PRIMER
S NAP Network Operating System

An introduction

FTFTTTITICOR

Wireless Technology to Control and Monitor Anything from Anywhere™

© 2010 Synapse, All Rights Reserved.

All Synapse products are patent pending.

Synapse, the Synapse logo, SNAP, and Portal are all registered trademarks of
Synapse Wireless, Inc.

500 Discovery Drive

Huntsville, Alabama 35806

877-982-7888

Doc# 600037-01A

Table of Contents

TaDIE OFf CONTENES ...ttt eeeeae e et e e bbb e e e e e e e e e e eeaeeeeeeeesnnnnees 3
I [11 oo [¥ {1 [o PO T TP PPOPPPRP 5.
2. The PIECES @Nd PAITS ...ttt e et bbb e s e e e e e e e e e e aeeeeeeeenneenes 7
NOMENCIATUIE ..ottt ettt e e e e e e e e e e e s s s s e mennee e e e e e e e e e e e e e e e e e s e s e nanbbbbbbaeeeeees 7
SN A P i ——————— et e e e e e e e e oo e e e e e e at et bttt t e eaaaaeaeea e anaaatt ittt tttttatataaaaaaaees 7
SINAP DEVICE ...coiiiieeeii ittt bbbttt ettt e e 222 e a4 e e e e se bttt ettt e et e e e e e e e e e e e e e e e e e aaanaas 7
SINAP NOGE....ceeeieieiiee e eeeeee et e e e e e e e e et ettt ee ettt bt s e e e e e e e e eaeeaaeeeeeennnrnnnnns 7
] AN o T = SR 8
BrAQE NOGE ...ttt e e e e oo e e e e e e e e ettt e ettt beeenneteeebb s e e e e e e e eeeaeeaeeeeeessnnns 8
0 T0 (3 Tod £ PPPPPPPPPPPPPRP 8..
Y0 1112 L= PP 8
0] = PP PPPPPPPPPPPR 8
SINAP CONNECT ...ttt ettt e ettt e e e et eetaaaaaaeaeenesa e e eeeeesnnn e eaaennnns 8
SINAP SN ettt e e e e e sttt et e e e e e e e as 9
SINAP FIFMWAEAIEcoiiiieiiiiiiiiiee e st e e e e e e e e et et teaebbbbbsa s s ee e e e s e e e e e eeeaeeeeeeeeeennnnnes 9
HAIAWEAIE ...t eemmm ettt ettt e e e e e e e e e e e e e s e s et e ettt e e e e e e e e e e e e e e e e s e e annbaaeaeees 9
S N e =g o 1 PP 9
0151 = 2 = e [0 T AN (o To [P 9
SNAP CONNECE ELO.... . eeee et e et ee e e e e e e e eea e e e e e enna e e 10
SINAP LINK ettt ermee ettt e et e e e e e e e e e e s r e e e e e e e e e e e 10
ST= 10] 0] (N o] o] o= 11 o 0 1S3 UUUPPPPPPPPPRPUPPN 10
LK=LY (o 11 o T 1 o SRR 10
LOCALION TTACKING ...ttt e e e e e e e e e e et e e ettt bbbt e e e e e e e e e e eeeaeeeeeennnnes 11
(O o] (=3 =T 0] b= ol =T 0 01T o | 11
3. S0, What'S @ MESN, BNYWAY?uuuuet s e eees e e e e e e e e e e e e eeeeeeetastebaan s e e e e e e eeeaaeaaeeeeeeesnnees 12
A SIMPIE MESH EXAMPIE ... ettt e e e e e e e e e e e e e e ee e e e e e e eeeeraeeran e e e eaeas 12
Do I really Need all tRAL? e et e e e e e 13
SIMPle, SNOM-RANGE GrOUPuuuueuuiiescmmmmmm e e e e e e e et e e ettt s s e e e e e e eseaaaeeaaaaaaaeeeeeeesesnnnnnns 13
Very Dense MUIICASE CIUSTEIuuuiiiiaeeeeeeiiietiee ettt e e e e e e e eeeas 13
Yl 0 a1 o g I (= =T)Y/ 1 14
Be quiet while the grownups are talking! 14
[NV To L= g o o T [1= R 15
D11 = 1 [0 D = - U RSP PPPPRPUUPRTPP 15
Y=Y = U LSS 10 [0 [T PP 16
A, TAKING CONIOL ...ttt e e e e e e e e e ettt eetae et enaanse bbb s e e e e e e eeeeeaeeeeeeeesnnennnnns 17
YT o=] T T 17
Unicasting, or DIreCt RPC CallScooiii e e e e 21
Other Programming OPLIONSuu.. .. s seeeeeeeeeesssesessssessnnsns e eaaaaasaassasaaeeesseesmsmmmmmmmmnn. 24
BUIE-IN FUNCHIONS ettt s e e e e e e e e e e e e e e e eeeeesebnnnnas 24
0Tt LIS o] 1] o RSP 24
5. Where DO | GO FrOmM HEIE?........cooiiiiiii oottt e e e e e e e e e e e e e e e e ae e e e e e eeeeeeeesbbnsnnnn e e as 25
SNAP EVAIUALION KIS ..ottt et e e s e e e e bbbt e e e e et e e e e aeaeeeeas 25
= 0221 10 USRS 25
072451 0[O LT PP TRTPPPR 25

Snap Primer — Document Number 600037-01A Page 3 of 28

EZ2550 .t 25

Other SNAP DOCUMENTALION.utuuuiiee st icmmme e e e e eeeeeieee s s e e s e e e e e e e eaeeeeeeeeeeeneeeeeessnssnnnnaaaaeeeeas 25

[F= T Lo ATV T B TS [| o PSSR 25

(@10 110 .4 Y0 1111 0] o 26
License governing any code samples presentedSmiPHMer...........coooooiiiiiiiiiiiiiiiiiiii e 27
D Yo =V 1T USSR 28

Page 4 of 28 Snap Primer — Document Number 600037-01A

1. Introduction

The SNAP network operating system is the protopoken by all Synapse Wireless devices. This
networking protocol can run on any of a handfuhafdware sets. You can use the modules we create,
which we call SNAP Engines, or you can incorpoth&echipsets into your own hardware.

With the SNAP protocol firmware installed, the deviautomatically forms an ad-hoc radio mesh
network with other SNAP devices in range, so eashpass information back and forth, and can relay
messages to other SNAP devices that might be dheddriginal sender’s range.

Each of these devices is a combination of a datia mnd a microprocessor (literally, “small
computer”). Each one can not only relay, send,randive instructions from somewhere else, it can
apply some of your own business intelligence uSIN\Ppy, an easy scripting language based on the
powerful, popular Python programming language.

