 
usual INP_GPIO(n) (where n is the pin number) is used to activate the pins. This also sets them up 
to be used as inputs. They should however, be used as an SPI bus, which is one of the alternative 
functions for these pins (it is alternate 0). Thus we use SET_GPIO_ALT(n, a) (where n  is the pin 
number and a  is the alternate number, in this case 0) to select this alternate use of the pins. Then the 
program sends different values to the D/A and asks for real verification, using the multimeter, that the 
D/A converter is generating the correct output voltage. 

To test the A/D, the atod program first asks which channel should be used and prints out the 
connections required on  Gertboard to run the program. Then it calls setup_io to get the GPIO 
ready, then calls setup_gpio to choose which pins will be used, and how they will be used. The 
setup_gpio used in atod works the same way as the one in dtoa (except for activating GPIO8 
instead of GPIO7).  

Then atod repeatedly reads the 10 bit value from the A/D converter and prints out the value on the 
terminal, both as an absolute number and as a bar graph (the value read is divided by 16, and the 
quotient is represented as a string of ‘#’ characters). One thing to be aware of is that even if the 
potentiometer is not moved, exactly the same result may not appear on successive reads. With 10 bits 
of accuracy, it is very sensitive, and even the smallest changes, such as house current running in 
nearby wires, can affect the value read. 

To test both the D/A and A/D at the same time, the dad test sends 17 different digital values to the 
D/A (0 to 255 in even jumps, then back down to 0). The resulting values are then read in from the 
A/D. Both the original digital values sent and the values read back are printed out, as is a bar graph 
representing the value read back (divided by 16 as in atod). The bar graph printed out should be a 
triangle shape: the lines will start out very short, then get longer and longer as larger digital values are 
read back, then will get shorter again. 

The analogue to digital and digital to analogue converters are connected to the (SPI) ports on the 
Raspberry Pi. These are the alternative functions of GPIO ports 7 and 8. 

In order to make use of atod.py, dtoa.py and dad.py you must have SPI enabled, and you must 
install a Python module called py-spidev. Instructions on how to do this are in the README.txt 
included with the Python programs that you downloaded. 

The user chooses which channel to use on the analogue to digital converter (A/D), then wiring 
instructions are printed out. The function get_adc(channel) uses spidev to read the A/D. It 
receives three bytes of data and extracts the result – a number between 0 and 1023, where 0 means 0V 
and 1023 means 3.3V. 

The main loop runs 600 times with a “sleep” of 0.05s, so the program takes about 30 seconds (600 * 
0.05) to run. During each iteration of the loop, the program reads the A/D and displays this reading 
and a number of # symbols proportional to the value read, which depends on the position of the 
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potentiometer. It uses the display(char, reps, adc_value, spaces) function to 
achieve this. 

Moving the potentiometer while the program is running changes both the numerical readout and the 
number of # characters displayed. 

Suggested tweaks to experiment with. Try changing these one at a time and see what they do... 

• char = '#' –  change value of char from # to a symbol of your choice (line 30) 
• sleep(0.05) –  change the 0.05 and see what happens  (line 56) 

The digital to analogue converter (D/A) is controlled by writing 2 binary bytes (16 bits in total) to it 
via the SPI interface.  The program uses a Python module called spidev to handle the SPI 
communication. We have to give spidev two base 10 numbers, which it converts into 8-bit binary 
bytes, which it sends to the D/A. The D/A outputs a voltage according to the value given to it. An 
input of 0 gives 0V, 255 gives 2.048V, and it’s linear in between, so 128 should give 1.02V. 

The pre-determined values we send to the D/A are stored in two list variables... 

• num_list[] – holds the first byte (different for each channel). 
• common[] –  holds the second byte of data (same for each channel). 

The user chooses the channel and then the main loop takes the first number from each list and 
combines byte1 with byte2. Then it sends them to the D/A, which immediately outputs the desired 
voltage until enter is pressed. It iterates through all five values, setting the D/A and waiting for a key 
press. Both channels are reset to zero at the end of the program. 

