
REFERENCE GUIDE 

SNAP® Network Operating System 

Reference Manual for Version 2.4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©  2 0 1 0 - 2 0 1 1  S y n a p s e ,  A l l  R i g h t s  R e s e r v e d .  
A l l  S y n a p s e  p r o d u c t s  a r e  p a t e n t  p e n d i n g .  

S y n a p s e ,  t h e  S y n a p s e  l o g o ,  S N A P ,  a n d  P o r t a l  a r e  a l l  r e g i s t e r e d  t r a d e m a r k s  o f  
S y n a p s e  W i r e l e s s ,  I n c .  

5 0 0  D i s c o v e r y  D r i v e  
H u n t s v i l l e ,  A l a b a m a  3 5 8 0 6  

8 7 7 - 9 8 2 - 7 8 8 8  
 
 

D o c #  6 0 0 - 0 0 0 7 K  





Table of Contents 
Table of Contents..................................................................................................................................... 3 
1. Introduction........................................................................................................................................ 11 

SNAP and SNAPpy ........................................................................................................................... 11 
Portal and SNAPconnect.................................................................................................................... 11 
The SNAP Wireless Sniffer ............................................................................................................... 11 
Navigating the SNAP Documentation ............................................................................................... 12 
Start with an “Evaluation Kit Users Guide” ...................................................................................... 12 
About This Manual ............................................................................................................................ 12 
Other Important Documentation ........................................................................................................ 12 
When The Manuals Are Not Enough................................................................................................. 13 

2. SNAP Overview................................................................................................................................. 14 
Key features of SNAP........................................................................................................................ 14 
RPC.................................................................................................................................................... 14 
SNAPpy Scripting.............................................................................................................................. 14 
SNAPpy Examples............................................................................................................................. 15 
Portal Scripting .................................................................................................................................. 15 
Python ................................................................................................................................................ 15 
Portal Script Examples....................................................................................................................... 16 

3. SNAPpy – The Language .................................................................................................................. 17 
Statements must end in a newline...................................................................................................... 17 
The # character marks the beginning of a comment .......................................................................... 17 
Indentation is significant.................................................................................................................... 17 
Indentation is used after statements that end with a colon (:)............................................................ 17 
Branching is supported via “if”/“elif”/“else”..................................................................................... 17 
Looping is supported via “while” ...................................................................................................... 17 
Identifiers are case sensitive .............................................................................................................. 17 
Identifiers must start with a non-numeric character .......................................................................... 17 
Identifiers may only contain alphanumeric characters and underscores ........................................... 18 
There are several types of variables................................................................................................... 18 
String Variables can contain Binary Data.......................................................................................... 18 
You define new functions using “def”............................................................................................... 18 
Functions can take parameters ........................................................................................................... 18 
Functions can return values ............................................................................................................... 19 
Functions can do nothing ................................................................................................................... 19 
Functions cannot be empty ................................................................................................................ 19 
Variables at the top of your script are global..................................................................................... 19 
Variables within functions are usually local….................................................................................. 19 
…unless you explicitly say you mean the global one........................................................................ 19 
Creating globals on the fly................................................................................................................. 20 
The usual conditionals are supported................................................................................................. 20 
The usual math operators are supported ............................................................................................ 20 
The usual Boolean functions are supported ....................................................................................... 21 
Variables do have types, but they can change on the fly ................................................................... 21 
Functions can change, too.................................................................................................................. 21 

SNAP Reference Manual Document Number 600-0007K Page 3 of 202 



You can use a special type of comment called a “docstring” ............................................................ 21 
4. SNAPpy versus Python...................................................................................................................... 22 

Modules.............................................................................................................................................. 22 
Variables ............................................................................................................................................ 22 
Functions............................................................................................................................................ 22 
Data Types ......................................................................................................................................... 22 
Keywords ........................................................................................................................................... 23 
Operators............................................................................................................................................ 23 
Slicing ................................................................................................................................................ 23 
Concatenation .................................................................................................................................... 23 
Subscripting ....................................................................................................................................... 23 
Expressions ........................................................................................................................................ 24 
Python Built-ins ................................................................................................................................. 24 
Print.................................................................................................................................................... 24 

5. SNAPpy Application Development................................................................................................... 25 
Event-Driven Programming............................................................................................................... 25 
SNAP Hooks...................................................................................................................................... 25 
Transparent Data (Wireless Serial Port) ............................................................................................ 27 
Scripted Serial I/O (SNAPpy STDIO)............................................................................................... 27 
The Switchboard ................................................................................................................................ 27 
Debugging.......................................................................................................................................... 30 
Sample Application – Wireless UART.............................................................................................. 30 
Code Density...................................................................................................................................... 33 

6. Advanced SNAPpy Topics ................................................................................................................ 34 
Interfacing to external CBUS slave devices ...................................................................................... 34 
Interfacing to external SPI slave devices ........................................................................................... 35 
Interfacing to external I2C slave devices ........................................................................................... 38 
Interfacing to multi-drop RS-485 devices.......................................................................................... 39 
Encryption between SNAP nodes...................................................................................................... 40 
Recovering an Unresponsive Node.................................................................................................... 41 

7. SNAPpy – The API............................................................................................................................ 43 
Alphabetical SNAP API .................................................................................................................... 43 

bist() – Synapse internal use only.................................................................................................. 43 
call(rawOpcodes, functionArgs…) – Call embedded C code....................................................... 43 
callback(callback, remoteFunction, remoteFunctionArgs…).................................................... 43 
callout(nodeAddress, callback, remoteFunction, remoteFunctionArgs…) ............................... 44 
cbusRd(numToRead) – Read bytes in from the CBUS................................................................ 45 
cbusWr(str) – Write bytes out to the CBUS................................................................................. 45 
chr(number) – Generate a single-character-string ........................................................................ 45 
crossConnect(endpoint1, endpoint2) – Tie two endpoints together ............................................ 45 
eraseImage() – Erase any SNAPpy image from the node ............................................................ 46 
errno() – Read and reset latest error code ..................................................................................... 46 
flowControl(uart, isEnabled, isTxEnable) – Enable/disable flow control.................................. 47 
getChannel() – Get which channel the node is on ........................................................................ 48 
getEnergy() – Get energy reading from current channel .............................................................. 49 
getI2cResult() – Get status code from most recent I2C operation ................................................ 50 

Page 4 of 202 SNAP Reference Manual Document Number 600-0007K 



getInfo(whichInfo) – Get specified system info........................................................................... 51 
getLq() – Get the most recent Link Quality .................................................................................. 55 
getMs() – Get system millisecond tick.......................................................................................... 55 
getNetId() – Get the node’s Network ID ...................................................................................... 56 
getStat() – Get Node Traffic Status............................................................................................... 56 
imageName() – Return name of currently loaded SNAPpy image............................................... 57 
i2cInit(enablePullups) – Setup for I2C ......................................................................................... 57 
i2cRead(byteStr, numToRead, retries, ignoreFirstAck) – I2C Read .......................................... 58 
i2cWrite(byteStr, retries, ignoreFirstAck) – I2C Write ............................................................... 58 
initUart(uart, bps) – Initialize a UART (short form) ................................................................... 58 
initUart(uart, bps, dataBits, parity, stopBits) – Initialize a UART.............................................. 59 
initVm() – Initialize (restart) the SNAPpy Virtual Machine......................................................... 59 
int(obj) – Convert an object to numeric form (if possible) ........................................................... 59 
lcdPlot() – LCD Support (Deprecated) ......................................................................................... 60 
len(sequence) – Return the length of a sequence .......................................................................... 60 
loadNvParam(id) – Read a Configuration Parameter from NV................................................... 61 
localAddr() – Get the node’s SNAP address ................................................................................ 61 
mcastRpc(group, ttl, function, args…) – Multicast RPC ............................................................ 61 
mcastSerial(destGroups, ttl) – Setup TRANSPARENT MODE ................................................. 62 
monitorPin(pin, isMonitored) – Enable/disable monitoring of a pin .......................................... 62 
ord(str) – Return the integer ASCII ordinal value of a character.................................................. 63 
peek(address) or peek(addressHi, addressLow, word) – Read a memory location..................... 63 
peekRadio(address) – Read an internal register of the radio........................................................ 64 
poke(address, value) or poke(addressHi, addressLow, word, data) or poke(addressHi, 
addressLow, word, dataHi, dataLow) – Write to a memory location........................................... 64 
pokeRadio(address, value) – Write to an internal radio register.................................................. 65 
print – Generate output from your script ...................................................................................... 65 
pulsePin(pin, msWidth, isPositive) – Generate a timed pulse...................................................... 66 
random() – Generate a random number........................................................................................ 67 
readAdc(channel) – Read an Analog Input pin (or reference)..................................................... 67 
readPin(pin) – Read the logic level of a pin................................................................................. 67 
reboot() – Schedule a reboot ......................................................................................................... 67 
resetVm() – Reset (shut down) the SNAPpy Virtual Machine..................................................... 67 
rpc(address, function, args…) – Remote Procedure Call (RPC) ................................................. 68 
rpcSourceAddr() – Who made this Remote Procedure Call?...................................................... 68 
rx(isEnabled) – Turn radio receiver on/off ................................................................................... 69 
saveNvParam(id, obj) – Save data into NV memory ................................................................... 69 
scanEnergy() – Get energy readings from all channels................................................................ 70 
setChannel(channel) – Specify which channel the node is on..................................................... 71 
setNetId(networkId) – Specify which Network ID the node is on ............................................... 71 
setPinDir(pin, isOutput) – Set direction (input or output) for a pin............................................. 71 
setPinPullup(pin, isEnabled) – Control internal pull-up resistor................................................. 72 
setPinSlew(pin, isRateControl) – Enable/disable slew rate control ............................................. 72 
setRadioRate(rate) – Set raw radio data rate................................................................................ 72 
setRate(rate) – Set monitorPin() sample rate................................................................................ 73 
setSegments(segments) – Update seven-segment display ............................................................ 73 

SNAP Reference Manual Document Number 600-0007K Page 5 of 202 



sleep(mode, ticks) – Go to sleep (enter low-power mode)............................................................ 74 
spiInit(cpol, cpha, isMsbFirst, isFourWire) – Setup SPI Bus..................................................... 75 
spiRead(byteCount, bitsInLastByte=8) – SPI Bus Read.............................................................. 75 
spiWrite(byteStr, bitsInLastByte=8) – SPI Bus Write ................................................................. 76 
spiXfer(byteStr, bitsInLastByte=8) – Bidirectional SPI Transfer ................................................ 76 
stdinMode(mode, echo) – Set console input options.................................................................... 77 
str(object) – Return the string representation of an object ............................................................ 77 
txPwr(power) – Set Radio TX power level................................................................................... 77 
ucastSerial(destAddr) – Setup outbound TRANSPARENT MODE............................................ 78 
uniConnect(dest, src) – Make a one-way switchboard connection .............................................. 78 
vmStat(statusCode, args…) – Invoke “status” callbacks............................................................. 79 
writeChunk(offset, data) – Synapse Use Only ............................................................................ 81 
writePin(pin, isHigh) – Set output pin level................................................................................. 81 

ADC ................................................................................................................................................... 82 
CBUS Master Emulation ................................................................................................................... 82 
GPIO .................................................................................................................................................. 82 
I2C Master Emulation ........................................................................................................................ 82 
Misc.................................................................................................................................................... 82 
Network.............................................................................................................................................. 83 
Non-Volatile (NV) Parameters .......................................................................................................... 83 
Radio .................................................................................................................................................. 83 
SPI Master Emulation ........................................................................................................................ 84 
Switchboard ....................................................................................................................................... 84 
System................................................................................................................................................ 84 
UARTs ............................................................................................................................................... 85 
Immediate Functions.......................................................................................................................... 86 
Blocking Functions ............................................................................................................................ 86 
Non-blocking Functions..................................................................................................................... 86 
Non-blocking Functions and SNAPpy Hooks ................................................................................... 87 
SNAPpy Scripting Hints .................................................................................................................... 87 

8. SNAP Node Configuration Parameters ............................................................................................. 92 
ID 0 – Reserved for Synapse Use .................................................................................................. 92 
ID 1 – Reserved for Synapse Use .................................................................................................. 92 
ID 2 – MAC Address ..................................................................................................................... 92 
ID 3 – Network ID ......................................................................................................................... 93 
ID 4 – Channel ............................................................................................................................... 93 
ID 5 – Multi-cast Processed Groups .............................................................................................. 93 
ID 6 – Multi-cast Forwarded Groups............................................................................................. 93 
ID 7 – Manufacturing Date ............................................................................................................ 94 
ID 8 – Device Name ...................................................................................................................... 94 
ID 9 – Last System Error ............................................................................................................... 94 
ID 10 – Device Type...................................................................................................................... 94 
ID 11 – Feature Bits....................................................................................................................... 94 
ID 12 – Default UART .................................................................................................................. 95 
ID 13 – Buffering Timeout ............................................................................................................ 96 
ID 14 – Buffering Threshold.......................................................................................................... 96 

Page 6 of 202 SNAP Reference Manual Document Number 600-0007K 



ID 15 – Inter-character Timeout .................................................................................................... 97 
ID 16 – Carrier Sense..................................................................................................................... 97 
ID 17 – Collision Detect ................................................................................................................ 97 
ID 18 – Collision Avoidance ......................................................................................................... 98 
ID 19 – Radio Unicast Retries ....................................................................................................... 98 
ID 20 – Mesh Routing Maximum Timeout ................................................................................... 98 
ID 21 – Mesh Routing Minimum Timeout .................................................................................... 99 
ID 22 – Mesh Routing New Timeout ............................................................................................ 99 
ID 23 – Mesh Routing Used Timeout............................................................................................ 99 
ID 24 – Mesh Routing Delete Timeout.......................................................................................... 99 
ID 25 – Mesh Routing RREQ Retries............................................................................................ 99 
ID 26 – Mesh Routing RREQ Wait Time...................................................................................... 99 
ID 27 – Mesh Routing Initial Hop Limit ....................................................................................... 99 
ID 28 – Mesh Routing Maximum Hop Limit .............................................................................. 100 
ID 29 – Mesh Sequence Number ................................................................................................. 100 
ID 30 – Mesh Override ................................................................................................................ 100 
ID 31 – Mesh Routing LQ Threshold .......................................................................................... 101 
ID 32 – Mesh Rejection LQ Threshold........................................................................................ 101 
ID 33 – Noise Floor ..................................................................................................................... 101 
ID 34 through 38 – Reserved for Future Use............................................................................... 102 
ID 39 – Radio LQ Threshold ....................................................................................................... 102 
ID 40 – SNAPpy CRC ................................................................................................................. 102 
ID 41 – Platform .......................................................................................................................... 102 
ID 42 through 49 – Reserved for Future Use............................................................................... 103 
ID 50 – Enable Encryption .......................................................................................................... 103 
ID 51 – Encryption Key............................................................................................................... 103 
ID 52 – Lockdown ....................................................................................................................... 104 
ID 53 – Maximum Loyalty .......................................................................................................... 104 
ID 54 through 59 – Reserved for Future Use............................................................................... 105 
ID 60 – Last Version Booted (Deprecated) ................................................................................. 105 
ID 61 – Reboots Remaining......................................................................................................... 105 
ID 62 – Reserved for Future Use ................................................................................................. 105 
ID 63 – Alternate Radio Trim value ............................................................................................ 105 
ID 64 – Vendor-Specific Settings ................................................................................................ 105 
ID 65 – Clock Regulator .............................................................................................................. 105 
ID 66 – Radio Calibration Data ................................................................................................... 105 
ID 67 through 127 – Reserved for Future Use............................................................................. 106 
ID 70 – Transmit Power Limit..................................................................................................... 106 
ID 128 through 254 – Available for User Definition................................................................... 106 
ID 255 – Reserved for Synapse Use ............................................................................................ 106 