It is easy to write your own scripts to monitor ungignals (analog or digital) and control outpitsu
can send and receive serial data, or connect & dtvices over connections like SPI af@l IAnd
with your own SNAPpy script in place, the devica && smart enough to know what signals and
messages, or what combination of signals and messegimportant enough to act upon — whether
that action is setting some output locally, or segé message to another device in the network.

This means you can use SNAP products to keep trfaakd control what's going on somewhere else.
The control can come from explicit commands yowdsen from automated instructions triggered in
response to timed events or changes to the enveonm

SNAP devices are social entities, and when you ptinean up they are happy to find other devices
with which they can communicate. By default, they @onfigured for automatic mesh routing, which
means they not only talk to each other as peegy,dlso act as go-betweens, relaying messages
between peers who might not be able to hear edehr.dMore on this later.)

O P L0 @

" SNAP-enabled
wireless nodes

/

O L@

Four SNAP devicesin a M esh Network

In other words, you don’t need to do anything spletci start up a network of devices that can monito
and respond to each other. With a line-of-sighgyeamp to three miles, your devices can be diseibut
over a wide geographical area (or all grouped enstéime building) and still maintain automatic
communication between devices.

Snap Primer — Document Number 600037-01A Page 5 of 28

The term SNAP has also evolved over time to re¢égregcally to the entire product line. For example,
we often speak of “SNAP Networks,” “SNAP Nodes,tdai®SNAP Applications.” With just a little bit
of background, it's easy to see how all these gartsgether.

Page 6 of 28 Snap Primer — Document Number 600037-01A

2. The Pieces and Parts

Any SNAP network is going to have some collectidoisBAP devices associated with it. In order to
best describe these parts and how they work togetimeay be best to start by defining some
terminology.

Nomenclature

With all the various SNAP elements in the conveosatit is easier to keep up with what's going bn i
you know the difference between a SNAP widget aB#AP doodad (so to speak). This list will
introduce you to the most common terms and explam they fit together.

SNAP

SNAP, as mentioned before, is the protocol usealldiyNAP devices. It is the underlying architecture
that allows devices to talk to each other, compgshe communication and control structures between
SNAP devices. SNAP is the infrastructure that @e#he mesh network.

Most SNAP communications come in the form of a esfiioy one SNAP device for another SNAP
device to do something. At the most simple lev&t tequest can be “Here, take (and process) this
data.” It can also be more elaborate, such as “&dkek at the thermal input you have from the
device to which you’re connected and let me knolwniéed to warn somebody of a pending
meltdown.”

SNAP also supports a “transparent data mode,” wihet@ coming into a device passes directly
through to another SNAP device without being exaaiar acted upon.

SNAP Device

SNAP devices, then, are devices that are runni@GMAP protocol so they can communicate with
other SNAP devices. Each SNAP device includes aapiocessor of some sort (SNAP has been
ported to several, with more in the works) and mmmnication interface. While the communication
interface is typically a radio, it can also be aagort, Ethernet connection, etc. It can everséeeral
of these.

SNAP devices include SNAP Engines built by Synapseless (or other vendors) and devices that
other companies build into their own products thalude the SNAP protocol.

SNAP Node

A SNAP Node is a little bit more of an abstracttban a SNAP device, though on some level the two
directly correspond to each other. Each deviceSNAP network is referred to as a node in that
network. In general, the ter8NAP device will be used to refer to the product or tool tmatiudes
SNAP, andINAP Node will be used in the context of networking.

Each SNAP Node necessarily is a SNAP device, acll 8BlAP device, when included in a network,
Is a SNAP Node.

Snap Primer — Document Number 600037-01A Page 7 of 28

SNAP Engine

A SNAP Engine is a SNAP device that matches aqaat footprint and form factor in order to
provide a common interface for development. SNABiB#s are produced

(for various CPU/Radio platforms) by Synapse Wssland by a few
other hardware developers. SNAP Engines provideaay way to test
various hardware for prototyping, proof-of-concejairk, and small-scale
implementations of final products. For larger-sdaial implementations,
it may be more appropriate to develop custom harehaad load it with
SNAP, depending on the requirements.

Each hardware combination has its own strengthgpsa@annot

necessarily drop one variety of SNAP Engine int@avironment customized for a different SNAP
Engine without some adjustments. But within thepgcof a particular engine (such as the RF100),
one SNAP Engine can be replaced by another sedyless

Bridge Node

A bridge node is a SNAP Node used to bridge theection between one network section and
another. For example, a SNAP device connecteduoR€, using either a serial port or a USB port,
forms the bridge between other nearby SNAP devitgsur wireless network, and Portal (or a
custom application connecting through SNAP Conné&tithilarly, a SNAP Connect E10 unit bridges
a local radio network to another SNAP device omoek across the Internet.

Products

Synapse offers many products that fill the varioesds of a SNAP Network. The software and
hardware solutions offer the flexibility to quicktievelop complicated systems to control and monitor
nearly anything. You will encounter referenceshtese products in the various SNAP literature.

Note that it is tremendously unlikely that any giveetwork will have all these hardware and software
variations in it. Most networks will have a collext of nodes based on one particular platform (or
SNAP Engine), and one PC-based control or monigqgowint (based on Portal or SNAP Connect).

Software

Portal

Portal is a SNAP implementation to turn your P®@ iatSNAP device, so it can communicate with any
other device (node) in your network. It is a GUpkgation that you run on your computer (Windows,
Macintosh, or Ubuntu Linux). Using a serial conin@tto a bridge node, Portal provides the nexus
into the rest of your network, with an easy-to-uerface.

Portal is also what you use to administer and raantour nodes, by loading controlling scripts into
them and monitoring their communications. See mtaPReference Manual for a complete
understanding of Portal’s role in your networks.

SNAP Connect

SNAP Connect is a stand-alone application you canta allow your own client applications to access
your SNAP network the same way Portal does. Itéistees an XML-RPC server interface that you

Page 8 of 28 Snap Primer — Document Number 600037-01A

can reference from Java, C++, C#, Python, or nearyyother modern programming language — as
well as a great many older languages. ThroughSNIiBP Connect interface you can send instructions
and data to and receive instructions and data &oynother node in your network.

SNAP Sniffer

The Portal installation includes firmware imagestthllow you to convert a SNAP Node into a SNAP
Sniffer. As a sniffer, the device no longer intésagith other nodes in your network. But combined
with Sniffer software running on your PC, it remoblack all the network traffic it hears (on a sfiedi
network channel). This can be valuable for troutd@sing communications within a network.