Suggested tweaks to experiment with. 

• None this time. If you change the numbers in the lists you will break the program (the voltage 
output will no longer agree with the numbers that the test program prints out). If you want to 
see how they are derived, you can look in the dad.py program in the dac_write function 

This program uses spidev to control the A/D and the D/A using both of the SPI ports on the Raspberry 
Pi. First the wiring instructions are printed out on the screen. Then the main loops (one for each 
direction) iterate from 0 to 256 and back again in increments of 32. This value is sent to the D/A using 
dac_write(DAC_value), and the appropriate voltage appears on the ouput pin  DA1.This 
voltage goes by a jumper to AD0, an input of the A/D, and the get_adc(adc_channel) function 
is called to read this voltage using the A/D, returning a number between 0 and 1023. Both numbers 
are then printed out along with a bar chart (using the # character) representing the A/DC. 

Suggested safe tweaks to experiment with. 

• Change the 32 in both loops for DAC_value in range(0,257,32) and for 
DAC_value in range(224,-1,-32) 
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• Change the 4 in adc_string = "{0:04d}" 
• Change the 3 in print "%s %s %s" % ("{0:03d}") 
• Remove the jumper between AD0 and DA1 and see what happens 

This section shows some examples of using more than one functional block at a time.  

A/D and Motor Controller 
In the potmot (for potentiometer-motor) test we use a potentiometer (“pot”) connected to the 
analogue to digital converter (A/D) to get an input value, and this value is used to control the speed 
and direction of the motor. It is set up so that at one extreme, the motor is going at top speed in one 
direction, as you move the wiper towards the middle it slows, at the middle the motor stops, and as 
you continue to move the wiper along, the motor speeds up again but in the other direction.  

To wire up the Gertboard for this example, you combine the wiring for the A/D and motor tests. 
Jumpers connect GP8 to GP11 to the pins directly above them to allow us to control the SPI bus using 
GPIO8 to GPIO11. You must attach your potentiometer to the AD0 input. GPIO17 controls the motor 
B input and GPIO18 controls the motor A input using the pulse width modulator (PWM). Thus GP17 
must be connected via a strap to MOTB, and GP18 must be connected to MOTA. The motor and its 
power source must be connected to the screw terminals in J19 at the top of the board. See the wiring 
diagram below. 

 
Figure 25: Wiring diagram for the potmot test. 
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The main routine for this is in potmot.c. Functions from gb_spi.c and gb_pwm.c are used to 
control the SPI bus (for reading the A/D) and the pulse width modulator (for controlling the speed of 
the motor). 

In the main routine for potmot, first we print to the terminal the connections that need to be made 
on the Gertboard to run this example, then we call setup_io to set up the GPIO ready for use. Then 
we call setup_gpio to set the GPIO pins the way we want them. In this, we set up GPIO8 to 
GPIO11 to use the SPI bus using INP_GPIO and SET_GPIO_ALT as described in the section on the 
converters (D/A and A/D tests in C, page 35).  GPIO17 is set up as an output (using INP_GPIO and 
OUT_GPIO), and GPIO18 is set up as a PWM using as INP_GPIO and SET_GPIO_ALT as 
described in the section on the motor controller (Motor Test in C, page 29). Back in main, we call 
setup_spi and setup_pwm to get the SPI bus and PWM ready for use and get the motor ready to 
go.  

Then we repeatedly read the A/D and set the direction and speed of the motor depending on the value 
we read. Lower A/D values (up to 511 – recall that the A/D chip used returns a 10 bit value so the 
maximum will be 1023) result in the motor B input being set high, and thus the motor goes in the 
“rotate one way” as in the motor controller table (Table 3, page 27). Confusingly, this motor direction 
is called “backwards” in the comments of the program! Higher A/D values (512 to 1023) result in the 
motor B input being set low, and the motor goes in the “rotate opposite way” direction. This is called 
“forwards” in the comments of the program. Simple arithmetic is used to translate A/D values near 
511 to slow motor speeds and A/D values near the endpoints of the range (0 and 1023) to fast motor 
speeds by varying the value sent to the PWM. 