9. Example SNAPpy Scripts ................................................................................................................ 107 
General Purpose Scripts................................................................................................................... 107 
Scripts Specific to I2C...................................................................................................................... 109 
Scripts Specific to SPI ..................................................................................................................... 109 
Scripts specific to the EK2100 Kit................................................................................................... 109 
Platform-Specific Scripts ................................................................................................................. 110 

SNAP Reference Manual Document Number 600-0007K Page 7 of 202 



Scripts specific to the RF100 Platform ........................................................................................ 110 
Scripts specific to the RF200 Platform ........................................................................................ 110 
Scripts specific to the RF300/RF301 Platform ............................................................................ 110 
Scripts specific to the Panasonic Platforms ................................................................................. 111 
Scripts specific to the California Eastern Labs Platforms ........................................................... 112 
Scripts specific to the ATMEL ATmega128RFA1 Platforms..................................................... 113 
Scripts specific to the SM700/MC13224 Platforms .................................................................... 114 
Scripts specific to the STM32W108xB Platforms....................................................................... 115 

10. Supported Platform Details............................................................................................................ 119 
Synapse RF100 ................................................................................................................................ 121 

Synapse RF100 Pin Assignments ................................................................................................ 123 
SNAP Protocol Memory Usage ................................................................................................... 123 
SNAPpy Virtual Machine Memory Usage .................................................................................. 124 
Platform-Specific SNAPpy Built-In Functionality...................................................................... 124 
Performance Metrics.................................................................................................................... 125 

Freescale MC1321x Chip ................................................................................................................ 127 
MC1321x IO Mapping................................................................................................................. 128 
SNAP Protocol Memory Usage ................................................................................................... 129 
SNAPpy Virtual Machine Memory Usage .................................................................................. 129 
Platform Specific SNAPpy Built-In Functionality and Performance Metrics............................. 129 

Panasonic PAN4555 SNAP Module................................................................................................ 130 
PAN4555 Module IO Mapping ................................................................................................... 131 

Panasonic PAN4555 (SNAP Engine Form Factor) ......................................................................... 132 
Fewer “Wakeup” Pins.................................................................................................................. 132 
Fewer ADC Input Pins................................................................................................................. 132 
You cannot “cheat” and read/write 8 GPIO with a single poke()................................................ 132 
Two Additional PWM Output Pins.............................................................................................. 132 
getInfo() Differences.................................................................................................................... 133 
Sleep() considerations.................................................................................................................. 133 
For Advanced Users Only............................................................................................................ 133 
Pin Configuration of a PAN4555 in SNAP Engine Format ........................................................ 134 
PAN4555 GPIO Assignments...................................................................................................... 135 
Performance Metrics.................................................................................................................... 135 

Panasonic PAN4561 (SNAP Engine Form Factor) ......................................................................... 136 
Increased Number of GPIO Pins.................................................................................................. 136 
Platform Specific Settings............................................................................................................ 136 
Platform Specific Hardware Configuration ................................................................................. 137 
ADC Pins ..................................................................................................................................... 137 
Low Power Settings (LNA/PA) ................................................................................................... 137 
Default UART remains UART1 .................................................................................................. 138 
I2C Emulation vs. Hardware pins................................................................................................. 138 
Additional PWM Output Pins...................................................................................................... 138 
getInfo() Differences.................................................................................................................... 138 
PAN4561 GPIO Assignments...................................................................................................... 139 
Pin Functionality for the PAN4561 Module................................................................................ 140 
Pin Configuration of a PAN4561 in SNAP Engine Format ........................................................ 142 

Page 8 of 202 SNAP Reference Manual Document Number 600-0007K 



Performance Metrics.................................................................................................................... 143 
California Eastern Labs ZIC2410 Chip and Module ....................................................................... 144 

ZIC2410 IO Mapping .................................................................................................................. 144 
Separate Analog Input Pins.......................................................................................................... 144 
I2C Emulation............................................................................................................................... 145 
Memory Usage............................................................................................................................. 145 
Platform Specific SNAPpy Functionality.................................................................................... 146 
Performance Metrics.................................................................................................................... 149 

California Eastern Labs ZIC2410 (SNAP Engine Form Factor) ..................................................... 151 
Separate Analog Input Pins.......................................................................................................... 151 
Pin Configuration of a ZICM2410P2 in SNAP Engine Format .................................................. 152 

ATMEL ATmega128RFA1............................................................................................................. 153 
ATmega128RFA1 Port mappings................................................................................................ 154 
More “Wakeup” Pins ................................................................................................................... 154 
Analog Input Pins ........................................................................................................................ 154 
Serial port 0.................................................................................................................................. 155 
Serial port 1.................................................................................................................................. 155 
PWM Output Pins ........................................................................................................................ 155 
SPI................................................................................................................................................ 155 
I2C ................................................................................................................................................ 155 
Memory Usage............................................................................................................................. 156 
Platform Specific SNAPpy Built-In Functionality ...................................................................... 156 
Performance Metrics.................................................................................................................... 159 
Reserved Hardware...................................................................................................................... 161 

Synapse RF200 ................................................................................................................................ 162 
Pin Configuration of an ATmega128RFA1 in SNAP Engine Format (RF200) .......................... 163 

Synapse SS200................................................................................................................................. 164 
Silicon Labs Si100x ......................................................................................................................... 165 

Si100x Port mappings .................................................................................................................. 166 
“Wakeup” Pins............................................................................................................................. 166 
Analog Input Pins ........................................................................................................................ 166 
Serial port 0.................................................................................................................................. 166 
PWM Output Pins ........................................................................................................................ 166 
SPI................................................................................................................................................ 166 
I2C ................................................................................................................................................ 167 
Memory Usage............................................................................................................................. 167 
Platform-Specific SNAPpy Functionality.................................................................................... 167 
Performance Metrics.................................................................................................................... 172 
Reserved Hardware...................................................................................................................... 173 

Synapse RF300/RF301 .................................................................................................................... 174 
Pin Configuration of an Si1000 in SNAP Engine Format (RF300/RF301) ................................ 176 

Freescale MC13224 chip ................................................................................................................. 177 
Platform-Specific SNAPpy Functionality.................................................................................... 178 
Memory Usage............................................................................................................................. 183 
Reserved Hardware...................................................................................................................... 183 

Synapse SM700 Surface-Mount Module......................................................................................... 184 

SNAP Reference Manual Document Number 600-0007K Page 9 of 202 



Page 10 of 202 SNAP Reference Manual Document Number 600-0007K 

SM700 Port Pin mappings ........................................................................................................... 185 
STMicroelectronics STM32W108xB chip ...................................................................................... 186 

Platform-Specific SNAPpy Functionality.................................................................................... 189 
STM32W108CB Port Pin mappings............................................................................................ 198 
STM32W108HB Port Pin mappings ........................................................................................... 199 
Memory Usage............................................................................................................................. 200 
Performance Metrics.................................................................................................................... 200 
Reserved Hardware...................................................................................................................... 201 

License governing any code samples presented in this Manual .......................................................... 202 
Disclaimers .......................................................................................................................................... 202 



1. Introduction 

SNAP and SNAPpy 
The Synapse SNAP product line provides an extremely powerful and flexible platform for developing 
and deploying embedded wireless applications. 
 
The SNAP network operating system is the protocol spoken by all Synapse wireless nodes. The term 
SNAP has also evolved over time to refer generically to the entire product line. For example, we often 
speak of “SNAP Networks,” “SNAP Nodes,” and “SNAP Applications.” 
 
SNAP core software runs on each SNAP node. This core code handles wireless communications, as 
well as implementing a Python virtual machine. 
 
The subset of Python implemented by the core software is named SNAPpy. Scripts written in SNAPpy 
(also referred to as “Device Images”, “SNAPpy images” or even “Snappy Images”) can be uploaded 
into SNAP Nodes serially (or even over the air), and dramatically alter the node’s capabilities and 
behavior. 

Portal and SNAPconnect 
Synapse Portal is a standalone software application which runs on a standard PC. Using a USB or 
RS232 interface, it connects to any node in the SNAP Wireless Network, becoming a graphical user 
interface (GUI) for the entire network. Using Portal, you can quickly and easily create, deploy, 
configure and monitor SNAP-based network applications. Once connected, the Portal PC has its own 
unique Network Address, and can participate in the SNAP network as a peer. 
 
Synapse SNAPconnect is a standalone server application, which also runs on a standard PC. It 
connects to SNAP nodes over USB or RS-232 (just as Portal), but instead of providing a GUI, it acts 
as an XML-RPC server, allowing your own client applications to invoke functions on SNAP nodes, 
even over the Internet. These client applications can be written in Python, C++, C#, etc. 
 
It is also possible for Portal to connect to your SNAP network through the SNAPconnect application 
(instead of a direct USB or RS-232 connection). This allows you to develop, configure, and deploy 
SNAP applications over the Internet. 
 
Through an instance of the SNAPconnect software, you can have a total of 15 simultaneous client 
connects, which can be a mix of Portals and your own custom client applications.  

The SNAP Wireless Sniffer 
When you install Portal, a wireless “SNAP Sniffer” application is also installed. This program allows 
you to see SNAP messages over the air. 

SNAP Reference Manual Document Number 600-0007K Page 11 of 202 



Navigating the SNAP Documentation 
There are several main documents you need to be aware of: 

Start with an “Evaluation Kit Users Guide” 
Each evaluation kit comes with its own Users Guide. For example, the EK2500 kit comes with the 
EK2500 Evaluation Kit Users Guide (“EK2500 Guide”), and the EK2100 kit comes with the 
EK2100 Evaluation Kit Users Guide (“EK2100 Guide”). 
 
Each of these guides walks you through the basics of unpacking your evaluation kit, setting up your 
wireless nodes, and installing Portal software on your PC. You should start with one of these manuals, 
even if you are not starting with an EK2500 or EK2100 kit (Synapse SNAP nodes and even their 
component SNAP Engines are also sold separately, as well as bundled into evaluation kits). 

About This Manual 
This manual assumes you have read and understood either the “EK2100 Users Guide” or the “EK2500 
Users Guide.” It assumes you have installed the Portal software, and are now familiar with the basics 
of discovering nodes, uploading SNAPpy scripts into them, and controlling and monitoring them from 
Portal. 
 
The focus of this manual is information about SNAP and SNAPpy. It covers topics like the SNAPpy 
language, and the built-in functions that are accessible from it. You will also find information about 
the different node configuration parameters that can be changed. 

 
NOTE – In previous versions of this manual, information about the Portal GUI was also included. 
Starting with version 2.2, information specific to Portal has been moved to a separate Portal 
Reference Manual. 
 
Previous versions of this manual referred to Synapse RF100 SNAP Engines as RFEngines. As SNAP 
has been ported to multiple platforms, the SNAP Reference Manual has been updated to better 
distinguish between the various platforms. See section 10 for details specific to each SNAP platform. 

Other Important Documentation 
Be sure to check out all of the SNAP documentation: 
 
This document, the SNAP Reference Manual, is only one of several. Be sure to also take a look at: 

 
• The “SNAP Primer”    (60037-01A) 
• The “Portal Reference Manual”   (60024-01B) 
• The “SNAP Hardware Technical Manual” (600-101.01C) 

 
Every switch, button, and jumper of every SNAP board is covered in this hardware reference 
document. 

 
 

Page 12 of 202 SNAP Reference Manual Document Number 600-0007K 



• The “End Device Quick Start Guide”  (600-0001A) 
• The “SN171 Proto Board Quick Start Guide” (600-0011C) 

 
These two documents are subsets of the “SNAP Hardware Technical Manual” and come in handy 
because they focus on a single board type. 
 

• The “SNAP Sniffer Users Guide”   (600026-01A) 
 
Starting with Portal version 2.2.23, a “wireless sniffer” capability is included with Portal. If you 
follow the instructions in this standalone manual, you will be able to actually see the wireless 
exchanges that are taking place between your SNAP nodes. 
 

• The “SNAP 2.2 Migration Guide”  (600023-01A) 
 
There were enough changes between the 2.1 and 2.2 series of SNAP releases that we decided to 
provide an extra “transition” guide. You should check this document out if you were already a user 
of SNAP 2.1 and Portal 2.1. 
 

• The “SNAP Firmware Release Notes” 
 
Every SNAP Firmware release comes with a release notes document describing what has changed 
since the previous release. 
 

• The “Portal Release Notes” 
 
All of these documents are in Portable Document Format (PDF) files for download from the Synapse 
support forum (see below). 

When The Manuals Are Not Enough 
There is also a dedicated support forum at http://forums.synapse-wireless.com. 
 
In this forum, you can see questions and answers posted by other users, as well as post your own 
questions. The forum also has examples and Application Notes, waiting to be downloaded. 
 
You can download the latest SNAP, Portal, and SNAPconnect software from the forum. You can also 
download the latest documentation from the forum, including the EK2500 and EK2100 guides (you 
might want to do this if you bought standalone modules instead of buying a kit). 

SNAP Reference Manual Document Number 600-0007K Page 13 of 202 

http://forums.synapse-wireless.com/


2. SNAP Overview 
SNAP is a family of software technologies that together form an integrated, end-to-end solution for 
wireless monitoring and control. The latest version is 2.4, which this document covers. 