SNAP Firmware

The Synapse Wireless SNAP firmware is the codetthiat a piece of hardware into a SNAP device.
Without the firmware the radio and microprocessayave the ability to communicate, but have no
instructions on how to do so. In general, firmwgarevides these instructions, and SNAP firmware
tells the devices how to participate in a SNAP mekywunifying communications and control across
disparate physical layers and across differenfqlats.

If you acquire SNAP hardware, the firmware willedy be loaded. If you build your own hardware
and want to include SNAP, you will need to acqlizenses for the SNAP firmware, and will need to
load that firmware into your devices before they cammunicate with other SNAP devices.

Each hardware platform has its own firmware bualag most platforms have several firmware builds
available for them. The normal build includes b# usual SNAP features.

For testing purposes, some users like to have sitaes“debug” build of the firmware, which
provides more details about exceptions caughténsusode. The debug build runs slightly slower
than the normal build and provides a little lesdecepace for user applications, so most users would
not run this in a production environment.

Most platforms also have an AES-128-capable buisdlable. This build allows for much stronger
encryption than the Basic Encryption availablena hormal firmware builds. The AES-128 firmware
is not available in all jurisdictions.

SNAP devices from Synapse Wireless will ship with most current release of the firmware installed.
Synapse Wireless continually updates the softwanectiude new features, so users may want to
update their firmware at times. The process is Epgnd is covered in the Portal Reference Manual.

Hardware

SNAP Engines

Synapse manufactures a variety of SNAP Enginedo@searious hardware platforms. There are
several offerings in the 2.4 GHz spectrum, andratipdons in the sub-GHz range.

USB Bridge Nodes

Synapse has several USB devices available to bhdtygeen network sections. SNAP Sticks, about
the size and shape of a USB “thumb” drive, congeat 2.4 GHz wireless network to Portal or,

Snap Primer — Document Number 600037-01A Page 9 of 28

through SNAP Connect, to your own custom applicatithere are also SN132 USB boards that
accept any SNAP Engine and plug directly into a &1, for the same purpose.

SNAP Connect E10

The SNAP Connect E10 is a SNAP-enabled embeddeatkctwity appliance that allows you to
connect between disparate SNAP networks over TG®fRorks, such as the Internet. It provides a
Linux environment on which you can deploy your oagplication to control and monitor your SNAP
network, coupled with a SNAP Engine to tie the Mranvironment to an existing SNAP wireless
network. In this way, a SNAP network in one locatean control and respond to other Internet-
connected SNAP nodes anywhere in the world. Thécgpions you install in the E10 can also
perform any other function you care to programesponse to feedback from your widely distributed
SNAP network.

SNAP Link

SNAP Link modules provide a simple way to replaged/serial connections between two devices
that need to communicate with each other. Whenhgwe two devices that require a serial connection
(RS232, RS422, or RS485) and connecting them wgttyaical wire is impossible or impractical,
SNAP Link modules can wirelessly replace the cabézause SNAP Link modules are SNAP Nodes
they automatically take advantage of mesh rouaigwing you to extend your effective range and
increase reliability.

Sample Applications

So, how do these pieces fit together? Here arev@famples of ways someone might use SNAP
devices and what it would require to establish ywetwork.

Tank Monitoring

Consider a facility with a series of storage tamexh with an independent means to measure
conditions at the tank, such as its temperaturenamdclose it is to capacity.

Connect a SNAP device at each measurement sitdaueda bridge node connected to a computer
within range of one of the nodes. On that compyercan run Portal or your own application and
either have the measuring devices periodically ntefpeir details, or have the computer periodically
guery the other SNAP devices for their informatidhese values can be stored on the computer node,
and acted on as appropriate.

This arrangement requires Portal or an applicatmmecting through SNAP Connect, a bridge node,
and a SNAP device for each tank. As long as eachPSdlevice is within radio range of another
SNAP device in the network, all devices will beeatd communicate with the entire network.

If any nodes (or node clusters) are distant endagiot be within radio range, you could use a SNAP
Connect E10 at each site, connected to the Inteioreghe same distributed network. Each node would

Page 10 of 28 Snap Primer — Document Number 600037-01A

still be able to communicate with all the other esdh the network, over the Internet instead of ove
the radio.

Location Tracking

Consider an environment where there is a piece@ple equipment used in multiple locations
within a facility, such as a diagnostic imaging idevin a medical clinic. You could use a SNAP
network to locate the device within the facility.

i | an] Affix a SNAP Node to the device.
Situate other SNAP Nodes in the
facility at strategic locations (such as
Room 2 Room 3 Room 4 near the stations where the device

¥ ¥Room 5 would normally be used), and you will
be able to judge the approximate
location of the device based on the

‘ N ‘ strength of its signal to the stationary

Room 1

points. In the example diagram, the
signal between the mobile device and
sl the SNAP Node in Room 1 would be
stronger than any other signal,
indicating that the device is in Room 1.

_ 3
Mobile Control Station

Device

B

This arrangement would require a
bridge node, and either a Portal script
or an application connecting through
SNAP Connect (together in the Control Station mdiagram), stationary SNAP devices within the
environment (in each room in the diagram), and ABMNevice connected to each piece of equipment
being tracked.

Cable Replacement

Use two SNAP devices to replace a length of seghle in places where connecting them with a
physical cable is impractical or impossible. Thas ©e accomplished with any two compatible SNAP
devices, such as a pair of SNAP Link modules, wbmme configured for the task.

... (Up to three miles, line-of-sight) ...

Apart from allowing for greater physical separatiban a serial cable permits, using SNAP devices to
replace physical cables allows for electrical isotaof the end devices.

Snap Primer — Document Number 600037-01A Page 11 of 28

3. So, what’s a mesh, anyway?

Automatic mesh routing is one of the features thakes SNAP networks so useful. As soon as you
power up a SNAP node, it automatically becomesea pewhatever SNAP network you have
available.

There is an important detail here: All nodes ilNRA® network are peers. Each radio node can talk
directly to any other node within radio range, amtirectly to any other node in the network. Thisre

no need for a “master” or “coordinator” in a SNA&work. Though it's easy to think of the Portal
node (or SNAP Connect node) as “the boss” of thear& (and in terms of command/control it may
serve that function), the underlying communicastmicture does not require — or even accommodate
— that any one node act as a hub or traffic directo

Every node in the network does its part to make silrother nodes receive the messages intended for
them, regardless of how the messages originateeBault, nodes forward messages addressed to
other nodes that are out of radio range of thaire® and nodes retransmit multicast messages, to
ensure that everyone within range gets a chankkeaothem.