This program, potmot-wp.py, uses spidev to control the A/D and WiringPi for Python to control 
the motor with the hardware PWM. Essentially potmot is a simplified combination of the atod.py 
and motor-wp.py programs. It is simplified in that there is no on-screen display of the A/D reading 
or motor direction. 
 
The potentiometer position (read by the ADC) determines motor direction and speed (PWM value) as 
follows: middle value (511) results in no movement, 1023 results in max speed one way, 0 results in 
max speed the other way. 
 
First the program imports the required modules, spidev and wiringpi, then sets up GPIO ports 17 and 
18 as digital output and PWM output respectively. Then two functions are defined; get_adc() 
reads the voltage at the potentiometer using the A/D; reset_ports() ensures we can safely exit 
the program with the ports switched off. Then the initial values of  variables are set and the wiring 
instructions are printed out on the screen. The program then waits for user input before proceeding. 
 
Once the user hits enter, the SPI port is opened to read the potentiometer voltage using the A/D. The 
A/D value is read and if above 511 we set port 17 to 0, which sets motor direction one way. Otherwise 
direction is set the other way. Then the PWM value sent to port 18 is calculated, based on the value 
read from the ADC. This determines how fast the motor will spin. After the PWM value is written to 
port 18, the program waits 0.05 seconds and then repeats the main loop, reading the A/D value again. 
This occurs 600 times, so the program runs for about 30 seconds. 
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The main loop is wrapped in a try: except: block to enable safe resetting of the ports in the 
event of a CTRL+C keyboard interrupt. 
 
Suggested safe tweaks to experiment with. 

• none this time 

Decoder 
The decoder implemented by the decoder program takes the three pushbuttons as input and turns on 
one of 8 LEDs to indicate the number with the binary encoding given by the state of the buttons. 
Switch S1 gives the most significant bit of the number, S2 the middle bit, and S3 the least significant 
bit. For output, the LED D5 represents the number 0, D6 represents 1, and so on, so D12 represents 7. 
Recall that the pushbuttons are high (1) when up and low (0) when pushed, so LED D12 is lit up when 
no buttons are pressed (giving binary 111 or 7), D6 is lit up when S1 and S2 are pressed (giving 
binary 001), etc. 

There is quite a bit of wiring for this one, as we are using all but one of the I/O ports.GPIO25 to 
GPIO23 are reading the pushbuttons, so you need to connect GP25 to B1, GP24 to B2, and GP23 to 
B3. The 8 lowest-numbered GPIO pins are used with I/O ports 5 to 12, so you need to connect GP11 
to B5, GP10 to B6, GP9 to B7, GP8 to B8, GP7 to B9, GP4 to B10, GP1to B11, and GP0 to B12. In 
addition, since we are using I/O ports 5 to 12 for output, you need to install all the out jumpers for 
buffer chips U4 and U5 (recall that the out jumpers are those above the chips). 

 
Figure 26: Wiring diagram for the decoder test. 

In the main routine for decoder, as always we start out by printing out to the terminal the 
connections that need to be made on the Gertboard. Then we call setup_io to set up the GPIO 
ready for use. Then we call setup_gpio to set GPIO25 to 23 for use with the pushbuttons (by 
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selecting them for input and enabling a pull-up, as described on page 19) and to set GPIO11 to GP7, 
GPIO4, GPIO1, and GPIO0 up as outputs (as described on page 13). Then we enter a loop where we 
read the state of the pushbuttons and light up the LED corresponding to this number (after turning off 
the LED previously set). We turn the LEDs on and off using GPIO_SET0 and GPIO_CLR0 as 
described on page 21. 