Key features of SNAP 
• All devices are peers – any device can be a bridge for Portal, do mesh routing, sleep, etc. There are 

no “coordinators” in SNAP. 
• SNAP implements a full mesh topology. Any node can talk directly to any other node within radio 

range, and can talk indirectly to any node within the SNAP network. 
• Communication among devices can be unicast (reliable) or multicast (unacknowledged). 
• Remote Procedure Call (RPC) among peers is the fundamental method of messaging. 
• The PC based user interface (Portal) appears as a peer device on the SNAP network. 

RPC 
All SNAP devices implement a core set of built-in functions (procedures) to handle basic network 
configuration, system services, and device hardware control. These functions may be invoked remotely 
from Portal or from any other device on the SNAP network. Additional user-defined functions may be 
uploaded to devices as well. This upload process can be over directly connected serial interfaces, or 
over the air. Once uploaded, these functions are also callable locally or remotely, and may themselves 
invoke local and remote functions. Functions are defined in an embedded subset of the Python 
language, called SNAPpy. 
 

 
Example HVAC System Showing RPC Call-flow (arrows) 

SNAPpy Scripting  
SNAPpy is a subset of the Python programming language, optimized for low-power embedded 
devices. A SNAPpy “script” is a collection of functions and data which are processed by Portal and 

Page 14 of 202 SNAP Reference Manual Document Number 600-0007K 



uploaded to SNAP devices. All SNAP devices are capable of running SNAPpy – it is the native 
language of RPC calls.  

SNAPpy Examples 
On installation, Portal creates a folder under “My Documents” called “Portal\snappyImages”. Several 
sample script files are installed here by default. These scripts are plain text files, which may be opened 
and edited with Portal’s built-in editor. External text editors or even full-fledged Python Integrated 
Development Environments (IDEs) may also be used. Feel free to copy and modify the sample scripts 
(the installed copies are read-only), and create your own as you build custom network applications. 

Portal Scripting  
Similar to the SNAP nodes, Portal can also be extended through scripting. By loading a script, you can 
add new functions to Portal, which you (and the other SNAP nodes) can call. 

Python 
Portal scripts are written in full Python (you are not limited to the embedded SNAPpy subset). Python 
is a very powerful language, which finds use in a wide variety of application areas. Although the core 
of Python is not a large language, it is well beyond the scope of this document to cover it in any detail. 
  
You won’t have to search long to find an immense amount of information regarding Python on the 
Web. Besides your favorite search engine, a good place to start looking for further information is 
Python’s home site: 
http://python.org/ 

 
The Documentation page on Python’s home site contains links to tutorials at various levels of 
programming experience, from beginner to expert. 
 
As mentioned earlier, Portal acts as a peer in the SNAP network, and can send and receive RPC calls 
like any other Node. Like other nodes, Portal has a Device Image (script) which defines the functions 
callable by incoming RPC messages. Since Portal runs on a PC, its script executes in a full Python 
environment with access to the many libraries, services, and capabilities available there.  
 
 

SNAPpy RPC  Portal :  Gateway to Full Python… 
Thanks to this capability, it is quite simple for a low-power device on 
the network to (via an RPC call to Portal) send an email or update a 
database in response to some monitored event. 

 

SNAP Reference Manual Document Number 600-0007K Page 15 of 202 

http://python.org/


Portal Script Examples 
On installation, Portal creates a folder under “My Documents” called “Portal”. Several sample script 
files are installed here by default. Feel free to copy and modify the sample scripts (the installed copies 
are read-only), and create your own as you build custom network applications. 
 
Be sure to make copies of the provided read-only examples. 
 
If you change the existing files to be writable, your changes to these examples will be overwritten 
when you install the next version of Portal.  
 
 

Page 16 of 202 SNAP Reference Manual Document Number 600-0007K 



3. SNAPpy – The Language 
 
SNAPpy is basically a subset of Python, with a few extensions to better support embedded real-time 
programming. Here is a quick overview of the SNAPpy language. 

Statements must end in a newline 
print "I am a statement" 

The # character marks the beginning of a comment 
print "I am a statement with a comment" # this is a comment 

Indentation is significant 
The amount of indentation is up to you (4 spaces is standard for Python) but be consistent. 
 
print "I am a statement" 
    print "I am a statement at a different indentation level" # this is an error 

Indentation is used after statements that end with a colon (:) 
if x == 1: 
    print "Found number 1" 

Branching is supported via “if”/“elif”/“else” 
if x == 1: 
    print "Found number 1" 
elif x == 2: 
    print "Found number 2" 
else: 
    print "Did not find 1 or 2" 

Looping is supported via “while” 
x = 10 
while x > 0: 
    print x 
    x = x - 1 

Identifiers are case sensitive 
X = 1 
x = 2 
 
Here “X” and “x” are two different variables 

Identifiers must start with a non-numeric character 
x123 = 99 # OK 
123x = 99 # not OK 

SNAP Reference Manual Document Number 600-0007K Page 17 of 202 



Identifiers may only contain alphanumeric characters and underscores 
x123_percent = 99 # OK 
$%^ = 99 # not OK 

There are several types of variables 
a = True # Boolean 
b = False # Boolean 
c = 123 # Integer, range is -32768 to 32767 
d = "hello" # String 
e = (1, 2, 3) # Tuple 
f = None # Python has a "None" data type 
g = startup # Function 
 
In the above example, invoking g() would be the same as directly calling startup(). 

String Variables can contain Binary Data 
A = "\x00\xFF\xAA\x55" # The "\x" prefix means Hexadecimal 

You define new functions using “def” 
def sayHello(): 
    print "hello" 
 
sayHello() # prints the word “hello” 

Functions can take parameters 
def adder(a, b): 
    print a + b 
 
NOTE – unlike Python, SNAPpy does not support optional/default arguments. If a function takes two 
parameters, you must always provide two parameters. 
 
It is also important in your Portal and SNAPconnect related programming to make sure that any 
routines defined in Portal scripts (or SNAPconnect clients) accept the same number and type of 
parameters that the remote callers are providing. For example: 
 
If in a Portal script you define a function like… 
 
def displayStatus(msg1, msg2): 
    print msg1 + msg2 
 
…but in your SNAPpy scripts you have RPC calls like… 
 
rpc(PORTAL_ADDR, "displayStatus", 1, 2, 3) # <- too many parameters provided 
 
…or… 
 
rpc(PORTAL_ADDR, "displayStatus", 1) # <- too few parameters provided 
 

Page 18 of 202 SNAP Reference Manual Document Number 600-0007K 



then you are going to see no output at all in Portal. Because the “signatures” do not match, Portal 
does not invoke the displayStatus() function at all. 
 
You can change the calling SNAPpy script(s), or you can change the Portal script, but they must 
match. 

Functions can return values 
def adder(a, b): 
    return a + b 
 
print adder(1, 2) # would print out "3" 

Functions can do nothing 
def placeHolder(a, b): 
    pass 

Functions cannot be empty 
def placeHolder(a, b): 
    # ERROR! - you have to at least put a "pass" statement here 

Variables at the top of your script are global 
x = 99 # this is a global variable 
 
def sayHello(): 
    print "x=", x 

Variables within functions are usually local… 
x = 99 # this is a global variable 
 
def showNumber(): 
    x = 123 # this is a separate local variable 
    print x # prints 123 

…unless you explicitly say you mean the global one 
x = 99 # this is a global variable 
 
def showGlobal(): 
    print x # this shows the current value of global variable x 
  
def changeGlobal(): 
    global x # because of this statement… 
    x = 99 # …this changes the global variable x 
 
def changeLocal(): 
    x = 42 # this statement does not change the global variable x 
    print x # will print 42 but the global variable x is unchanged 

SNAP Reference Manual Document Number 600-0007K Page 19 of 202 



Creating globals on the fly 
def newGlobal(): 
    global x # this is a global variable, even without previous declaration 
    x = x + 1 # ERROR! - variables must be initialized before use 
    if x > 7: # ERROR! – variables must be initialized before use 
        pass 
    # Note that these two statements are NOT errors if some other function 
    # has previously initialized a value for global variable x before this 
    # function runs. Globals declared in this way have the same availability 
    # as globals explicitly initialized outside the scope of any function. 

The usual conditionals are supported 
Symbol Meaning 
== Is equal to 
!= Is not equal to 
> Greater than 
< Less than 
>= Greater than or equal to 
<= Less than or equal to 
 
if 2 == 4: 
    print "something is wrong!" 
 
if 1 != 1: 
    print "something is wrong!" 
 
if 1 < 2: 
    print "that’s what I thought" 

The usual math operators are supported 
Symbol Meaning 
+ Addition 
- Subtraction 
* Multiplication 
/ Division 
% Modulo (remainder function) 
 
y = m*x + b 
z = 5 % 4 # z is now 1 
result = 8 / 4 
 
SNAPpy does not support floating point, only integers.  
 
SNAPpy integers are 16-bit signed values ranging from -32768 to 32767. If you add 1 to 32767, you 
will get -32768. 
 
SNAPpy does not generate an error if you divide by zero. The result of that division will be zero. 

Page 20 of 202 SNAP Reference Manual Document Number 600-0007K 



The usual Boolean functions are supported 
Symbol Meaning 
and Both must be True 
or Either can be True 
not Boolean inversion (not True == False) 
 
Result = True and True # Result is True 
Result = True and False # Result is False 
Result = False and True # Result is False 
Result = False and False # Result is False 
 
Result = True or True # Result is True 
Result = True or False # Result is True 
Result = False or True # Result is True 
Result = False or False # Result is False 

Variables do have types, but they can change on the fly 
x = 99 # variable x is currently an integer (int) 
x = "hello" # variable x is now a string (str) 
x = True # variable x is now a Boolean (bool) 

Functions can change, too 
If you have two function definitions that define functions with the same name, even with different 
parameter signatures, only the second function will be available. You cannot overload function names 
in SNAPpy based on the number or type of parameters expected. 

You can use a special type of comment called a “docstring” 
At the top of a script, and after the beginning of any function definition, you can put a specially 
formatted string to provide inline documentation about that script or function. These special strings are 
called “docstrings.” 
 
“Docstrings” should be delimited with three single quote characters (') or three double quote (") 
characters. (Use double quotes if your string will span more than one line.) Here are some examples: 
 
""" 
This could be the docstring at the top of a source file, explaining 
what the purpose of the file is 
""" 
 
def printHello(): 
    """this function prints a short greeting""" 
    print "hello" 
 
These “docstrings” will appear as tool-tips in some portions of the Portal GUI.  
 

SNAP Reference Manual Document Number 600-0007K Page 21 of 202 



4. SNAPpy versus Python 
 
Here are more details about SNAPpy, with emphasis on the differences between SNAPpy and Python. 

Modules 
SNAPpy supports import of user-defined as well as standard predefined Python source library 
modules. 
 
from module import *    # Supported 
import module           # Not supported 

Variables 
Local and Global variables are supported. On RAM-constrained devices, SNAPpy images are 
typically limited to 64 system globals and 64 concurrent locals. Per-platform values are given in the 
back of this document. 

Functions 
Up to 255 “public” functions may be defined. These are remotely callable using the SNAP RPC 
protocol. 
 
Non-public functions (prefixed with underscore) are limited only by the size of FLASH memory. 

Data Types 
SNAPpy supports the following fundamental Python data types: 
• NoneType – None is a valid value 
• int – An int is a signed 16-bit integer, -32768 through 32767. 32767 + 1 = -32768. 
• bool – A bool has a value of either True or False. 
• string – A static string has a maximum size of 255 bytes. If you assign a literal to a string when a 

function is created, this is the size limit that will be applied. However if you assign a value to a 
string while a script is running, or attempt to reassign a value to a string declared outside a 
function, SNAPpy uses a different collection of string buffers, and the maximum length of the 
string will be determined by the platform on which SNAP is running. See the platform-specific 
parameters in Section 10 for more details. (Note – built-in functions slice/concat/rpc enforce 
smaller limits on what they can do with strings.) 

• tuple – A tuple is a read-only container of other data types, e.g., (1,'A',True). SNAPpy tuples must 
be global in scope and cannot be used outside the scope of a local script. You cannot pass them as 
parameters in RPC calls to other nodes. You may nest tuples, however there are restrictions on the 
printing of nested tuples. (See the details about printing, below.) 

• function – A function is a user-defined subroutine invoked from elsewhere in your script, or by 
RPC call from another node. 

 
SNAPpy currently does not support the following common Python types, so they cannot be used in 
SNAPpy scripts. They can still be used in Portal scripts. 
• float – A float is a floating-point number, with a decimal part. 

Page 22 of 202 SNAP Reference Manual Document Number 600-0007K 



• long – A long is an integer with arbitrary length (potentially exceeding the range of an int). 
• complex – A complex is a number with an imaginary component. 
• list – A list is an ordered collection of elements. 
• dict – A dict is an unordered collection of pairs of keyed elements. 
• set – A set is an unordered collection of unique elements. 
• User-defined objects (class types) 

Keywords 
The following Python reserved identifiers are supported in SNAPpy: 
• and • break • continue • def • elif • else 
• from • global • if • import • is • not 
• or • pass • print • return • while  
 
The following identifiers are reserved, but not yet supported in SNAPpy: 
• as • assert • class • del • except • exec 
• finally • for • in • lambda • raise • try 
• with • yield     

Operators 
SNAPpy supports all Python operators, with the exception of floor (//) and power (**). 

+ - * / % 
<< >> & | ^ ~ 
< > <= >= == != <> 

Slicing 
Slicing is supported for string and tuple data types. For example, if x is “ABCDE” then x[1:4] is 
“BCD”. 

Concatenation 
Concatenation is supported for string data types. For example, if x = “Hello” and y = “, world” then x 
+ y is “Hello, world”. String multiplication is not supported. You cannot use 3 * "Hello! " to get 
"Hello! Hello! Hello! " in SNAPpy. 

Subscripting 
Subscripting is supported for string and tuple data types. For example, if x = (‘A’,’B’,’C’) then x[1] = 
‘B’. 
 
NOTE – Prior to version 2.2, there was only a single “string buffer” for each type of string operation 
(slicing, concatenation, subscripting, etc.). Subsequent operations of that same type would overwrite 
previous results. Version 2.2 replaces the fixed string buffers with a small pool of string buffers, 
usable for any operation. This allows scripts like the following to now work correctly: 
A = B + C # for this example, all variables are strings 
D = E + F 
 

SNAP Reference Manual Document Number 600-0007K Page 23 of 202 



Scripts that do string manipulations that were written to work within the 2.0/2.1 restrictions will still 
work as-is. They just may be performing extra steps that are no longer needed with version 2.2 and 
above. 