A simple mesh example

Consider a network where you have a computer amtias of SNAP devices extending in a line away
from the computer over a stretch of many miles.

(c]») (¢f)
(Some distance) BAMAS (Some distance) GLLLS (Some distance)...

If the distance is great enough, the SNAP nodeA&SHevices in the network) farthest from your
computer might not be able to directly hear messagat by your bridge node. With mesh
networking, the system automatically forwards mgssaut to the farthest reaches of the network.

In some cases one node may need to send a messagstier specific node. In SNAP parlance, this
is referred to as a “unicast” message. The meggag®out to the network “addressed” to the intended
recipient. If the intended recipient is out of ranthe mesh network automatically determines the
shortest viable path for the message to traveaktdastination node. The message then “hops” from
one node to another (leapfrogging intermediate sedeen appropriate) until the destination node
hears and acts on the message.

If, for some reason, the intended recipient ofrtfessage doesn’t hear it (perhaps that node is busy
talking instead of listening, or is “sleeping” ardy performing some other function at that moment),
the SNAPpy script in the node that originally sév message can automatically try again to be sure
the message gets through.

In other cases, one node may need to send a “@mtltimessage, meaning that the message is
intended to be heard (and possibly acted uponybgyenode that receives it. The mesh network helps
there, too. When a node hears a multicast mesgag#,automatically rebroadcast that message to
make sure that each of its neighbors has had aoripyity to hear it, too.

Page 12 of 28 Snap Primer — Document Number 600037-01A

Do | really need all that?

The behaviors described so far are the defaultwhetsaof SNAP Nodes. But SNAP is widely
configurable. You can use your SNAPpy scripts at&do set configuration parameters to control
many of the mesh behaviors, from the number ofgimaode will rebroadcast a unicast, to the
number of hops a multicast should travel, to wisghset of nodes should act on a multicast message.

Out of the box, SNAP Nodes are configured for adyfp general-purpose mesh configuration. But
just as there’s no such thing as a one-size-fitstéd, it may be appropriate to tailor the mesh
parameters based on your environment. Here ane wégs you might have your network arranged,
and some settings that might improve performandkase
environments.

(¢
Simple, Short-Range Group 5P

. . . /
In a network topology where all nodes in the enwinent will always be (‘|,) /\
within radio range of each other, you can impre&ponse time by T

\
(D]
telling each node to not bother sending perioditegagequests to make \ /“‘“"
(D]
T

sure it knows a path to its peers. Unicast messaijeslways go out
with the expectation that the destination will beange, and routing

requests (which make use of mesh routing to hades\torward .:L),.
messages to other nodes) will only happen if tit@lrransmission LLLIR ° '
fails.

Very Dense Multicast Cluster

If you have many nodes within range of
each other and you need to communicate
to them by multicast, your messages (or
their responses to your messages) can get
lost in the noise generated when all the
nodes start rebroadcasting your message
to make sure everyone else heard it.
(Imagine how hard it would be to have a
conversation in a crowded room if every
time you said something, everybody else
repeated it for you.)

The diagram at left demonstrates this
environment, where every node repeats
every message to ensure it is heard.

()
\ (tp
&'ﬂ (=) Depending on the specifics of your
") environment, there are several ways you
ELLES - " might configure your nodes.

Snap Primer — Document Number 600037-01A Page 13 of 28

Shhh! Don't tell anyone!

If all your nodes will always be within
broadcast range of whichever node is
sending the message, you can specify tt
number of “hops” to be used on the
multicast message. Each time a node
rebroadcasts a multicast message, it
decreases the remaining hop count until
finally a node hears it with no hops left
and knows it shouldn't try to rebroadcast (")
it. If you set the “Time to Live” (TTL) CLLAN
value to indicate that the message
shouldn’t hop at all, nobody will ever
rebroadcast it so there will not be any
chatter generated.

(¢
v
In the diagram at right, the top center
node has multicast a message with the
TTL parameter set so that no node will
rebroadcast the request. This frees up tr

airwaves for the next transmission by any
of the nodes without having to wait for chattediminish.

(1) A

(¢ p
CLLES
\

E(c]))

(1) F
- .

(| SRR

m\&l_‘\ .:L,I)n‘/ ﬁ& v

Be quiet while the grownups are
talking!

If your network is spread out enough to
require some hopping, you still have
options.

In the diagram at left, assume that the
nodes are far enough apart that any node
can only reach nodes “three nodes away.”
Thus, a message broadcast by node A can
be heard as far away as node D, but not by
node E.

Each SNAP Node has a parameter that
assigns it to one (or more) of 16 multicast
groups, and another parameter that tells it
which groups’ messages it should make
an effort to forward (if the remaining TTL
indicates the message is still alive). You
can use this second parameter to set most
of your nodes to not forward multicast

messages, leaving only a few strategically placates as forwarders. This way a few nodes in your
network will pass your message along, but most si@dk remain quiet. Nodes set to not forward
multicast messages for a particular group canasttllon messages they receive, and can still atigin

Page 14 of 28

Snap Primer — Document Number 600037-01A

their own unicast or multicast messages. They @galefault) will still forward unicast messages,
where appropriate. They just don’t retransmit rethum multicast messages sent by other nodes.

In the diagram above, when node A sends a multinassage, nodes B, C, and D hear the message,
but only node D forwards it. Nodes A, B, C, E, Rd& hear D’s rebroadcast, but nodes A, B, and C
ignore the rebroadcast because they've alreadylie®f nodes E, F, and G, only G is set to forvar
messages, so it forwards on as far as node H @fat hack as node D, though these nodes ignore the
rebroadcast). Node H then forwards on as far as hod

Divide and conquer (<]

If you have a central node requesting ¢ ~—
information back from a large pool of Gy Rliir
peers (such as sensor readings), sendin ﬂl‘iﬂ FH N
out a single multicast request to all of e il \
them might get you responses faster tha ¢y / 7/ ~ N
you can process them. It also increases & . Y =
chances that two of the responders willt 7/ §vm, ; /um
to answer at the same time, talking over -+ 7/ Pt Y

f
each other. QR L (|

You can use the multicast group e
parameter, mentioned earlier, to divide .

your large pool of peers into smaller P - B
groups, and query those groups P ’

sequentially. Each multicast will still be N o MK g
acted on by every node in that broadcas R o
group, so there won’t be any need to “(‘(‘;) i (‘(’,)
maintain a list of peer node addresses tc ‘\Eﬁ h ((|)) ®
query individually. ‘ .,

CLLLS

Distant Data

Consider an installation where you have a contater in one location and a SNAP (|
device connected to monitoring equipment in a renhmtation, not easily accessible

(such as in a mine or well, or at some great destdrom the control center). It might not

be possible for the two ends of your communicaliioe to be within radio range of each
other.