At the time of writing, there is no decoder test in Python. 

The Gertboard can hold an Atmel AVR microcontroller, a 28-pin ATmega device, at location U8 on 
the lower left of the board. This can be any of the following: ATmega48A/PA, 88A/PA, 168A/PA or 
328/P in a 28-pin DIP package. Usually the 168 or 328 is fitted. The device has a 12MHz ceramic 
resonator attached to pins 9 and 10. All input/output pins are brought out to header J25 on the left 
edge of the board. There is a separate 6-pin header (J23 on the left side of the board) that can be used 
to program the device.  

The PD0/PD1 pins (ATmega UART TX and RX) are brought out to pins placed adjacent to the 
Raspberry Pi UART pins so you only need to place two jumpers to connect the two devices.  

Note that the ATmega device on the Gertboard operates at 3.3Volts. That is in contrast to the 
‘Arduino’ system which runs at 5V. (This is the reason why the device does not have a 16MHz clock. 
In fact at 3V3 the maximum operating frequency according to the specification is just under 12MHz.) 
Warning: many of the Arduino example sketches (programs) mention +5V as part of the circuit. 
Because we are running at 3.3V, you must use 3.3V instead of 5V wherever the latter is mentioned. If 
you use 5V you risk damaging the chip. 

The ATmega device and the headers connected to it are in the schematics on page A-6. 

Programming the ATmega 
Programming the ATmega microcontroller is straightforward once you have all the infrastructure set 
up, but it requires a fair bit of software to be installed on your Raspberry Pi. We are very grateful to 
Gordon Henderson, of Drogon Systems, for working out what needed to be done and providing the 
customized software. Using his system, you can use the Arduino IDE (Integrated Development 
Environment) on the Raspberry Pi to develop and upload code for the ATmega chip on the Gertboard. 
All the software needed, along with instructions, is available at  

       https://projects.drogon.net/raspberry-pi/gertboard/  

For the rest of this section, we assume that you have downloaded and successfully installed and 
configured the Arduino IDE, as described at Gordon’s website, and we proceed from there.  

To get going with the ATmega chip, start up the Arduino IDE. This should be easy: if the installation 
of the Arduino package was successful, you will have a new item “Arduino IDE” in your start menu, 
under “Electronics”. The exact version of the IDE you get with depends on the operating system you 
are using. The vast majority of Raspberry Pi users are using Raspbian, which is based on Debian 
wheezy, so from now on we’ll assume that you’re running this. The version number is given in the 
title bar; for wheezy it’s 1.0.1. First you will need to configure the IDE to work with the Gertboard. 
Go to the Tools > Board menu and choose the Gertboard option with the chip you are using (there are 
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options for the ATmega168 and ATmega328, the ones most commonly used on the Gertboard).  Then 
go to the Tools > Programmer menu and choose “Raspberry Pi GPIO”. 

All the input and output pins of the ATmega chip are brought out to header J25 on the left edge of the 
board. They are labelled PCn, PDn, and PBn, where n is a number. These labels correspond to the 
pinout diagrams of the ATmega168/328 chips. However, in the Arduino world, the pin numbers of the 
chips are not referred to directly. Instead there is an abstract notion of digital and analogue pin 
numbers, which is independent of the physical devices. This allows code written for one Arduino 
board to be easily used with another Arduino board, which may have a chip with a different pinout. 
Thus, in order to use your Gertboard with the Arduino IDE, you need to know how the Arduino pin 
number relates to the labels on your Gertboard. The table below shows this correspondence (“GB” 
means Gertboard). 