Expressions 
SNAPpy supports all Python boolean, binary bit-wise, shifting, arithmetic, and comparison 
expressions – including the ternary if form. 
x = +1 if a > b else -1 # x will be +1 or -1 depending on the values of a and b 

Python Built-ins 
The following Python built-ins are supported in SNAPpy: 
• chr – Given an integer, returns a one-character string whose ASCII is that number. 
• int – Given a string, returns an integer representation of the string. The int(‘5’) is 5. 
• len – Returns the number of items in an object. This will be an element count for a tuple, or the 

number of characters in a string. 
• ord – Given a one-character string, returns an integer of the ASCII for that character. 
• str – Given an element, returns a string representation of the element. The str(5) is ‘5’ for example. 
 
Additionally, many RF module-specific embedded network and control built-ins are supported. 

Print 
SNAPpy also supports a print statement. Normally each line of printed output appears on a separate 
line. If you do not want to automatically advance to the next line (if you do not want an automatic 
Carriage Return and Line Feed), end your print statement with a comma (“,”) character. 
 
print "line 1" 
print "line 2" 
print "line 3 ", 
print "and more of line 3" 
print "value of x is ", x, "and y is ", y 
 
Printing multiple elements on a single line in SNAPpy produces a slightly different output from how 
the output appears when printed from Python. Python inserts a space between elements, where 
SNAPpy does not. 
 
SNAPpy also imposes some restrictions on the printing of nested tuples. You may nest tuples, 
however printing of nested tuples will be limited to three layers deep. The following tuple: 
(1,'A',(2,'b',(3,'Gamma',(4,'Ansuz')))) 
will print as: 

('A',1,(2,'b',(3,'Gamma',(... 
 
SNAPpy also handles string representations of tuples in a slightly different way from Python. Python 
inserts a space after the comma between items in a tuple, while SNAPpy does not pad with spaces, in 
order to make better use of its limited string-processing space. 
 

Page 24 of 202 SNAP Reference Manual Document Number 600-0007K 



5. SNAPpy Application Development 
This section outlines some of the basic issues to be considered when developing SNAP based 
applications. 

Event-Driven Programming 
Applications in SNAPpy often have several activities going on concurrently. How is this possible, 
with only one CPU on the SNAP Engine? In SNAPpy, concurrency is achieved through event-driven 
programming. This means that most SNAPpy functions run quickly to completion, and never “block” 
or “loop” waiting for something. External events will trigger SNAPpy functions. 

SNAP Hooks 
There are a number of events in the system that you might like to trigger some SNAPpy function 
“handler.” When defining your SNAPpy scripts, there is a way to associate functions with these 
external events. That is done by specifying a “HOOK” identifier for the function. The following 
HOOKs are defined: 
Hook Name When 

Invoked 
Parameters Sample Signature 

HOOK_STARTUP Called on 
device 
bootup 

HOOK_STARTUP passes no 
parameters. 

@setHook(HOOK_STARTUP) 
def onBoot(): 
    pass 

HOOK_GPIN Called on 
transition of 
a monitored 
hardware 
pin 

• pinNum – The pin number of 
the pin that has transitioned.1 

• isSet – A Boolean value 
indicating whether the pin is 
set. 

@setHook(HOOK_GPIN) 
def pinChg(pinNum, isSet):
    pass 

HOOK_1MS Called every 
millisecond 

• tick – A rolling 16-bit integer 
incremented every 
millisecond indicating the 
current count on the internal 
clock. The same counter is 
used for all four timing hooks.

@setHook(HOOK_1MS) 
def doEvery1ms(tick): 
    pass 

HOOK_10MS Called every 
10 
milliseconds 

• tick – A rolling 16-bit integer 
incremented every 
millisecond indicating the 
current count on the internal 
clock. The same counter is 
used for all four timing hooks.

@setHook(HOOK_10MS) 
def doEvery10ms(tick): 
    pass 

                                                 
1 Note that the pin number refers to the numbering scheme relevant for the particular platform, and the number provided 
may not be the number that matches the pin placement on the SNAP Engine or module you are using. Refer to Section 10 
for the hardware details for your particular platform for specifics. If you are working with a SNAP Engine (RF100, RF200, 
RF300, SM700, or ZICM2410-based engine), you can import the platforms file to provide mappings of platform-specific 
pins to GPIO numbers that match the footprint of the SNAP Engine. 

SNAP Reference Manual Document Number 600-0007K Page 25 of 202 



Hook Name When 
Invoked 

Parameters Sample Signature 

HOOK_100MS Called every 
100 
milliseconds 

• tick – A rolling 16-bit integer 
incremented every 
millisecond indicating the 
current count on the internal 
clock. The same counter is 
used for all four timing hooks.

@setHook(HOOK_100MS) 
def doEvery100ms(tick): 
    pass 

HOOK_1S Called every 
second 

• tick – A rolling 16-bit integer 
incremented every 
millisecond indicating the 
current count on the internal 
clock. The same counter is 
used for all four timing hooks.

@setHook(HOOK_1S) 
def doEverySec(tick): 
    pass 

HOOK_STDIN Called when 
“user input” 
data is 
received 

• data – A data buffer 
containing one or more 
received characters. 

@setHook(HOOK_STDIN) 
def getInput(data): 
    pass 

HOOK_STDOUT Called when 
“user 
output” data 
is sent 

HOOK_STDOUT passes no 
parameters. 

@setHook(HOOK_STDOUT) 
def printed(): 
    pass 

HOOK_RPC_SENT Called when 
the buffer 
for an 
outgoing 
RPC call is 
cleared 

• bufRef – an integer reference 
to the packet that the RPC call 
attempted to send. This 
integer will correspond to the 
value returned from 
getInfo(9) when called 
immediately after an RPC call 
is made. The receipt of a 
value from 
HOOK_RPC_SENT does not 
necessarily indicate that the 
packet was sent and received 
successfully. It is an 
indication that SNAP has 
completed processing the 
packet. 

@setHook(HOOK_RPC_SENT) 
def rpcDone(bufRef): 
    pass 

 
NOTE – Time-triggered event handlers must run quickly, finishing well before the next time period 
occurs. To ensure this, keep your timer handlers concise. There is no guarantee that a timing handler 
will run precisely on schedule. If a SNAPpy function is running when the time hook occurs, the 
running code will not be interrupted to run the timer hook code. 
 
Within a SNAPpy script, there are two methods for specifying the correct handler for a given HOOK 
event: 

Page 26 of 202 SNAP Reference Manual Document Number 600-0007K 



 
The new way – @setHook() 
 
Immediately before the routine that you want to be invoked, put a 
 
@setHook(HOOK_xxx) 
 
where HOOK_xxx is one of the predefined HOOK codes given previously. This method is used in the 
samples provided above. 
 
The old way (before version 2.2) – snappyGen.setHook() 
 
This method still works in the current version, but most people find the new way much easier to 
remember and use. 
 
Somewhere after the routine that you want to be invoked (typically these lines are put at the 
bottom of the SNAPpy source file), put a line like  
 
snappyGen.setHook(SnapConstants.HOOK_XXX, eventHandlerXXX) 
 
where eventHandlerXXX should be replaced with the real name of your intended handling routine. 
 
Be sure to “hook” the correct event. For example, HOOK_STDIN lets SNAP Nodes process incoming 
serial data. HOOK_STDOUT lets SNAP Nodes know when a previous “print” statement has been 
completed. 
 
Also, be sure that the routine you are using for your event processing accepts the appropriate 
parameters, whether it actually uses them or not. 

Transparent Data (Wireless Serial Port) 
SNAP supports efficient, reliable bridging of serial data across a wireless mesh. Data connections 
using the transparent mode can exist alongside RPC-based messaging.  

Scripted Serial I/O (SNAPpy STDIO) 
SNAP’s transparent mode takes data from one interface and forwards it to another interface (possibly 
the radio), but the data is not altered in any way (or even examined). 
 
SNAPpy scripts can also interact directly with the serial ports, allowing custom serial protocols to be 
implemented. For example, one of the included sample scripts shows how to interface serially to an 
external GPS unit.  

The Switchboard 
The flow of data through a SNAP device is configured via the Switchboard. This allows connections 
to be established between sources and sinks of data in the device. The following Data Sources/Sinks 
are defined in the file switchboard.py, which can be imported by other SNAPpy scripts: 
 

SNAP Reference Manual Document Number 600-0007K Page 27 of 202 



0 = DS_NULL 
1 = DS_UART0  
2 = DS_UART1 
3 = DS_TRANSPARENT  
4 = DS_STDIO 
5 = DS_ERROR 
6 = DS_PACKET_SERIAL 
 

The SNAPpy API for creating Switchboard connections is: 
crossConnect(dataSrc1, dataSrc2) # Cross-connect SNAP data sources (bidirectional) 
uniConnect(dst, src) # Connect src --> dst SNAP data sources (unidirectional) 
 
For example, to configure UART12 for Transparent (Wireless Serial) mode, put the following 
statement in your SNAPpy startup handler: 
crossConnect(DS_UART1, DS_TRANSPARENT) 
 
The following table is a matrix of possible Switchboard connections. Each cell label describes the 
“mode” enabled by row-column cross-connect. Note that the “DS_” prefixes have been omitted to 
save space. 
  
 UART0 UART1 TRANSPARENT STDIO PACKET_SERIAL 
UART0 Loopback Crossover Wireless Serial Local 

Terminal 
Local SNAPconnect, 
Portal, or another 
SNAP Node 

UART1 Crossover Loopback Wireless Serial Local 
Terminal 

Local SNAPconnect, 
Portal, or another 
SNAP Node 

TRANSPARENT Wireless 
Serial 

Wireless 
Serial 

Loopback Remote 
Terminal 

Remote SNAPconnect 

 
Any given data sink can be the destination for multiple data sources, but a data source can only be 
connected to a single destination. Therefore, if you cross-connect two elements, you cannot direct 
serial data from either of those elements to additionally go anywhere else, but you can still direct other 
elements to be routed to one of the elements specified in the cross-connect. 
 
The DS_ERROR element is a data source, but cannot be a data sink. Uniconnecting DS_ERROR to a 
destination causes any error messages generated by your program to be routed to that sink. In this way, 
you can (for example) route error messages to Portal while allowing other serial data to be directed to 
a UART. 
 
You can configure Portal (using the preferences) to intercept just errors, non-error text, or both when 
you intercept STDIO to the application. 
                                                 
2 Most platforms have two UARTs available, so with most SNAP Engines UART0 will connect to the USB port on a 
SN163 board and UART1 will connect to the RS-232 port on any appropriate Synapse demonstration board. However the 
RF300 SNAP Engine has only one UART – UART0 – and it comes out where UART1 normally comes out (to the RS-232 
port, via GPIO pins 7 through 10). If you are working with RF300 SNAP Engines, be sure to adjust your code to reference 
UART0 rather than UART1 for your RS-232 serial connections. 

Page 28 of 202 SNAP Reference Manual Document Number 600-0007K 



Loopback 
A command like crossConnect(DS_UART0, DS_UART0) will setup an automatic loopback. 
Incoming characters will automatically be sent back out the same interface. 

Crossover 
A command like crossConnect(DS_UART0, DS_UART1) will send characters received on 
UART0 out UART1, and characters received on UART1 out UART0. 

Wireless Serial 
As mentioned previously, a command of: crossConnect(DS_UART0, DS_TRANSPARENT) 
 
will send characters received on UART0 Over The Air (OTA). 
 
Where the data will actually be sent is controlled by other SNAPpy built-ins. Refer to the API section 
on the ucastSerial() and mcastSerial() functions. 

Local Terminal 
A command like crossConnect(DS_UART0, DS_STDIO) will send characters received on 
UART0 to your SNAPpy script for processing. The characters will be reported to your script via your 
specified HOOK_STDIN handler. Any text “printed” (using the print statement) will be sent out that 
same serial port. 
 
This makes it possible to implement applications like a Command Line Interface. 

Remote Terminal 
A command like crossConnect(DS_TRANSPARENT, DS_STDIO) will send characters received 
wirelessly to your SNAPpy script for processing. Characters “printed” by your SNAPpy script will be 
sent back out over the air. 
 
This is often used in conjunction with a crossConnect(DS_UARTx, DS_TRANSPARENT) in some 
other SNAP Node. 

Packet Serial 
The last column of the table shows the effect of various combinations using DS_PACKET_SERIAL. 
 
A command like crossConnect(DS_UART0, DS_PACKET_SERIAL) will configure the unit to 
talk Synapse’s Packet Serial protocol over UART0. This enables RS-232 connection to a PC running 
Portal, or SNAPconnect. 
 
It also allows serial connection to another SNAP Node, if the appropriate “cross-over” cable is used. 
This allows “bridging” of separate SNAP Networks (networks that are on different channels and/or 
Network IDs). 
 
A command like crossConnect(DS_UART1, DS_PACKET_SERIAL) will configure the unit to 
talk Synapse’s Packet Serial protocol over UART1. On some SNAP Nodes, one UART will be a true 
RS-232 serial connection, and the other will be a USB serial connection.  
 

SNAP Reference Manual Document Number 600-0007K Page 29 of 202 



Refer to the API documentation on crossConnect() in section 7 for more details. 

Debugging 
Application development with SNAP offers an unprecedented level of interactivity in embedded 
programming. Using Portal you can quickly upload bits of code, test, adjust, and try again. Some tips 
and techniques for debugging: 
 
• Make use of the “print” statement to verify control flow and values (be sure to connect STDIO to a 

UART or Intercept STDOUT with Portal) 
• When using Portal’s Intercept feature, you’ll get source line-number information, and symbolic 

error-codes. 
• Invoke “unit-test” script functions by executing them directly from the Snappy Modules Tree in 

Portal’s Node Info panel. 
• Use the included SNAP Sniffer to observe the RPC calls between devices. 

Sample Application – Wireless UART 
 
The following scenario is very common: two devices communicating over a RS-232 serial link. 

RS-232 serial data cable 

 
The two devices might be two computers, or perhaps a computer and a slave peripheral. For the 
remainder of this section, we will refer to these devices as “end points.” 
 
In some cases, a direct physical connection between the two end points is either inconvenient (long 
distance) or even impossible (mobile end points). 
 
You can use two SNAP nodes to wirelessly emulate the original hardwired connection. One SNAP 
node gets paired with each end point. Each SNAP node communicates with its local end point using its 
built-in RS-232 port, and communicates wirelessly with the other end point. 
 