~ Because mesh routing is automatically enabled cpouinstall SNAP Nodes at
(] intermediate positions between your extremes agywhll automatically ()
ﬁ - 5 Eh

o

forward messages between your terminal nodesidretivironment, because your data path

is stable you can disable the Mesh Routing Maxinfumeout parameter, to keep your

nodes from “forgetting” their mesh network routipgths. Once your network path has been

established, the system will not ever spend timeoate requests as long as you continue to
«|y have messages going through your system.

Snap Primer — Document Number 600037-01A Page 15 of 28

Several Responders

In a network where you have multiple nodes thaipgérally “volunteer” information to the network,
you might have issues where two nodes sometimes begjr transmissions at the same time,
potentially corrupting both messages. In this emwinent, you might want to consider using the
Carrier Sense and Collision Detect features in SH&WHces.

Carrier Sense tells a node to listen before bradhgato be sure that someone else isn’t talkingeeO
the channel is clear, the node can begin its treassom. Collision Detect instructs the radio tadis
after broadcasting to try to determine if some othdio “stepped on” its transmission, and
rebroadcast its message if it finds that someode di

Carrier Sense and Collision Detect help ensureathatessages are successfully transmitted and
received. In a very large cluster of nodes, thig mat be the best solution, though, as all messages
remain queued until communication is complete lfodxtent of buffer availability). The duration of
the conversation can end up being extended begausaever have two nodes talking over each
other. In such an environment, one of the othelbaptto reduce thamount of network traffic is
generally a more efficient solution.

Page 16 of 28 Snap Primer — Document Number 600037-01A

4. Taking Control

Now that you know what SNAP is, it's time to diseo\how easy it is to put it to work for you. Foeth
sake of this description, we’ll assume that yow'seng Portal on a Windows-based PC, though you
could also be using your own program, connectinguh SNAP Connect, or you could be using
Portal on a Macintosh or PC with Ubuntu Linux. Tdomcepts are all the same.

While this description instructs you on how to wtikough various steps, as a tutorial would, itos
necessary that you actually do so. Steps are gwegmou can see how easy they are, in the context of
discussion of what's happening. For more detaitsubbow to use Portal and SNAP, refer to the
Portal Reference Manual and the SNAP Reference BMaBuen if you have no hardware available in
front of you at the moment, you should be ableottm¥v along to understand what the pieces are and
how they work together.

As a starting point, this description assumes yolbe& setting up a three-node network (Portal, a
bridge node, and one other SNAP Node) using twoORFEINAP Engines, two SN171 ProtoBoard
development boards, and a serial cable. In thessh®ts and code samples below, the RF100 used
for the bridge has an address of 00.1E.6B, anditier RF100 has an address of 00.1E.6C.

Start by installing the RF100 SNAP Engines on the ProtoBoards and powering the boards.
Connect one end of the serial cable to one ofiloeRrotoBoards, and the other end to your PC.
(Many computers no longer include serial portsehdsys. It may be necessary to have a USB-
RS232/DB9 serial adapter. These are readily aVailalthe marketplace.)

Next, launch Portal. In Portal, conne(®srs=rs i e
to your bridge node, and pingthe . s Eimme w a

H Hode Views NodeInfo X
network. (Depe.ndlng onyour Portal (=50 0 e e
preference settings, Portal may Node Network Addr.. Devicelmsge Link Qua.. Device Ty..
automatically query you to connect, |« i T D) T
and may automatically ping the W iy
network for you.) i
Portal provides an overview of your Nveie

network. The Node Views pane
(upper left) shows all the SNAP
Nodes in your network. The Node Nopath nfematon clected
Info pane (upper right) shows details Ao, k)
about the currently selected node. -

Eventlog X
Time Event | Device | Type Value
2010-08-13 12:07:12 Mew configuration started

M u I ti C aS ti n g 2010-08-13 12:07:12 Connection opened to COM27
2010-08-13 12:07:12 |STATUS Node NAME ST
. , 2010-08-13 12:07:12 Sent Broadcast Requesting ‘Device Status', waiting & seconds for responses
b | | h S 2010-08-13 12:07:15 'STATUS MNode2 NAME Node, 50
TO egln 1 We See OW NAP 2010-08-13 12:07:16 STATUS hode NAME 30
devices can monitor and report even) = e st e
CIiCk in the Node Info pane’ and ther. | www.synapse-wireless.com RPCs in QuEuE‘GVCUnnEdEd:COMZT [38400]

select File> New Script. Enter the following script in the newript editor tab that opens.

Snap Primer — Document Number 600037-01A Page 17 of 28

@setHook(HOOK_STARTUP)
def onStartup():
Set pin 5 as a watched input
setPinDir(5, False)
setPinPullup(5, True)
monitorPin(5, True)
Set pin 1 as an output
setPinDir(1, True)
writePin(1, False)

@setHook(HOOK_GPIN)
def onPin(pin, isSet):

Report that a watched input has been triggere

if isSet:
reportButton(pin)

def reportButton(pin):
Print a message to STDOUT
print 'Pin ', pin, ' was set!'
pulsePin(1, 500, True)

Save the script as watchButton.py.
Select the bridge node and click the

Upload SNAPpy Image button to loag

the script: Set the node to Intercept

STDOUT. Check that Jumper JMP9 i}

set to connect the pushbutton on the
board to GPIO5, rather than the reset

pin.

Now when you push the button on the
board, LED1 on the board will flash
for a half second, and Portal displays
the following message:

watchButton: Pin 5 was set!