Arduino Pin GB pin Arduino Pin GB pin Arduino Pin GB pin 
0 PD0 7 PD7 A0 PC0 
1 PD1 8 PB0 A1 PC1 
2 PD2 9 PB1 A2 PC2 
3 PD3 10 PB2 A3 PC3 
4 PD4 11 PB3 A4 PC4 
5 PD5 12 PB4 A5 PC5 
6 PD6 13 PB5   

Table 4: The relationship between Arduino pin numbering and pins on the Gertboard. 

In sketches digital pins are referred to with just a number. For example  

   digitalWrite(13, HIGH);  

will set pin 13 (PB5 on the Gertboard) to logical 1. (In the Arduino world, LOW refers to logical 0, and 
HIGH refers to logical 1.)  

The analogue pins are referred to as A0 to A5. So to read from analogue pin 0 (PC0 on the Gertboard) 
you would use the command  

   value = analogRead(A0); 

A Few Sketches to Get You Going 
A sketch is the name that Arduino uses for a program. It's the unit of code that is uploaded to and run 
on an Arduino board (or, in our case, an ATmega microcontroller on a Gertboard). Let’s have a look 
at a simple one, Blink, which makes an LED turn on and off. This is accessible from the Arduino 
IDE from the File > Examples > Basics menu. When you select this, a new window pops up with the 
Blink code. There are only two functions in the code, setup and loop. These are required for all 
Arduino programs: setup is executed once at the very beginning, and loop is called repeatedly, as 
long as the chip has power. Note that you do not need to provide any code to call these functions; this 
is added automatically as part of the compilation and uploading process. The language used in these 
sketches is based on C, so the syntax in programs should look familiar if you have been looking at the 
C test programs for the Gertboard. 
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In order to get your sketch running on the ATmega chip on the Gertboard, it has to be transferred over 
to the chip somehow (this is called uploading the sketch). There are various methods used to program 
ATmega chips, but we are going to use the SPI bus available on GPIO pins 8 through 11. This is 
possible because your Arduino IDE is using the special downloader/uploader (avrdude) that you got 
from projects.drogon.net. To set this up you need to connect the GPIO pins used for the SPI bus to the 
6-pin header J23, as in the diagram below. Here you are simply connecting the SPI pins in the GPIO 
to the corresponding SPI pins in the header. The arrangement of the pins in J23 is shown in the 
schematics, on page A-6.  

 

Figure 27: The wiring diagram for uploading sketches to the ATmega microprocessor. 

To upload your sketch to the chip in Arduino IDE choose File > Upload Using Programmer. It will 
take a bit of time to compile and upload, and then your sketch is running on the microcontroller. 

The Blink sketch is under the File > Examples > Basics menu. Bring it up and upload it to the 
ATmega chip using the instructions above. The sketch is now running, but nothing is happening! On 
most Arduino boards, pin 13 (the digital pin used by this sketch) has an LED attached to it, but not the 
Gertboard. You have to wire up the LED yourself. Looking at Table 4 above, we see that digital pin 
13 is labelled PB5 on the Gertboard, so you need to connect PB5 to one of the I/O ports. In the section 
on Buffered I/O, LEDs, and Pushbuttons, we explained that you can make an LED show the value of 
a signal by connecting that signal to one of the pins labelled BUF1 to BUF12 in the (unlabeled) single 
row header at the top of the Gertboard. So if you connect PB5 to BUF1, as below, the first LED will 
start to blink. 



44 
 

 
Figure 28: Wiring diagram for the sketch Blink. 

Note that in this diagram we have not shown the connections to the SPI pins. Once you have uploaded 
the code, you no longer need them and can remove the straps. On the other hand, if you want you can 
leave them in place, and this is a good idea if you are planning on uploading some other sketches 
later. 

Let’s look at another fairly simple sketch called Button, located under File > Examples > Digital 
menu in both 0018 and 1.0.1. The comments at the beginning of the sketch read 

The circuit: 
* LED attached from pin 13 to ground 
* pushbutton attached to pin 2 from +5V 
* 10K resistor attached to pin 2 from ground 

Assuming that you have Blink working, your LED is already wired up, but what about the button? 
As mentioned above, since the ATmega chip on the Gertboard runs at 3.3V, we must replace the 5V 
with 3.3V. So they suggest using a circuit like the one below, where the value read at pin 2 is logical 0 
if the button is not pressed (due to the 10K pull-down resistor) and logical 1 if the button is pressed. 