 
 
 
 
 
 
                                
RS-232                      802.15.4 Wireless                          RS-232 

 

 
To summarize the requirements of this application: 
We want to go from RS-232, to wireless, back to RS-232 

Page 30 of 202 SNAP Reference Manual Document Number 600-0007K 



We want to implement a point-to-point bidirectional link 
We don’t want to make any changes to the original endpoints (other than cabling) 
 
This is clearly a good fit for the Transparent Mode feature of SNAPpy, but there are still choices to 
be made around “how will the nodes know who to talk to?” 

Option 1 – Two Scripts, Hardcoded Addressing 
 
A script named dataMode.py is included in the set of example scripts that ships with Portal. Because it 
is one of the demo scripts, it is write-protected. Using Portal’s “Save As” feature, create two copies of 
this script (for example, dataModeA.py and dataModeB.py). You can then edit each script to specify 
the other node’s address, before you upload both scripts into their respective nodes. 
 
The full text of dataMode.py is shown below. Notice this script is only 19 lines long, and 8 of those 
lines are comments (and 3 are just whitespace). 
 
""" 
Example of using two SNAP wireless nodes to replace a RS-232 cable 
Edit this script to specify the OTHER node's address, and load it into a node 
Node addresses are the last three bytes of the MAC Address 
MAC Addresses can be read off of the SNAP Engine sticker 
For example, a node with MAC Address 001C2C1E 86001B67 is address 001B67 
In SNAPpy format this would be address "\x00\x1B\x67" 
""" 
from synapse.switchboard import * 
 
otherNodeAddr = "\x4B\x42\x35" # <= put the address of the OTHER node here 
 
@setHook(HOOK_STARTUP) 
def startupEvent(): 
    initUart(1, 9600) # <= put your desired baud rate here! 
    flowControl(1, False) # <= set flow control to True or False as needed 
    crossConnect(DS_UART1, DS_TRANSPARENT) 
    ucastSerial(otherNodeAddr) 
 
The script as shipped defaults to 9600 baud and no hardware flow control. Edit these settings as 
needed, too. 
 
With these two edited scripts loaded into the correct nodes (remember, you are telling each node who 
the other node is, each node already knows its own address), you have just created a wireless serial 
link. 

Option 2 – One Script, Manually Configurable Addressing 
 
Instead of hard-coding the “other node” address within each script, you could have both nodes share a 
common script, and use SNAPpy’s Non-Volatile Parameter (NV Param for short) support to specify 
the addressing, after the script was loaded into the unit. 
 
Look in your snappyImages directory for a script named dataModeNV.py. Since we won’t be making 
any changes to this script, there is no need to make a copy of it. Simply load it into both nodes as-is. 

SNAP Reference Manual Document Number 600-0007K Page 31 of 202 



 
With this script loaded into a node, the node’s Node Info pane should look like: 
 

 
 
Click on setOtherNode(address) in the Snappy Modules tree, and when prompted by Portal, enter the 
address of the other node as a quoted string (standard Python “binary hex” format).  
 
For example, if the other node is at address 12.34.56, you would enter "\x12\x34\x56" in the Portal 
dialog box. 

 
 
Do this for both nodes. 
 
On the following page is the source code to SNAPpy script dataModeNV.py 
 
""" 
Example of using two SNAP wireless nodes to replace a RS-232 cable 
After loading this script into a SNAP node, invoke the setOtherNode(address) 
function (contained within this script) so that each node gets told "who his 
counterpart node is." You only have to do this once (the value will be preserved 
across power outages and reboots) but you DO have to tell BOTH nodes who their 
counterparts are! 
 
The otherNodeAddr value will be saved as NV Parameter 254, change this if needed. 
Legal ID numbers for USER NV Params range from 128-254. 
 
Node addresses are the last three bytes of the MAC Address 
MAC Addresses can be read off of the SNAP Engine sticker 
For example, a node with MAC Address 001C2C1E 86001B67 is address 001B67 
In SNAPpy format this would be address "\x00\x1B\x67" 
""" 
from synapse.switchboard import * 
 
OTHER_NODE_ADDR_ID = 254 
 
@setHook(HOOK_STARTUP) 

Page 32 of 202 SNAP Reference Manual Document Number 600-0007K 



def startupEvent(): 
    """System startup code, invoked automatically (do not call this manually)""" 
    global otherNodeAddr 
    initUart(1, 9600) # <= put your desired baudrate here! 
    flowControl(1, False) # <= set flow control to True or False as needed 
    crossConnect(DS_UART1, DS_TRANSPARENT) 
    otherNodeAddr = loadNvParam(OTHER_NODE_ADDR_ID) 
    ucastSerial(otherNodeAddr) 
 
def setOtherNode(address): 
    """Call this at least once, and specify the OTHER node's address""" 
    global otherNodeAddr 
    otherNodeAddr = address 
    saveNvParam(OTHER_NODE_ADDR_ID, otherNodeAddr) 
    ucastSerial(otherNodeAddr) 
 
This script shows how to use the saveNvParam() and loadNvParam() functions to have units 
remember important configuration settings. The script could be further enhanced to treat the baud rate 
and hardware handshaking options as User NV Parameters as well.  
 
You can read more about NV Parameters in section 7 and section 8. 

Code Density 
When you upload a SNAPpy script to a node, you are not sending the raw text of the SNAPpy script to 
the node. 
 
Instead the SNAPpy source code is compiled into byte-code for a custom Virtual Machine (the 
SNAPpy VM), and this byte-code and data (SNAPpy “Image”) is sent instead. 
 
We have not performed an exhaustive analysis, but a quick check of two typical example scripts 
(ZicCycle.py and Zic2410i2cTests.py) showed code densities of 11.625 and 13.138 bytes/line of code. 
 
So, a conservative estimate of SNAPpy code density is 10-15 bytes per line of SNAPpy code. 
 
Simple code will have a higher density, scripts that include a lot of data (for example, text) will be 
lower. 
 
For example: 
 
def hi(): 
    print "Hi” 
 
takes 35 bytes but 
 
def hi(): 
    print "Hello everyone, I know my ABCs! - ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
 
takes 91 bytes. 
 
Keeping text messages and function names short will help conserve SNAPpy script space. 

SNAP Reference Manual Document Number 600-0007K Page 33 of 202 



6. Advanced SNAPpy Topics 
This section describes how to use some of the more advanced features of SNAP. Topics covered 
include: 
 
• Interfacing to external CBUS slave devices (emulating a CBUS master) 
• Interfacing to external SPI slave devices (emulating a SPI master) 
• Interfacing to external I2C slave devices (emulating a I2C master) 
• Interfacing to multi-drop RS-485 devices 
• Encryption between SNAP nodes 
• Recovering an unresponsive node 

Interfacing to external CBUS slave devices 
CBUS is a clocked serial bus, similar to SPI. It requires at least four pins: 
 
• CLK – master timing reference for all CBUS transfers 
• CDATA – data from the CBUS master to the CBUS slave 
• RDATA – data from the CBUS slave to the CBUS master 
• CS – At least one Chip Select (CS) 
 
Using the existing readPin() and writePin() functions, virtually any type of device can be interacted 
with via a SNAPpy script, including external CBUS slaves. Arbitrarily chosen GPIO pins could be 
configured as inputs or outputs by using the setPinDir() function. The CLK, CDATA, and CS pins 
would be controlled using the writePin() function. The RDATA pin would be read using the readPin() 
function. 
 
The problem with a strictly SNAPpy based approach is speed – CBUS devices tend to be things like 
voice chips, with strict timing requirements. Optimized native code may be preferred over the 
SNAPpy virtual machine in such cases. 
 
To solve this problem, dedicated CBUS support (master emulation only) has been added to the set of 
SNAPpy built-in functions. Two functions (callable from SNAPpy but implemented in optimized C 
code) support reading and writing CBUS data: 
 
• cbusRd(numToRead) – “shifts in” the specified number of bytes 
• cbusWr(str) – “shifts out” the bytes specified by str 
 
To allow the cbusRd() and cbusWr() functions to be as fast as possible, the IO pins used for CBUS 
CLK, CDATA, and RDATA are fixed. On an RF100 SNAP Engine: 
 
• GPIO 12 is always used as the CBUS CDATA pin 
• GPIO 13 is always used as the CBUS CLK pin 
• GPIO 14 is always used as the CBUS RDATA pin 
 

Page 34 of 202 SNAP Reference Manual Document Number 600-0007K 



For platforms other than the RF100, refer to the appropriate platform specific section in the back of 
this manual. 
 
Note! – These pins are only dedicated if you are actually using the CBUS functions. If not, they 
remain available for other functions. 
 
You will also need as many Chip Select pins as you have external CBUS devices. You can choose any 
available GPIO pin(s) to be your CBUS chip selects. The basic program flow becomes: 
 

1. # select the desired CBUS device 
2. writePin(somePin, False) # assuming the chip select is active-low 
3. # read bytes from the selected CBUS device 
4. Response = cbusRd(10) # <- you specify how many bytes to read 
5. # deselect the CBUS device 
6. writePin(somePin, True) # assuming the chip select is active-low 

 
CBUS writes are handled in a similar fashion. 
 
If you are already familiar with CBUS devices, you should have no trouble using these functions to 
interface to external CBUS chips. 
 
A detailed example of interfacing to an external CBUS voice chip will be the topic of an upcoming 
application note. 
 
NOTE – Not all SNAP Engines support CBUS. 

Interfacing to external SPI slave devices 
 
SPI is another clocked serial bus. It typically requires at least four pins: 
 
• CLK – master timing reference for all SPI transfers 
• MOSI – Master Out Slave In – data line FROM the master TO the slave devices 
• MISO – Master In Slave Out – data line FROM the slaves TO the master 
• CS – At least one Chip Select (CS) 
 
SPI also exists in a three wire variant, with the MOSI pin serving double-duty. 
 
Numerous options complicate use of SPI: 
 
• Clock Polarity – the clock signal may or may not need to be inverted 
• Clock Phase – the edge of the clock actually used varies between SPI devices 
• Data Order – some devices expect/require Most Significant Bit (MSB) first, others only work 

Least Significant Bit (LSB) first 
• Data Width – some SPI devices are 8-bit, some are 12, some are 16, etc. 
 
You can find more information on SPI at http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus  

SNAP Reference Manual Document Number 600-0007K Page 35 of 202 

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus


 
The SPI support routines in SNAPpy can deal with all these variations, but you will have to make sure 
the options you specify in your SNAPpy scripts match the settings required by your external devices. 
 
Like what was done for CBUS devices, dedicated SPI support (master emulation only) has been 
added to the set of SNAPpy built-in functions. Four functions (callable from SNAPpy but 
implemented in optimized C code) support reading and writing SPI data: 
 
In order to support both three wire and four wire SPI, there are more spiXXX() functions than you 
might first expect. 
• spiInit(cpol, cpha, isMsbFirst, isFourWire) – setup for SPI (many options!) 
• spiWrite(byteStr, bitsInLastByte=8) – send data out SPI 
• spiRead(byteCount, bitsInLastByte=8) – receive data in from SPI (3 wire only) 
• spiXfer(byteStr, bitsInLastByte=8) – bidirectional SPI transfer (4 wire only) 
 
Four-wire SPI interfaces transfer data in both directions simultaneously, and should use the spiXfer() 
function. 
 
Some SPI devices are write-only, and you can use spiWrite() to send data to them (three-wire or four-
wire hookup). 
 
Some three wire devices are read-only, and you must use function spiRead(). 
 
The data width for SPI devices is not standardized. Devices that use a data width that is a multiple of 8 
are trivial (send 2 bytes to make 16 bits total for example). However, device widths such as 12 bits are 
common. To support these “non-multiples-of-8”, you can specify how much of the last byte to actually 
send or receive. For example, 
 
spiWrite("\x12\x34", 4) 
 
…will send a total of 12 bits: all of the first byte (0x12), and the first (or last) nibble of the second 
byte. 
 

Which 4 bits out of the total 8 get sent are a function of the “send LSB first” setting, which is 
specified as part of the spiInit() call. 

 
To allow these functions to be as fast as possible, the IO pins used for CLK, MOSI, and MISO are 
fixed. For example, on a Synapse RFE Engine, the following pins are used: 
 
• GPIO 12 is always used as the MOSI pin 
• GPIO 13 is always used as the CLK pin 
• GPIO 14 is always used as the MISO pin, unless running in three wire mode 
 
(The chip select pin is what raises the total number of pins to 3 or 4) 
 

Page 36 of 202 SNAP Reference Manual Document Number 600-0007K 



Note! – These pins are only dedicated if you are actually using the SPI functions. If not, they remain 
available for other functions. Also, if using three wire SPI, GPIO 14 remains available. 
 
For platforms other than the RF100, refer to the appropriate platform specific section in the back of 
this manual. 
 
You will also need as many Chip Select pins as you have external SPI devices. You can choose any 
available GPIO pin(s) to be your SPI chip selects. The basic program flow becomes: 
 

1. # select the desired SPI device 
2. writePin(somePin, False) # assuming the chip select is active-low 
3. # Transfer data to the selected SPI device 
4. spiWrite(“\x12\x34\x56”) 
5. # deselect the SPI device 
6. writePin(somePin, True) # assuming the chip select is active-low 

 
SPI reads are handled in a similar fashion. 
 
The specifics of which bytes to send to a given SPI slave device (and what the response will look like) 
depend on the SPI device itself. You will have to refer to the manufacturer’s data sheet for any given 
device you wish to interface to. 
 
For examples of using the new SNAPpy SPI functions to interface to external devices, see the 
following scripts that are bundled with Portal: 
 
• spiTests.py – This is the overall SPI demo script 
• LTC2412.py – Example of interfacing to a 24-bit Analog To Digital convertor 
 
Script spiTests.py imports the other script, and exercises some of the functions within it. 
 
• ZIC2410spiTests.py – like spiTests.py but specifically for ZIC2410 evaluation board 
• AT25FS010.py – Example of interfacing to an ATMEL Flash memory 
 
Script ZIC2410spiTests.py imports the other script, and exercises some of the functions within it. 
 

SNAP Reference Manual Document Number 600-0007K Page 37 of 202 



Interfacing to external I2C slave devices 
Technically the correct name for this two-wire serial bus is Inter-IC bus or I2C, though it is sometimes 
written as I2C. 
 
Information on this popular two-wire hardware interface is readily available on the web; 
http://www.i2c-bus.org/ is one starting point you could use. In particular look for a document called 
“The I2C-bus and how to use it (including specifications).” 
 