If you examine the script loaded into
the node, you will notice that the boar
is only set up to watch for a signal on

B Synapse Portak: default.swn

[E=ESE

File Yiew Options MNetwork Help

< . [

Eventlog X
Time Event |
2010-08-13 12:29:40 STATUS
2010-08-13 12:25:41 QUERY
2010-08-13 12:29:41 NVPARAM | watchButton
2010-08-13 12:29:41 QUERY watchButton
2010-08-13 12:29:41 QUERY watchButton
2010-08-13 12:29:41 NV PARAM _|watchButton
2010-08-1312:29:41 QUERY |watchButton

Device
watchButton
watchButton

watchButton, 57

Ox4531
Channel 5

NetworkD Ox1C2C
MAC Address
SNAPpy Space 13248
Device Type None

pin 5. SNAP Engines have 19 pins (o

2010-08-13 12:29:41 NV PARAM |watchButton

002 1C:2C: 1E:86:

www.synapse-wireless.com

B 2o | G0 m e |
Hode Views X Node Info > | watchButton.py
(B0 2 % |2 @] i | [acvetodes ~| V@2 L et e XD
E.ida Metwork Addr.. Devicelmage Link Qua. }watchButton
Portal 00,0001 =)
Z==3. Firmware Version: .43
58 =
P Mode 001ESC ®)) Ipoere
e El MNetwork Address: 00.1£.68
MACAddress: 00:1C:2C: 1E:65:00: 1E:68

watchButton
0x4531

176 bytes (1%)
Permanent

4

0x1C2C

Device Image:
Image CRC:
Image Size:
License:

Channek
Metwork ID:
Path

No path information coliected
Info

In your Portal script, use
remateNode setCollmn(name, valug)
to display information here

Value

2.4.9,(Jul 08 2010),1,0,0,0,32767,

00: 1E:68

RPCsin Queue: 0 Connected: COM27 [38400]

‘onPin(pin, isSet) <--
onstartup() <- Startup
reportButton(pin

more) available, so you could easily have more tirapin being watched for a signal. The
ProtoBoard hardware referenced in this discussasnomly one pushbutton switch built in, but other
signals could be added to the board’s terminalkslpor in a custom circuit you could have many

more inputs triggering responses.

! This discussion does not give click-by-click dgstions of all the functions mentioned. For infotina on which button
is which, and the finer details of working in Partafer to the Portal Reference Manual.

Page 18 of 28

Snap Primer — Document Number 600037-01A

Now that you’'ve seen a SNAP device reporting amegeer the network, let’s involve our other
SNAP node in the picture. Open another new codéavinand enter the following script.

Initialize a global variable
buttonCount =0

@setHook(HOOK_STARTUP)
def onStartup():
Set pin 5 as a watched input
setPinDir(5, False)
setPinPullup(5, True)
monitorPin(5, True)
Set pin 1 as an output
setPinDir(1, True)
writePin(1, False)

@setHook(HOOK_GPIN)
def onPin(pin, isSet):
Act on a button press
if isSet:
incrementButton()
tellAFib()
pulsePin(1, 500, True)

def incrementButton():
Increment the buttonCount global (rolling bac k to zero)
global buttonCount
buttonCount = (buttonCount + 1) % 19

def tellAFib():
Make another node fib...
mcastRpc(1, 2, 'reportButton’, buttonCount)

Save this script as tellAFib.py, and load it irtte bther SNAP Device in your network.

A quick look shows similarities with the watchButtecript. The new script also configures pin 5 as a
watched pin, and performs an action when the bust@nessed. In this script, though, the action it
performs is three-fold. First, it increments bu@@unt, a global variable, rolling back to zero if
buttonCount grows larger than 18. Next, it sendsuticast message (to group 1, the default group,
with 2 hops), telling any node that hears it to itsrireportButton’ function with a parameter of
buttonCount — if the listening node has a report@u) function. Finally, it flashes its own LED1rfo

a half second.

Make sure jumper JMP9 on this second ProtoBoaatss set to connect the pushbutton to GPIO5,
and press the button on that ProtoBoard. If yolehdwmade any changes to your bridge node, LED1
should blink on both the remote node and the bridgee, and you should get this message in Portal:

watchButton: Pin 1 was set!

Snap Primer — Document Number 600037-01A Page 19 of 28

There are a few things to notice here. First gfth# Portal log entry indicates that the messageec
from the watchButton node. (Nodes will adopt theneaof the script they contain, if they are not
explicitly given a different name.) That's becaesen though you pressed the button orother

SNAP device’s board, that device sent a messageauthe bridge node heard, and the bridge node
is the node that actually printed the message.

The next thing to notice is that the message itegcthat Pin 1 was set, even though it was actually
Pin 5 connected to the pushbutton. That's becdwesbdok-invoked script on the second SNAP
Device calls the tellAFib function, which in tumviokes the reportButton() function on any other
node that'’s listening, sending the buttonCounte&als a parameter. The reportButton() function on
the bridge node accepts the sent parameter and gravalue, entirely unaware that the 1 is abd
fib. If you press the button on the second ProteBagain, the process will repeat but the bridggeno
will have Portal print that Pin 2 was set.

Let’s take this a bit further. Open another newparvindow, and enter the following script:

def reportButton(pin):
readableAddress = hexByte(ord(remoteAddr[0])) + M\
+ hexByte(ord(remoteAddr[1])) + "\
+ hexByte(ord(remoteAddr[2]))
print 'Node ' + readableAddress + ' reports a s ignal from pin ' +
str(pin)

def hexNibble(nibble):

Convert a numeric nibble 0x0-0xF to its ASCII string representation
hexStr = "0123456789ABCDEF"

return hexStr[nibble & 0xF]

def hexByte(byte):
#print a byte in hex - input is an integer, not a string
highNibble = hexNibble(byte >> 4)
lowNibble = hexNibble(byte)
return highNibble + lowNibble

Save this script in the Portal directory, the pacderectory of the Snappylmages directory where the
other scripts were saved. Name it revealTheTruthrpiPortal, select the Portal node and use the
Change Portal Base File button to load the sanijat Portal.

There’s a little bit of extra processing going @rénto make things pretty. The hexByte() and
hexNibble() functions assist in converting an agbrit string value to a string of the value’s
hexadecimal representation. The reportButton()tionaises these when another node calls the
reportButton() function to take the address ofdalling node (from the remoteAddr variable) and put
it in a human-readable form.

The important thing to realize here is that nowhbaiur bridge node AND your Portal node have
functions named reportButton(). If you press thi#druon your non-bridge node now, you should get
two new lines in your Portal log:

Page 20 of 28 Snap Primer — Document Number 600037-01A

Node 00.1E.6C reports a signal from pin 3
watchButton: Pin 3 was pressed!

(The lines may appear in the opposite order in yogirAlso, the address of the reporting node —
00.1E.6C, in this example — will be the addresgonir node.)

Because the remote node called reportButton() bijicast, every node that both heard the message
and had a reportButton() function available actedh® message. The Python script in Portal priated
message that included the address of the nodeg¢haithe message, while the bridge node continued
to tell its little fib, as it had been commanded to

The command that the bridge node is acting upanasher fundamental element of the SNAP
protocol. In normal operation, the messages theg patween SNAP nodes are in the form of RPC
calls. RPC, or “Remote Procedure Call,” is a protdor sending requests for a remote system to
perform some procedure, or function. When one modkes a unicast or multicast transmission, it is
really requesting that one (or every) other noageseme function/procedure with the given
parameters.