 
Figure 29: Suggested switch circuit for use with Button sketch. 

However, the buttons on the Gertboard are used like this: 
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Figure 30: Circuit in use on the Gertboard, showing an additional 1k resistor to protect the input to BCM2835. 

The 1K resistor between the pushbutton and the ‘Raspi’ point is to protect the BCM2835 (the 
processor on the Raspberry Pi) if you accidentally set the GPIO pin connected to ‘Raspi’ to output 
instead of input. The circuit to the right of the ‘Raspi’ point happens on the Raspberry Pi: to use the 
pushbutton we set a pull-up (shown as a resistor in the circuit above) on the pin so that the value read 
is logical 1 when the button is not pressed (see page 19 for more info on the pull-up). The Gertboard 
buttons are connected directly to ground so they cannot be made to read logic 1 when pressed. If you 
want to use a Gertboard button with an Arduino sketch that assumes that the button reads 1 when 
pressed, the best approach is to modify the sketch, if needed, so that it will invert the value it reads 
from the button. For the pull-up, we can take advantage of the pull-ups in the ATmega chip. To do 
this, find the lines below in the sketch 

// initialize the pushbutton pin as an input: 
pinMode(buttonPin, INPUT); 

and insert the following two lines after them: 

// set pullup on pushbutton pin 
digitalWrite(buttonPin, HIGH); 

To invert the value read from the button, find the line below: 

buttonSate = digitalRead(buttonPin); 

and insert a ! (the negation operator in C) as follows: 

buttonSate = !digitalRead(buttonPin); 

Now upload this modified sketch, as described for Blink. We still need to attach Arduino digial pin 
2 (PD2 on the Gertboard, as you can see from the table) to a button, say button 3.The ‘Raspi’ pin in 
the circuit diagram above, which is where we want to read the value, is in the J3 header. 
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Figure 31: Wiring diagram for the sketch Button. 

When you have done this, the first LED will be on when the third button is pressed, and off when the 
third button is up.  

Now let’s try using an analogue pin. Find the AnalogInput sketch under File > Examples > 
Analog. This reads in a value from analogue input 0 (which has already been converted by the internal 
A/D to a value between 0 and 1023), then uses that number as a delay between turning an LED on and 
off. Thus, the lower the voltage on the analogue pin, the faster the LED flashes. To run this example, 
you’ll need a potentiometer. The one used to test the A/D will work fine here. The comments for 
AnalogInput say to connect the potentiometer so that the wiper is on analogue pin 0 (PC0 on the 
Gertboard) and the outer pins are connected to +5V and ground. Remember, you must use 3.3V 
instead of 5V as we’re running the chip at 3.3V here. The diagram below shows how to connect up 
the Gertboard to make this sketch work after it is uploaded. 
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Figure 32: Wiring diagram for the AnalogInput sketch. 

Some of the Arduino sketches involve reading or writing data via the serial port, or UART. An 
example is AnalogReadSerial which is in File > Examples > Basics. This sketch sets the baud 
rate to 9600, then repeatedly reads in a value from analogue pin 0 and prints this value to the serial 
port (also called UART). The value read in is between 0 and 1023; 0 means that the input pin is at 0V 
and 1023 means that it is at the supply voltage (3.3V for the Gertboard).  