I2C uses two pins: 
 
• SCL – Serial Clock Line 
• SDA – Serial Data line (bidirectional) 
 
Because both the value and direction (input versus output) of the SCL and SDA pins must be rapidly 
and precisely controlled, dedicated I2C support functions have been added to SNAPpy. 
 
• i2cInit(enablePullups) – Prepare for I2C operations (call this to setup for I2C) 
• i2cWrite(byteStr, retries, ignoreFirstAck) – Send data over I2C to another device 
• i2cRead(byteStr, numToRead, retries, ignoreFirstAck) – Read data from device 
• getI2cResult() – used to check the result of the other functions 
 
These routines are covered in more detail in section 7 of this document. 
 
By using these routines, your SNAPpy script can operate as an I2C bus master, and can interact with 
I2C slave devices. 
 
When performing I2C interactions, fixed IO pin assignments are used. For example, on an RF100 the 
following IO pins are used: 
 
• GPIO 17 is always used as the I2C SDA (data) line 
• GPIO 18 is always used as the I2C SCL (clock) line 
 
Note! – These pins are only dedicated if you are actually using the I2C functions. If not, they remain 
available for other functions. 
 
Refer to the platform-specific section for your hardware (located at the back of this manual) for the pin 
assignments for your platform. 
 
Unlike CBUS and SPI, I2C does not use separate “chip select” lines. The initial data bytes of each I2C 
transaction specify an “I2C address.” Only the addressed device will respond. So, no additional GPIO 
pins are needed. 
 
The specifics of which bytes to send to a given I2C slave device (and what the response will look like) 
depend on the I2C device itself. You will have to refer to the manufacturer’s data sheet for any given 
device to which you wish to interface. 

Page 38 of 202 SNAP Reference Manual Document Number 600-0007K 

http://www.i2c-bus.org/


 
For examples of using the new SNAPpy I2C functions to interface to external devices, look at the 
following scripts that are bundled with Portal: 
 
• i2cTests.py – This is the overall I2C demo script 
• synapse.M41T81.py – Example of interfacing to a clock/calendar chip 
• synapse.CAT24C128.py – Example of interfacing to an external EEPROM 
 
Script i2cTests.py imports the other two scripts, and exercises some of the functions within them. 

Interfacing to multi-drop RS-485 devices 
Many of the SNAP Demonstration Boards include an RS-232 serial port. The board provides the 
actual connector (typically a DB-9), and the actual RS-232 line driver. SNAP Engine UARTS only 
provide a logic level serial interface (3 volt logic). 
 
RS-422 and RS-485 are alternate hardware standards that can be interfaced to by using the appropriate 
line driver chips. In general, the SNAP Engine does not care what kind of serial hardware it is 
communicating over. 
 
Some types of multi-drop serial hardware are an exception. For these, multiple devices are able to 
share a single serial connection by providing a special hardware signal called TXENA (transmit 
enable). Normally none of the connected devices are asserting their TXENA signals. When a device 
wants to transmit, it first asserts TXENA. After all of the characters have been shifted out the serial 
port, the transmitting device deasserts TXENA so that another device can use the connection. 
 
The following example of three nodes sharing a multi-drop RS-485 bus may make this clearer. You 
will also notice that the TXENA signal is active low. 
 
Device #1 TXENA --_____----------_____------------------------------------ 
Device #1 TX    ---CMD------------CMD------------------------------------- 
 
Device #2 TXENA ----------_____------------------------------------------- 
Device #2 TX    -----------RSP-------------------------------------------- 
 
Device #3 TXENA ------------------------_____----------------------------- 
Device #3 TX    -------------------------RSP------------------------------ 
 
As of version 2.2, SNAP can interface to this type of hardware (SNAP can provide the needed 
TXENA signal). The TXENA signal is output on the pin normally used for Clear To Send (CTS).3 
 

                                                 
3 Note that some naming conventions may expect the RTS pin to be considered the output pin, where the TXENA signal 
would occur. SNAP has standardized on the naming convention used by our earliest hardware platform, which has CTS as 
an output and RTS as an input. 
 

SNAP Reference Manual Document Number 600-0007K Page 39 of 202 



The functionality (meaning) of the CTS pin is controlled by the SNAPpy built-in function 
flowControl(). Refer to the description of that function in the “SNAPpy – The API” section of this 
document. 

Encryption between SNAP nodes 
Communications between SNAP nodes are normally unencrypted. Using the SNAP Sniffer (or some 
other means of monitoring radio traffic) you can clearly see the traffic passed between nodes. This can 
be very useful when establishing or troubleshooting a network, but provides no protection for your 
data from prying eyes. Encrypting your network traffic provides a solution for this. By encrypting all 
your communications, you reduce the chances that someone can intercept your data. 
 
SNAP nodes offer two forms of encryption. If you have a compatible firmware version loaded into 
your nodes, you can configure them to use AES-128 encryption for all their communications. You 
must have a firmware version that enables AES-128 to be able to do this. You can determine which 
firmware is loaded into a node by checking the Node Info pane for the node in Portal. Firmware that 
supports AES-128 encryption will include “AES-128” in the firmware name. 
 
Nodes that support AES-128 encryption are not available in all jurisdictions. Also, the Si100x 
platform does not have an AES-128 build available, due to space constraints. (The RF300/RF301 
builds, based on the Si100x platform, have external memory available and therefore do have AES-128 
builds available.) Users who would like some protection for their data but do not have AES-128 
encryption available can use Basic encryption instead. Basic encryption is not strong encryption, and 
should not be relied on for high-security applications. But it does provide a level of protection to keep 
your data away from curious onlookers. Basic encryption is available in all SNAP nodes running 
firmware version 2.4 or newer. 
 
Enabling encryption requires two steps. First you must indicate that you would like to encrypt your 
traffic, and specify which form of encryption you wish to use. Then you must specify what your 
encryption key is. After rebooting the node, all communications from the node (both over the air and 
over the UARTs) is encrypted, and the node will expect all incoming communications to be encrypted. 
It will no longer be able to participate in unencrypted networks. 
 
NV parameter #50 is where you indicate which form of encryption should be used. The valid values 
are: 

0 = Use no encryption4 
1 = Use AES-128 encryption 
2 = Use Basic encryption 

 
NV parameter #51 is where you specify the encryption key for your encrypted network. The key must 
be exactly 16 bytes long. You can specify the key as a simple string (e.g., ThEeNcRyPtIoNkEy), as a 
series of hex values (e.g., \x2a\x14\x3b\x44\xd7\x3c\x70\xd2\x61\x96\x71\x91\xf5\x8f\x69\xb9) or as 
some combination of the two (e.g. \xfbOF\x06\xe4\xf0Forty-Two!). Standard security practices 
suggest you should use a complicated encryption key that would be difficult to guess. 
                                                 
4 SNAP nodes running a firmware version before 2.4 may have False and True instead of 0 and 1, respectively, in this 
parameter. These boolean values are compatible with the numeric values used beginning with release 2.4. Basic encryption 
was not available before release 2.4. 

Page 40 of 202 SNAP Reference Manual Document Number 600-0007K 



 
No encryption will be used if: 
• NV parameter #50 is set to a value other than 1 or 2. 
• NV parameter #50 is set to 1 in a node that does not have AES-128 encryption available in its 

firmware. 
• The encryption key in NV parameter #51 is invalid. 
 
When you are establishing encryption for a network of nodes, it is important that you work “from the 
outside in.” In other words, begin by setting up encryption in the nodes farthest from Portal and work 
your way in toward your nearer nodes. This is necessary because once you have configured a node for 
encrypted communications, it is unable to network with an unencrypted node. 
 
Consider a network where you have Portal talking through a bridge node (named Alice), and Alice is 
communicating with nodes Betty, Carla, and Daphne. If you configure Alice for encryption before you 
configure Betty, Carla and Daphne, Alice will no longer be able to reach the other three nodes to set 
up encryption in them. They will still be able to communicate with each other, but will not be able to 
talk to (or through) Alice (and therefore will not be able to report back to Portal). 
 
In the same environment, if you are relying on multiple hops in order to get messages to all your 
nodes, if any intermediate node is encrypted all the unencrypted nodes beyond that one are essentially 
orphaned. If Daphne relays messages through Carla, and Carla relays messages through Betty to Alice 
(and thus to Portal), and you configure Carla for encryption before you configure Daphne, you will not 
be able to reach Daphne to set the encryption type or encryption key. 
 
As with all NV parameters, the changes you make will only take effect after the node is rebooted. 
 
If you lose contact with a node as a result of a mistyped or forgotten encryption key, you will have to 
use Portal to reset the node back to factory parameters. This will set NV Parameter #50 back to 0 and 
NV Parameter #51 back to “” to disable encryption. Simply making a serial connection to the node to 
reset the encryption key will not be sufficient, as serial communications as well as over-the-air 
communications are encrypted. 

Recovering an Unresponsive Node 
As with any programming language, there are going to be ways you can put your nodes into a state 
where they do not respond. Setting a node to spend all of its time asleep, having an endless loop in a 
script, enabling encryption with a mistyped key, or turning off the radio and disconnecting the UARTs 
are all very effective ways to make your SNAP nodes unresponsive. 
 
How to best recover an unresponsive node depends on the cause of the problem. If the problem is the 
result of runaway code (sleeping, looping, or disabling UARTS) and “Erase SNAPpy Image” from the 
Node Info pane doesn’t work, you can usually use Portal’s “Erase SNAPpy Image...” feature from the 
Options menu to regain access to your node. In the case of a lost encryption key or an unknown 
channel/network ID, or one of many other combinations that may arise, Portal’s “Factory Default NV 
Params...” feature, also from the Options menu, resets the node back to the state it was in when 
delivered. (If you have intentionally changed any parameters, such as node name, channel, network 
ID, various timeouts, etc., you will need to reset them once you have access to the node.) If these fail 

SNAP Reference Manual Document Number 600-0007K Page 41 of 202 



to recover access to your node, the “big hammer” approach is to reload the node’s firmware, which 
you can also do from Portal’s Options menu. All three of these options require that you have a serial 
connection to the node. 

Page 42 of 202 SNAP Reference Manual Document Number 600-0007K 



7. SNAPpy – The API 
This section details the “built-in” functions available to all SNAPpy scripts, as well as through RPC 
messaging. As of version 2.2, there are over 70 of these functions implemented by the SNAP “core” 
firmware. 
 
These functions will first be presented in detail alphabetically. They will then be summarized, by 
category. Finally they will be categorized as immediate, blocking, or non-blocking. 

Alphabetical SNAP API 
 
bist() – Synapse internal use only 
 
This function is for Synapse developer use only, and will likely be removed in a future release. User 
scripts should not bother calling this function. 
 
call(rawOpcodes, functionArgs…) – Call embedded C code 
 
This function is for advanced users only, and is outside the scope of this manual. 
 
There is a separate Application Note that covers how to use this advanced feature. 
 
Parameter rawOpcodes is a string containing actual machine code that implements the function. 
 
The remaining functionArgs parameters depend on the actual function implemented by rawOpcodes. 
 
callback(callback, remoteFunction, remoteFunctionArgs…) 
 
Using the built-in function rpc() it is easy to invoke functions on another node. However, to get data 
back from that node, you either need to put a script in that node, or use the new callback() function. 
 
Parameter callback specifies a function to invoke on the originating node with the return value of the 
remote function. For example, imagine having a function like the following in SNAP Node “A.” 
 
def showResult(obj): 
    print str(obj) 
 
Invoking callback('showResult', ...) on Node B will cause function showResult() to get 
called on Node A with the live data from remote Node B. 
 
Parameter remoteFunction specifies which function to invoke on the remote node, for example 
readAdc. 
 
If the remote function takes any parameters, then the remoteFunctionArgs parameter of the callback() 
function is where you put them. 

SNAP Reference Manual Document Number 600-0007K Page 43 of 202 



 
For example, node A could invoke the following on node B: 
 
callback('showResult', 'readAdc', 0) 
 
Node “B” would invoke readAdc(0), and then remotely invoke showResult(the-actual-ADC-reading-
goes-here) on node A. 
 
The callback() function is most commonly used with the rpc() function. For example: 
 
rpc(nodeB, 'callback', 'showResult', 'readAdc', 0) 
 
Basically callback() allows you to ask one node to do something, and then tell you how it turned out. 
 
This function normally returns True. It returns False only if it was unable to attempt the Remote 
Procedure Call (for example, if the node is low on memory). 
 
callout(nodeAddress, callback, remoteFunction, remoteFunctionArgs…) 
 
To understand this function, you should first be comfortable with using the rpc() and callback() built-
ins. 
 
Function callout() is similar to function callback(), but instead of the final result being reported back to 
the originating node, you explicitly provide the address of the target node. 
 
Parameter nodeAddress specifies the SNAP Address of the target node that is to receive the final 
(result) function call. 
 
Parameter callback specifies a function to invoke on the target node with the return value of the 
remote function. For example, imagine having a function like the following in SNAP Node C. 
 
def showResult(obj): 
    print str(obj) 
 
Invoking callout(nodeC, 'showResult', ...) will cause function showResult() to get 
called with the live data from the remote node. 
 
Parameter remoteFunction specifies a function to invoke on the remote node, for example readAdc. 
 
If the remote function takes any parameters, then the remoteFunctionArgs parameter of the callout() 
function is where you put them. 
 
For example, node A could invoke the following on node B, which would automatically invoke node 
C: 
 
callout(nodeC, 'showResult', 'readAdc', 0) 
 

Page 44 of 202 SNAP Reference Manual Document Number 600-0007K 



Node B would invoke readAdc(0), and then remotely invoke showResult(the-actual-ADC-reading-
goes-here) on node C.  
 
The callout() function is most commonly used with the rpc() function. For example: 
 
rpc(nodeB, 'callout', nodeC, 'showResult', 'readAdc' ,0) 
 
Basically callout() allows you to have one node ask another node to do something, and then tell a third 
node how it turned out. 
 
This function normally returns True. It returns False only if it was unable to attempt the Remote 
Procedure Call (for example, if the node is low on memory). 
 
cbusRd(numToRead) – Read bytes in from the CBUS 
 
This function returns a string of bytes read in from the currently selected CBUS device. Parameter 
numToRead specifies how many bytes to read. 
 
For more details on interfacing SNAP Nodes to external CBUS slave devices, refer to section 6. 
 
cbusWr(str) – Write bytes out to the CBUS 
 
This function writes the string of bytes specified by parameter str out to the currently selected CBUS 
slave device. 
 
This function returns None. 
 