One node cannot tell (or ask) another node to deesilung that the node doesn't already know how to
do. The receiving node must already have a funatitim the specified name in order to respond to the
RPC request. If it doesn't, it simply ignores tkguest. (If you so choose, you can have Portahiyg
commands it hears for which it has no function roedi)

This is why, before it had a script loaded, Padidinot do anything when it heard the initial mcaist
request, even though the bridge ndaehear and act on the request. Once Portal hadp kaded
with a reportButton() function defined, Portal jeththe party and also started responding to the
multicast.

Unicasting, or Direct RPC Calls

Now that you’ve seen how multicast requests wadi time to make some adjustments to your scripts
to experiment with unicast requests.

Fundamentally, a unicast request is similar to &ioast request: It is a request that a remote raate
on a procedure with the parameters provided. Taera few big differences, though.

First of all, a unicast request (as the name sugjssdirected to a single node, rather than bserg
out for everyone to act on. That means the requast include the address of a target node, rather
than a broadcast group.

Second, because a unicast defines a communicattareén two specific nodes (the node making the
request and the node to which the request is aslefpst becomes possible to try to confirm that th
message has been heard. When you are multicasterg,is no practical way of knowing who all
might hear the request and act on it. So for aioagst, there is no benefit from having any kind of
message acknowledgement.

With a unicast command, the requesting node fiies$ to find a route to the target node, routing
through other intermediate nodes if necessary. @meoute has been discovered, the requesting

Snap Primer — Document Number 600037-01A Page 21 of 28

node sends the message along that route. Alonghegcbf the way, the receiving node will send a
small acknowledgement message back to the nodeviitioh it received the message.

If the original message is lost along the way f the acknowledgment is waylaid, the last node to
have sent (or forwarded) the message will attempgtransmit it. The number of retransmissions
defaults to 8, but is a parameter you can adjuste@ node receives the message and the requesting
(or forwarding) node hears the acknowledgmentctimremunication ends for the sending node
(though the receiving node might yet be expectddriward the message).

The third difference relates to the first two. Beésa a unicast is to a particular target, and bectnes
route to that target node will be known (once & baen discovered), unicast calls do not include a
TTL value, or number of “hops” to transmit.

Let’s rework the script in the remote node to makiast calls instead of the RPC call. Make the
following changes to the tellAFib.py script, andadt as tellAFibUnicast.py:

Initialize a global variable
buttonCount =0

@setHook(HOOK_STARTUP)
def onStartup():
Set pin 5 as a watched input
setPinDir(5, False)
setPinPullup(5, True)
monitorPin(5, True)
Set pin 1 as an output
setPinDir(1, True)
writePin(1, False)

@setHook(HOOK_GPIN)
def onPin(pin, isSet):
Act on a button press
if isSet:
incrementButton()
tellAFib("\x00\x1e\x6b") # Address of your bridge node
incrementButton()
tellAFib("\x00\x00\x01")
pulsePin(1, 500, True)

def incrementButton():
Increment the buttonCount global (rolling bac k to zero)
global buttonCount
buttonCount = (buttonCount + 1) % 19

def tellAFib(targetNode):
Make another node fib...
rpc(targetNode, ‘reportButton’, buttonCount)

Load this script into your remote node.

Page 22 of 28 Snap Primer — Document Number 600037-01A

The changes to the script are highlighted, aboeésllook at what these changes mean.

First of all, the tellAFib() function now requirestargetNode parameter, the address of the node to
which the message will be sent. That parametesas in the rpc function call to send the request
along its way.

The next thing to notice is that instead of mcastRghe script now uses a function called rpc() to
send the unicast request.

The other change is in the onPin function, wheranwveke tellAFib(), now with an address

parameter, then increment the button variable agaid then invoke tellAFib() a final time, this #m

with the address of Portal. ‘\x00\x00\x01’ is thefalilt address of Portal, though it may have been
changed in your implementation. The "\x00\x1e\x&bdress in the sample code should be the address
of the bridge node. If you are performing this tgmtrself, you should insert the address of your

bridge node.

For SNAP Engines, you can find the node’s addraegh® Engine’s label, as the
last three bytes of the device’s MAC address. if goe building your own

hardware, MAC addresses will be provided as paybaf license. On the SNAP
Engine shown at right, the node address part oMAE address is shown circled §
in red.

EC P8 oo1cociE
With this updated script in your remote node, i6iymush the button on the ,,f F"?‘;{,gg

ProtoBoard you should get the following two messageyour Portal event log. Resismsss j;;
(This assumes you still have STDOUT intercepted/éar bridge node.)

watchButton: Pin 1 was pressed!
Node 00.1E.6C reports a signal from pin 2

Now you can see that your bridge node reportsitinas been told to indicate Pin 1 has been pressed
and it dutifully does so. Portal then relays thesgage that the remote node has reported a sigmal fr
pin 2.

If you push the button on the ProtoBoard used éuryridge node, it should still consistently repor
that Pin 5 has been pressed. The code in thathsi€t changed, and is still truthfully indicating
what has happened on that board. Because that geeissaot unicast or multicast anywhere, the
reportButton() function in Portal is never askeditoanything with the information, so Portal does n
add any log entry for the event (other than theygmtinted to STDOUT by the bridge node).

As a final check, close Portal and disconnect wauial cable from your bridge. Even though you are
not connected to a computer anymore, your hodesnc@nto run their scripts and communicate with
each other. To test this, press the button on¢hed that used to be your bridge node. Nothing wil
appear on your monitor, of course, but you shoakll€£D1 on the ProtoBoard blink for a half second
with each button press. Now press the button omtiher ProtoBoard. You should see LED1 blink on
both boards, as the remote node blinks its own L&, the (former) bridge node blinks its LED
when trying to print a button status.

Snap Primer — Document Number 600037-01A Page 23 of 28

Other Programming Options

Built-In Functions

The scripts in this demonstration use the rpc(¢tiom, the mcastRpc() function, and several other
built-in functions (setPinDir(), setPinPullup(), mtorPin()) to initialize and configure SNAP device
These functions are part of the API available téABNisers. There are more than 70 built-in functions
available for use in SNAP devices. They providewntlation you can use in your own scripts to read
and change pin states, adjust radio strength, secgsrnal devices (SPfQ, serial, etc.), and interact
with the rest of the network.

You can find a complete list of these built-in ftinos, with explanations of how to use each one, in
the SNAP Reference Manual. You can also find a watéety of sample scripts installed with Portal.
These scripts demonstrate how to access hardwatrgds in the various SNAP Engines. These
scripts are installed read-only, but you can sayees of them in order to experiment with them.