To set up your Gertboard for this sketch, you need the potentiometer attached to analogue input 0 as 
for the AnalogInput sketch. In addition you need to connect the ATmega chip’s UART pins to the 
Raspberry Pi. Digital pin 0 (PD0 on the Gertboard) is RX (receive), and digital pin 1 (PD1 on the 
Gertboard) is TX (transmit). These signals are also brought out to the pins labelled MCTX and 
MCRX just above the GP15 and GP14 pins in header J2 on the Gertboard. Thus you can use two 
jumpers to attach the ATmega’s TX to GP15 and RX to GP14, as shown below. 
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Figure 33: Wiring diagram for the sketch AnalogReadSerial. 

GPIO14 and GPIO15 are the pins that the Raspberry Pi uses for the UART serial port. If you refer 
back to the table of alternate functions (Table 1, page 11), you will see that GPIO14 is listed as TX 
and GPIO15 as RX. This is not a mistake! This swapping is necessary: the data that is transmitted by 
the ATmega is received by the Raspberry Pi, and vice versa.  

Now, how to we get the Raspberry Pi to read and show us the data that the ATmega is sending out on 
the serial port? There is a button labelled Serial Monitor on the toolbar of the Arduino IDE, but it 
doesn’t work on the Raspberry Pi. It assumes that you are talking to an Arduino board over USB, not 
talking to a Gertboard over GPIO. The easiest way to retrieve this data is to use the minicom program. 
You can install this easily by typing into a terminal this command:  

   sudo apt-get install minicom 

You can use menus to configure minicom (by typing minicom –s). Alternatively, included with the 
Gertboard software is a file minirc.ama0 with the settings you need to read from the GPIO UART 
pins at 9600 baud. Copy this file (which was provided by Gordon Henderson) to /etc/minicom/ 
(you’ll probably need to sudo this) and invoke minicom by typing  

   sudo minicom ama0 

Now if you upload the sketch to the ATmega chip, you should see the value from the potentiometer 
displayed in your minicom monitor. 

This example is one that we created specifically for the Gertboard, based on the AnalogInput 
sketch described above. In the gertboard_sw directory, along with all the C files, is one called 
LEDmeter.ino. This is an Arduino sketch that makes use of all 12 LEDs to create a bar graph 
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showing the voltage from an analogue input such as a potentiometer. First you need to put this sketch 
in the right place. You should have a directory called sketchbook in your home directory. Make a 
subdirectory beneath that called LEDmeter, and copy LEDmeter.ino into that directory. To do 
this, you can type the following from your gertboard_sw directory: 

   mkdir ~/sketchbook/LEDmeter 
   cp LEDmeter.ino ~/sketchbook/LEDmeter 

When that is done, the sketch will now be in the File > Sketchbook menu on the Arduino IDE. You 
can bring it up to inspect the code. In this example, we created two extra functions, turn_on_leds 
and turn_off_leds, mostly to demonstrate that you can use ordinary C code (including functions) 
in sketches. The pin numbers are stored in an array to make it easy to turn on or off a specific LED. If 
you want to access LED 4, use Arduino pin led_pins[4]. In order to do this, we put a 0 into the 
first location of the array, because there is no LED 0. One feature of C that you may not be familiar 
with is the use of static in the definition: 

   static int old_max_led = 0; 

The keyword static  means that the value of the variable should be kept the same between function 
calls. So if we assign it a value at the end of one call to loop(), the next time loop()is called 
old_max_led will still have that value. The initial value, 0, is only assigned once, before loop() 
is called the first time, not every time loop() is called. The wiring diagram for LEDmeter is 
below. 

 
Figure 34: Wiring diagram for the LEDmeter sketch 

Upload it the usual way, and the LEDs will respond to the position of the potentiometer. 
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These examples have only just scratched the surface of the wonderful world of Arduino. Check out   
http://arduino.cc/en/Tutorial/HomePage for much, much more. 

For further information on the Raspberry Pi and its GPIO ports, the datasheet for the processor can be 
found here: 
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf 

We have included the schematics for the Gertboard in the pages that follow. They are numbered A-1, 
A-2, etc. The page number is located in the lower left hand of each page.
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