For more details on interfacing SNAP Nodes to external CBUS slave devices, refer to section 6. 
 
chr(number) – Generate a single-character-string 
 
Returns a single-character string based on the number given. For example, chr(0x41) returns the string 
'A'. 
 
crossConnect(endpoint1, endpoint2) – Tie two endpoints together 
 
The SNAPpy switchboard is covered in section 5. Refer to included script “switchboard.py" to see the 
possible values for endpoint1 and endpoint2.5 
 
See also function uniConnect() if what you really want is a one-sided data path. 

                                                 
5 Most platforms have two UARTs available, so with most SNAP Engines UART0 will connect to the USB port on a 
SN163 board and UART1 will connect to the RS-232 port on any appropriate Synapse demonstration board. However the 
RF300 SNAP Engine has only one UART – UART0 – and it comes out where UART1 normally comes out (to the RS-232 
port, via GPIO pins 7 through 10). If you are working with RF300 SNAP Engines, be sure to adjust your code to reference 
UART0 rather than UART1 for your RS-232 serial connections. 

SNAP Reference Manual Document Number 600-0007K Page 45 of 202 



 
This function returns None. 
 
eraseImage() – Erase any SNAPpy image from the node 
 
This function is used by Portal and SNAPconnect as part of the script upload process, and would not 
normally be used by user scripts. Calling this function automatically invokes the resetVm() function 
first (otherwise the SNAPpy VM would still be running the script, as you erased it out from under it). 
 
This function takes no parameters, and returns None. 
 
errno() – Read and reset latest error code 
 
This function reads the most recent error code from the SNAPpy Virtual Machine (VM), clearing it 
out as it does so. The possible error codes are: 
 

0 = NO_ERROR 
1 = OP_NOT_DEFINED 
2 = UNSUPPORTED_OPCODE 
3 = UNRESOLVED_DEPENDENCY 
4 = INCOMPATIBLE_TYPES 
5 = TARGET_NOT_CALLABLE 
6 = UNBOUND_LOCAL 
7 = BAD_GLOBAL_INDEX 
8 = EXCEEDED_MAX_BLOCK_STACK 
9 = EXCEEDED_MAX_FRAME_STACK 
10 = EXCEEDED_MAX_OBJ_STACK 
11 = INVALID_FUNC_ARGS 
12 = UNSUBSCRIPTABLE_OBJECT 
13 = INVALID_SUBSCRIPT 
14 = EXCEEDED_MAX_LOCAL_STACK 
15 = BAD_CONST_INDEX 
16 = ALLOC_REF_UNDERFLOW 
17 = ALLOC_REF_OVERFLOW 
18 = ALLOC_FAIL 
19 = UNSUPPORTED_TYPE 
20 = MAX_PACKET_SIZE_EXCEEDED 
21 = MAX_STRING_SIZE_EXCEEDED 

 
“Debug” firmware (look for “debug” in the file name) is required for complete error checking. 
 
Some of these error codes are unlikely to occur from user-generated scripts, but a few would point 
directly to programming errors in the user’s SNAPpy source code. For example: 
 
INCOMPATIBLE_TYPES: Are you trying to add a number to a string?  
TARGET_NOT_CALLABLE: Are you trying to invoke foo(), but foo = 123? 

Page 46 of 202 SNAP Reference Manual Document Number 600-0007K 



UNBOUND_LOCAL: Are you trying to use a variable before you put something in it? 
INVALID_FUNC_ARGS: Are you passing the wrong type of parameters to a function? 
    Are you passing the wrong quantity of parameters? 
INVALID_SUBSCRIPT: Are you trying to access str[3] when str = 'ABC'? 
(When str = 'ABC', str[0] is 'A', str[1] is 'B', and str[2] is 'C') 
EXCEEDED_MAX_LOCAL_STACK: Do you have too many local variables? 
ALLOC_FAIL: Are you trying to keep too many string results? As of version 2.2 you are no longer 
limited to a single buffer for each type of string operation, but they are still limited in number. 
MAX_PACKET_SIZE_EXCEEDED: Are you passing too large of a string value? 
MAX_STRING_SIZE_EXCEEDED: Have you created a dynamic string too large for your platform? 
 
Refer to the section for your specific platform (at the back of this document) for detailed buffer limits. 
 
flowControl(uart, isEnabled, isTxEnable) – Enable/disable flow control 
 
The flowControl() function allows you to disable or enable UART hardware handshaking. 
 
Parameter uart is an integer that specifies which UART (0 or 1). 
Parameter isEnabled is a boolean which turns hardware flow control on or off. 
Parameter isTxEnable is an optional parameter that only matters if parameter isEnabled is True. If 
isEnabled is False, then isTxEnable has no effect. 
 
When flow control is enabled for UART0, GPIO pins 5 and 6 become CTS and RTS pins for that 
UART. When flow control is enabled for UART1, GPIO pins 9 and 10 become CTS and RTS pins for 
that UART. 
 
When flow control is ON, the RFE monitors the RTS pin from the attached serial device. As long as 
the RFE sees the RTS pin low, the RFE will continue sending characters to the attached serial device 
(assuming it has any characters to send). If the RFE sees the RTS pin go high, then it will stop sending 
characters to the attached serial device. 
 
When flow control is OFF (isEnabled = False), the RTS and CTS pins are ignored.  
 
The benefit of turning flow control off is that it frees up two more pins (per UART) for use as other 
I/O. The drawback of turning off flow control is that characters can be dropped. 
 
Once enabled via the isEnabled parameter, the actual behavior of the CTS pin depends on the 
isTxEnable parameter. When isTxEnable is False, CTS acts as Clear To Send (described below). When 
isTxEnable is True, CTS instead acts as a TXENA pin. 
 
NOTE – To maintain compatibility with scripts from version 2.1, the isTxEnable parameter does not 
have to be explicitly specified. If you leave it off, SNAP acts as if you explicitly specified False. 
 
When flow control is ON (isEnabled = True) and isTxEnable is False, the SNAP Engine controls the 
CTS pin to indicate if it can accept more data. The CTS pin is low if the RFE can accept more 

SNAP Reference Manual Document Number 600-0007K Page 47 of 202 



characters. The CTS pin goes high (temporarily) if the RFE is “full” and cannot accept any more 
characters (you can keep sending characters, but they will likely be dropped). 
 
When flow control is ON (isEnabled = True) and isTxEnable is also True, the CTS pin functions as a 
TXENA signal. The CTS pin is normally high. It transitions low before any characters are transmitted, 
and remains low until they have been completely sent. Only then does the CTS pin transition back 
high. 
 
NOTE – It is important to realize that UART handshake lines are active-low. A low voltage level on 
the CTS pin is a boolean “False.” but actually means that it is “Clear To Send.” A high voltage level 
on the CTS pins is a boolean “True,” but actually means it is not “Clear To Send.” RTS behaves 
similarly.  
 
This function returns no value. 
 
getChannel() – Get which channel the node is on 
 
The getChannel() function returns a number representing which SNAP channel the node is currently 
on. For SNAP devices operating in the 2.4 GHz range, the number will be in the 0-15 range. For 900 
MHz devices running the FHSS (frequency-hopping) firmware, the number should be in the 0-15 
range, but could be in the 0-65 range. (See the getEnergy() function for more details about frequency 
distribution under FHSS firmware.) 
 
For nodes operating in the 2.4 GHz range, SNAP channel 0 corresponds to 802.15.4 channel 11, 1 to 
12, and so on. 
 
SNAP 
Channel 

802.15.4 
Channel 

 SNAP 
Channel 

802.15.4 
Channel

 SNAP 
Channel

802.15.4 
Channel

 SNAP 
Channel 

802.15.4 
Channel

0 11  4 15  8 19  12 23 
1 12  5 16  9 20  13 24 
2 13  6 17  10 21  14 25 
3 14  7 18  11 22  15 26 
 
For nodes operating in the 900 MHz range with FHSS (frequency-hopping) firmware, getChannel() 
returns an indication of which range of frequencies is in use by the node. 
 
Radios with FHSS firmware “hop” between a minimum of 25 frequencies to avoid saturating any one 
frequency with too much transmission energy. Usable frequencies begin at 902 MHz and continue in 
0.4 MHz increments through 928 MHz. SNAP selects 25 consecutive frequencies based on the 
“channel” specified by the user, skipping the first and last frequencies in the overall band. When the 
selected range would span past the last available frequency, SNAP wraps around to the beginning of 
the frequency range, so that if you have interference within part of the 900 MHz band in your 
environment you can select a channel that provides frequencies that avoid the interference. 
 
The following table shows the frequency range in use by each SNAP channel with FHSS firmware. 
 

Page 48 of 202 SNAP Reference Manual Document Number 600-0007K 



SNAP 
Channel 

900 MHz 
Chan. Range 

Frequency  
Range (MHz) 

 SNAP 
Channel

900 MHz 
Chan. Range 

Frequency  
Range (MHz) 

0 1 – 25 902.4 – 912.0  8 33 – 57 915.2 – 924.8 
1 5 – 29 904.0 – 913.6  9 37 – 61 916.8 – 926.4 
2 9 – 33 905.6 – 915.2  10 41 – 64, 

1 
918.4 – 927.6, 
902.4 

3 13 – 37 907.2 – 917.0  11 45 – 64, 
1 – 5 

920.0 – 927.6, 
902.4 – 904.0 

4 17 – 41 908.8 – 918.4  12 49 – 64, 
1 – 9 

921.6 – 927.6, 
902.4 – 905.6 

5 21 – 45 910.4 – 920.0  13 53 – 64, 
1 – 13 

923.2 – 927.6, 
902.4 – 907.2 

6 25 – 49 912.0 – 921.6  14 57 – 64, 
1 – 17 

924.8 – 927.6, 
902.4 – 908.8 

7 29 – 53 913.6 – 923.2  15 61 – 64, 
1 – 21 

926.4 – 927.6, 
902.4 – 910.4 

 
For nodes operating in the 868 MHz range, the radio uses the same three frequencies (868.1 MHz, 
868.3 MHz, and 868.5 MHz) for all communications, regardless of the channel specified. Radios on 
different channels cannot communicate with each other, but can interfere with each other. 
 
This function takes no parameters. 
 
getEnergy() – Get energy reading from current channel 
 
The getEnergy() function returns the result of a brief radio Energy Detection scan on the currently 
selected channel. The result is in the same units as the getLq() function. 
 
Using getEnergy() on radios working with frequency-hopping firmware is more cumbersome. This 
includes 900 MHz radios running FHSS firmware and 868 MHz radios. 
 
Because each SNAP channel in sub-GHz firmware comprises a number of discrete frequencies, you 
must explicitly query the energy level at each frequency in use for your SNAP channel. For 900 MHz 
radios, this means you must step through each of the 25 900 MHz-band “channels” in your range, 
making a separate getEnergy() call for each. (See the explanation of 900 MHz FHSS frequency 
hopping in the getChannel() function description for more details.) For 868 MHz radios, you must 
check each of the three 868 MHz-band frequencies in use (channel 0, channel 1, and channel 2) and 
average the three values. (Regardless of which SNAP channel is specified, 868 MHz radios always use 
the same three frequencies for their communications.) 
 
For purposes of getEnergy(), then, the range of valid values for the setChannel() function extends from 
1 to 64, rather than the normal range you would use for setting a broadcast or receive channel. You 
should not use channel numbers outside the normal range of 0 to 15 except when attempting an energy 
scan. After performing an energy reading, be sure to set the channel back to the appropriate SNAP 
network channel to be able to communicate with your other nodes. 
 

SNAP Reference Manual Document Number 600-0007K Page 49 of 202 



If you need an energy reading for a SNAP channel on a platform with 900 MHz frequency-hopping 
firmware, you could use a function like this to retrieve an average value of the appropriate frequencies: 
 
def GetEnergy(): 
    if getInfo(2) == 6 and getInfo(1) == 5: 
        # RF300, or compatible hardware, running FHSS 
        incomingChannel = getChannel() 
        energyLevel = 0 
        channelLoop = 0 
        while channelLoop < 25:  
            setChannel((incomingChannel * 4 + channelLoop) % 64 + 1) 
            energyLevel += getEnergy() 
            channelLoop += 1 
        setChannel(incomingChannel) 
        return energyLevel / 25 
    elif getInfo(2) == 6 and getInfo(1) == 3:  
        # RF301, or compatible hardware, operating at 868 MHz 
        incomingChannel = getChannel 
        energyLevel = 0 
        channelLoop = 0 
        while channelLoop < 3:  
            setChannel(channelLoop) 
            energyLevel += getEnergy() 
            channelLoop += 1 
        setChannel(incomingChannel) 
        return energyLevel / 3 
    else: 
        return getEnergy() 
 
Alternately, you could use the scanEnergy() function and work with the appropriate three or 25 values 
returned by that function. 
 
The getEnergy() function takes no parameters. 
 
getI2cResult() – Get status code from most recent I2C operation 
 
This function takes no parameters. It returns the result of the most recently attempted I2C operation. 
(It also resets the error code for next time). The possible return values and their meanings are: 
 

0 = I2C_OFF means I2C was never initialized (you need to call i2cInit()!) 
1 = I2C_SUCCESS means the most recent I2C read/write/etc. succeeded 
2 = I2C_BUS_BUSY means the I2C bus was in use by some other device 
3 = I2C_BUS_LOST means some other device stole the I2C bus 
4 = I2C_BUS_STUCK means there is some sort of hardware or configuration problem 
5 = I2C_NO_ACK means the slave device did not respond properly 

 
For more information on interfacing SNAP nodes to I2C devices, refer to section 6. 
 

Page 50 of 202 SNAP Reference Manual Document Number 600-0007K 



getInfo(whichInfo) – Get specified system info 
 
This function returns details about the platform and operating environment a script is running under. 
 
Parameter whichInfo specifies the type of information to be retrieved: 
 

0 = Vendor 
1 = Radio 
2 = CPU 
3 = Platform/Broad Firmware Category 
4 = Build 
5 = Version (Major) 
6 = Version (Minor) 
7 = Version (Build) 
8 = Encryption 
9 = RPC Packet Buffer Reference 
10 = Is Multicast 
11 = Remaining TTL 
12 = Remaining Tiny Strings 
13 = Remaining Medium Strings 
14 = Route Table Size 
15 = Routes in Route Table 

 
Based on the value of whichInfo, a value is returned. Many of the following “result codes” will be 
expanding in the future. Here are the currently established values: 

getInfo(0) – Vendor 
The vendor indicates the manufacturer of the radio module on which SNAP is running. 
 