Each of your SNAP devices can have its own SNARpytsloaded, allowing for tremendous power
and infinite customization of your network. Nodes dave different functions in them to perform
different tasks, or multiple nodes can have theesaonipt in them to behave in similar ways. As the
demonstrations above showed, you can also custdmmeéonality by having different scripts in
nodes with functions with a common name that perfdifferent tasks.

Even with identical scripts loaded, you can make afsnon-volatile parameters in the nodes —
memory locations that are preserved when the nasteshut down — to make nodes behave in
different ways. This can simplify maintenance aif@s by having a single script to use across many
nodes, while allowing for customized operationhat mode level.

Portal Scripting

When running Portal your computer also counts @8lAP device, and can also be extended through
scripting. Just as with other SNAP devices, youadeh new functions to Portal that you (and the othe
SNAP nodes) can call. What makes Portal spectahisit can run any Python program you provide.

Portal scripts are written in full Python, rathlean the smaller embedded SNAPpy subset. Python is a
very powerful language, which finds use in a wideiety of application areas. Although the core of
Python is not a large language, it is well beydrmedcope of this document to cover it in any detail

You won't have to search long to find an immens@ant of information regarding Python on the
Web. Besides your favorite search engine, a goackpo start looking for further information is
Python’s home sitéhttp://python.org/

The Documentation page on Python’s home site aositaiks to tutorials at various skill levels, from
beginner to expert.

As mentioned earlier, Portal acts as a peer irsti&P network, and can send and receive RPC calls
like any other node. Like other nodes, Portal hBgace Image (script) that defines the functions
callable by incoming RPC messages. Since Portaloara PC (or Macintosh), its script executes in a
full Python environment with access to the mangaliles, services, and capabilities available there.
You can also find an application note on Portal@icrg on the SNAP forums.

Page 24 of 28 Snap Primer — Document Number 600037-01A

http://python.org/

5. Where Do | Go From Here?

From here, you have a world of options. Where yomext depends on how you want SNAP to help
you.

SNAP Evaluation Kits

If you want to see more examples of SNAP and SNA&pyork, consider acquiring one of the SNAP
Evaluation Kits (if you haven't already done soack SNAP Evaluation Kit provides several SNAP
Engines and an assortment of demonstration boal@sy with tutorial documentation that walks you
through setting up your network and making it regpto your commands.

EK2100

The EK2100 evaluation kit includes two RF100 SNARjiBes, an SN132 SNAPstick USB Module,
an SN171 ProtoBoard, and a collection of compontentgalk you through experiments that
demonstrate some of SNAP’s potential. It providgseat introduction to SNAP’s capabilities.

EK2500

The EK2500 evaluation kit includes three RF100 SNABines, an SN163 Bridge board, an SN111
End Device board, and an SN171 ProtoBoard, pluscegsd connectors and accessories. This
evaluation kit allows for more advanced demongsiretj with features like external relay controls and
the addition of seven-segment displays on two efabards. Having three SNAP devices to work with
(plus your PC running Portal) allows for more elatte network evaluations.

EK2550

The EK2550 evaluation kit includes the same hardwiaait the EK2500 evaluation kit provides, but is
packaged with AES-128-capable firmware.

Other SNAP Documentation
Once you have your feet wet, the next step isuvethe other SNAP documentation.

The SNAP Reference Manual explains all the detstsessary for using SNAP and SNAPpy, in
Synapse hardware or in hardware of your own ddsaged on processors to which SNAP has been
ported.

The Portal Reference Manual provides a completéaaggion of all the features of Portal, which you
can use to administer and manage your network.

The SNAP Connect E10 User Guide explains how tabéish a network around the E10 device,
which acts as a bridge between your wireless SNA&eN and other networks of SNAP Nodes
anywhere you have Internet access.

Hardware Design

If you are interested in designing your own hardwather than using manufactured modules, be sure
to read the SNAP Hardware Technical Manual beforelyegin your hardware design. It contains
information about hardware assumptions you’ll neelde aware of before you can complete your
design, such as which timers are used by SNAP dmchvones remain available for your use.

Snap Primer — Document Number 600037-01A Page 25 of 28

If you acquire SNAP devices, the SNAP firmware sti@lready be installed. If you build your own
devices using one of the hardware combinationshiicltWSNAP has been ported, you can license the
SNAP firmware for as many devices as you need.

Custom Solutions

When you realize that SNAP devices will be the tegolving your problems but come to the
conclusion that you don’t have the expertise olacép in-house to make everything work, the
Synapse Wireless Custom Solutions Group may ba/élyeto go. Our team of hardware and software
engineers can work with your company to providetéoanology to develop solutions and get your
products in place quickly and cost-effectively.

Contact Synapse Wireless at sales@synapse-wigeas$or all the information you need to put
SNAP products to work for you.

Page 26 of 28 Snap Primer — Document Number 600037-01A

mailto:sales@synapse-wireless.com

License governing any code samples presented in thi s Primer

Redistribution of code and use in source and binary forms, with or without
modification, are permitted provided that it retains the copyright notice, operates
only on SNAP® networks, and the paragraphs below in the documentation
and/or other materials are provided with the distribution:

Copyright 2010, Synapse Wireless Inc., All rights Reserved.

Neither the name of Synapse nor the names of contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SYNAPSE AND ITS
LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR
ITS DERIVATIVES. IN NO EVENT WILL SYNAPSE OR ITS LICENSORS BE LIABLE
FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT,
SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE
USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF SYNAPSE HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Snap Primer — Document Number 600037-01A Page 27 of 28

Disclaimers

Information contained in this Primer is provided in connection with Synapse
products and services and is intended solely to assist its customers. Synapse
reserves the right to make changes at any time and without notice. Synapse
assumes no liability whatsoever for the contents of this document or the
redistribution as permitted by the foregoing Limited License. The terms and
conditions governing the sale or use of Synapse products is expressly contained
in the Synapse’s Terms and Conditions for the sale of those respective products.

Synapse retains the right to make changes to any product specification at any
time without notice or liability to prior users, contributors, or recipients of
redistributed versions of this Release Note. Errata should be checked on any
product referenced.

Synapse and the Synapse logo are registered trademarks of Synapse. All other
trademarks are the property of their owners.

For further information on any Synapse product or service, contact us at:

Synapse Wireless, Inc.
500 Discovery Drive
Huntsville, Alabama 35806

256-852-7888
877-982-7888
256-852-7862 (fax)

Www.synapse-wireless.com

Page 28 of 28 Snap Primer — Document Number 600037-01A

http://www.synapse-wireless.com/