Possible Vendor result codes for getInfo(0): 

0 = Synapse 
1 = Reserved 
2 = Freescale 
3 = CEL 
4 = ATMEL 
5 = Silicon Labs 
6 = Reserved 
7 = PC 
8 = Reserved 
9 = STMicrosystems 

(to be continued…) 

SNAP Reference Manual Document Number 600-0007K Page 51 of 202 



getInfo(1) – Primary Communications Interface 
The Network Interface indicates the means the node uses to connect to the rest of the network. 
 
Possible Network Interface result codes for getInfo(1): 

0 = 802.15.4 
1 = None (Serial communications only) 
2 = Reserved 
3 = 868 MHz 
4 = Powerline 
5 = 900 MHz Frequency-Hopping 

(other interfaces may be supported in the future) 

getInfo(2) – CPU 
The CPU indicates the processor paired with the radio in the SNAP module. 
 
Possible CPU result codes for getInfo(2): 

0 = Freescale MC9S08GT60A 
1 = ZIC 8051 
2 = MC9S08QE 
3 = Coldfire 
4 = ARM7 
5 = ATmega 
6 = Si100x 8051 
7 = X86 
8 = UNKNOWN 
9 = Reserved 
10 = ARM CORTEX M3 

(other CPUs may be supported in the future) 

Page 52 of 202 SNAP Reference Manual Document Number 600-0007K 



getInfo(3) – Platform/Broad Firmware Category 
The Platform indicates the model of module and firmware on which SNAP is running. 
 
Possible Platform result codes for getInfo(3): 

0 = Synapse RF100 SNAP Engine 
1 = Reserved 
2 = Reserved 
3 = CEL ZIC2410 
4 = Reserved 
5 = MC1321x 
6 = ATmega128RFA1 
7 = SNAPcom 
8 = Si100x 
9 = MC1322x 
10 = IT700 
11 = Si100x KADEX 
12 = Reserved 
13 = Synapse RF300 SNAP Engine 
14 = Synapse RF200 SNAP Engine 
15 = Synapse SM300 Surface Mount Module 
16 = Synapse SM301 Surface Mount Module 
17 = Synapse SM200 Surface Mount Module 
18 = Reserved 
19 = Synapse RF266 
20 = STM32W108xB 

getInfo(4) – Build 
The Build indicates whether the firmware in your SNAP module is a “debug” build or a “release” 
build. 
 
Possible Build result codes for getInfo(4): 

0 = “debug” build (more error checking, slower speed, less SNAPpy room) 
1 = “release” build (less error checking, faster speed, more SNAPpy room) 

getInfo(5), getInfo(6), getInfo(7) – Version 
By using getInfo(5), getInfo(6), and getInfo(7) to get the Major, Minor and Build components of the 
Version, you can retrieve all three digits of the firmware version number. 

SNAP Reference Manual Document Number 600-0007K Page 53 of 202 



getInfo(8) – Encryption 
The Encryption setting specifies what type of encryption is available in the module. It does not 
indicate what encryption (if any) is enabled for the module. 
 
Possible Encryption result codes for getInfo(8): 

0 = None (no encryption support) This is deprecated. As of release 2.4, all nodes include support 
for the option of Basic encryption. 

1 = AES-128 
2 = Basic encryption 

getInfo(9) – RPC Packet Buffer 
After you make an RPC call, a call to getInfo(9) returns an integer indicator of the packet buffer 
number used for the RPC call. That integer can be used in a function hooked to the 
HOOK_RPC_SENT event to determine that the processing of the packet buffer is complete. See the 
HOOK_RPC_SENT details for more information. 

getInfo(10) – Is Multicast 
Use the Is Multicast call to determine if the function running was invoked by a multicast call 
(meaning, other nodes on the network might also have heard the call and be running the function, too), 
or by a more direct means (such as a direct RPC call to the node invoking the function, or because the 
function was hooked to a timed event). 
 
Possible Is Multicast result codes for getInfo(10):  

0 = The RPC command currently being processed was received via an addressed RPC command 
or was triggered by a system hook. 

1 = The RPC command currently being processed was received via a multicast rather than a 
direct RPC command. 

getInfo(11) – Remaining TTL 
The Remaining TTL value indicates how many “hops” a particular command had left before its end-
of-life when it was processed by the node. You can use this information to tune your TTL values for 
your network to reduce broadcast chatter. 

getInfo(12) – Remaining Tiny Strings 
The Remaining Tiny Strings value indicates how many “tiny” string buffers remain unused in your 
node. The size and number of tiny strings available on your node will vary depending on the 
underlying hardware and firmware. See Section 10 for details specific to your platform. 

getInfo(13) – Remaining Medium Strings 
The Remaining Medium Strings value indicates how many “medium” string buffers remain unused in 
your node. The size and number of medium strings available on your node will vary depending on the 
underlying hardware and firmware. See Section 10 for details specific to your platform. 

Page 54 of 202 SNAP Reference Manual Document Number 600-0007K 



getInfo(14) – Route Table Size 
The Route Table Size value indicates how many other nodes your node can keep track of in its address 
book. When a node needs to talk to another node, it must ask where that node is. It will find that it can 
talk to the node directly, that it must communicate through another node, or that it cannot find the 
node at all. In these first two cases, SNAPpy keeps track of the path used to contact the node in a route 
table so the next time it talks to the same node, it does not have to query how to find the node first. 
How long the path to a node is kept depends on the mesh routing timeouts defined in NV parameters 
Mesh Routing Maximum Timeout, Mesh Routing Minimum Timeout, Mesh Routing New Timeout, 
Mesh Routing Used Timeout, and Mesh Routing Delete Timeout (NV parameters 20 through 24). 

getInfo(15) – Routes in Route Table 
The Routes in Route Table value indicates how many of the routes in the node’s route table are in use, 
meaning how many other nodes the current node knows how to access without having to first perform 
a route request. See the description of getInfo(14) for more details. 
 
getLq() – Get the most recent Link Quality 
 
The getLq() function returns a number 0-127 (theoretical) representing the link quality (received signal 
strength) of the most recently received packet, regardless of which node that packet came from. (It 
could be a near node, or it could be a far node.) 
 
Because this value represents – (negative) dBm, lower values represent stronger signals, and higher 
values represent weaker signals. 
 
This function takes no parameters. 
 
getMs() – Get system millisecond tick 
 
The getMs() function returns the value of a free-running timer within the SNAP Engine. The value 
returned is in units of milliseconds. The timer is only 16 bits, and rolls back around to 0 every 65.535 
seconds. 
 
Because all SNAPpy integers are signed, the counter’s full cycle is: 
0, 1, 2,…,32766, 32767, -32768, -32767, -32766, …, -3, -2, -1, 0, 1,… 
 
Some scripts use this function to measure elapsed (relative) times. 
 
The value for this function is only updated between script invocations (events). If you do two back-to-
back getMs() calls, you will get the same value. 
 
This function takes no parameters. 
 

SNAP Reference Manual Document Number 600-0007K Page 55 of 202 



getNetId() – Get the node’s Network ID 
 
The getNetId() function returns the 16-bit Network Identifier (ID) value the node is currently using. 
The node will only accept packets containing this ID, or a special “wildcard” value of 0xffff (the 
“wildcard” Network ID is used during the “find nodes” process). 
 
The Network ID and the channel are what determine which radios can communicate with each other in 
a wireless network. Radios must be set to the same channel and Network ID in order to communicate 
over the air. Nodes communicating over a serial link pay no attention to the channel and Network ID. 
 
See also, setNetId(). This function takes no parameters. 
 
getStat() – Get Node Traffic Status 
 
This function returns details about how busy the node has been with processing packets. Each return 
value ranges from 0 to 255. The values “peg” at 255 (i.e., once reaching 255 they stay there until 
cleared). Reading a value resets the counter to 0. 

getStat(0) – Null Transmit Buffers 
This provides the number of transmit buffers processed through a null serial port. 

getStat(1) – UART0 Receive Buffers 
This provides the number of received buffers processed through UART0. 

getStat(2) – UART0 Transmit Buffers 
This provides the number of transmit buffers processed through UART0. 

getStat(3) – UART1 Receive Buffers 
This provides the number of received buffers processed through UART1. 

getStat(4) – UART1 Transmit Buffers 
This provides the number of transmit buffers processed through UART1. 

getStat(5) – Transparent Receive Buffers 
This provides the number of received buffers processed through transparent serial mode. 

getStat(6) – Transparent Transmit Buffers 
This provides the number of transmit buffers processed through transparent serial mode. 

getStat(7) – Packet Serial Receive Buffers 
This provides the number of received buffers processed through packet serial mode. 

getStat(8) – Packet Serial Transmit Buffers 
This provides the number of transmit buffers processed through packet serial mode. 

getStat(9) – Radio Receive Buffers 
This provides the number of receive buffers processed through the radio. 

Page 56 of 202 SNAP Reference Manual Document Number 600-0007K 



getStat(10) – Radio Transmit Buffers 
This provides the number of transmit buffers processed through the radio. 

getStat(11) – Radio Forwarded Unicasts 
This provides the number of “unicast” (directly addressed RPC) packets forwarded for nodes over the 
radio. 

getStat(12) – Packet Serial Forwarded Unicasts 
This provides the number of “unicast” (directly addressed RPC) packets forwarded for nodes over 
packet serial. 

getStat(13) – Radio Forwarded Multicasts 
This provides the number of multicast packets forwarded for nodes over the radio. 

getStat(14) – Packet Serial Forwarded Multicasts 
This provides the number of multicast packets forwarded for nodes over packet serial. 
 
imageName() – Return name of currently loaded SNAPpy image 
 
Prior to being downloaded into a SNAP node, the text form of a SNAPpy script gets compiled into a 
byte-code image. It is this executable image that gets downloaded into the node, not the original 
(textual) source code. 
 
The generated image takes its base name from the underlying source script. For example, image 
“foo.spy” would be generated from a script named “foo.py”. 
 
Function imageName() returns the “base name” from the currently loaded image (if there is one). In 
the example given here, function imageName() would return the string “foo”. 
 
This function takes no parameters. 
 
i2cInit(enablePullups) – Setup for I2C 
 
This function performs the necessary setup to allow subsequent i2cRead() and i2cWrite() calls to be 
made. 
 
Parameter enablePullups causes internal pull-up resistors to be activated for the I2C clock and data 
lines. These lines do require pull-ups, but often those pull-ups are part of your external hardware, and 
parameter enablePullups should be False. (Don’t “double pull-up” the I2C bus.) 
 
Setting parameter enablePullups to True can come in handy when you don’t have a real I2C bus, but 
are doing quick prototyping by dangling I2C devices directly off the SNAP Engine. 
 
For more information about interfacing SNAP nodes to I2C devices, refer to section 6. 
 

SNAP Reference Manual Document Number 600-0007K Page 57 of 202 



i2cRead(byteStr, numToRead, retries, ignoreFirstAck) – I2C Read 
 
This function can only be used after function i2cInit() has been called. 
 
I2C devices must be addressed before data can be read out of them, so this function really does a write 
followed by a read. 
 
Parameter byteStr specifies whatever “addressing” bytes must be sent to the device to get it to respond. 
 
Parameter numToRead specifies how many bytes to read back from the external I2C device. 
 
Parameter retries can be used to give slow devices extra time to respond. Try an initial retries value of 
1, and increase it if needed. This controls a spin-lock count. 
 
Some devices do not send an initial “ack” response. For these devices, set parameter ignoreFirstAck to 
True. This will keep the lack of an initial acknowledgement from being counted as an I2C error. 
 
This function returns the string of bytes read back from the external I2C device. 
 
For more information about interfacing SNAP nodes to I2C devices, refer to section 6. 
 
i2cWrite(byteStr, retries, ignoreFirstAck) – I2C Write 
 
This function can only be used after function i2cInit() has been called. 
 
Parameter byteStr specifies the data to be sent to the external I2C device, including whatever 
“addressing” bytes must be sent to the device to get it to pay attention. 
 
Parameter retries can be used to give slow devices extra time to respond. Try an initial retries value of 
1, and increase it if needed. 
 
Some devices do not send an initial “ack” response. For these devices, set parameter ignoreFirstAck to 
True. This will keep the lack of an initial acknowledgement from being counted as an I2C error. 
 
This function returns the number of bytes actually written. 
 
For more information about interfacing SNAP nodes to I2C devices, refer to section 6. 
 
initUart(uart, bps) – Initialize a UART (short form) 
 
This function programs the specified uart (0 or 1) to the specified bits per second (bps). 
 
A bps value of 0 disables the UART.  
 

Page 58 of 202 SNAP Reference Manual Document Number 600-0007K 



A bps value of 1 selects 115,200 bps (This large number would not fit into a SNAPpy integer, and so 
was treated as a special case).  
 
Usually you will set bps directly to the desired bits per second: 1200, 2400, 9600, etc. 
 
NOTE – you are not limited to “standard” baud rates. If you need 1234 bps, do it. 
 
Valid baud rates are platform-dependent. Refer to the back of this document. 
 
This is the short form of the initUart() function. Data Bits defaults to 8, Parity defaults to None, and 
Stop Bits defaults to 1. 
 
This function returns no value. 
 
initUart(uart, bps, dataBits, parity, stopBits) – Initialize a UART 
 
This is the long form of the initUart() function just described. 
 
This function programs the specified uart (0 or 1) to the specified bits per second (bps). 
In addition, this variant of the initUart() function also allows you to specify the dataBits (7 or 8), the 
parity (‘E’, ‘O’, or ‘N’ representing EVEN, ODD, or NO parity), and the number of stop bits. 
 
This function returns no value. 
 
initVm() – Initialize (restart) the SNAPpy Virtual Machine 
 
This function takes no parameters, and returns no value. 
 
Calling this function restarts the SNAPpy virtual machine. If a SNAPpy image is currently loaded in 
the node, the scripts “startup” handler will be invoked, and then normal SNAPpy script execution will 
begin (timer hooks, GPIO hooks, STDIN hooks, etc.) 
 
This function is normally only used by Portal and SNAPconnect (at the end of the script upload 
process). 
 
This function does not return a value. 
 
int(obj) – Convert an object to numeric form (if possible) 
 
Converts the specified obj (usually a string) into numeric form. For example, int(‘123’) = 123, 
int(True) = 1, and int(False) = 0. 
 
NOTE – unlike regular Python, the SNAPpy int() function does not take an optional second parameter 
indicating the numeric base to be used. The obj to be converted to a numeric value is required to be in 
base 10 (decimal). 

SNAP Reference Manual Document Number 600-0007K Page 59 of 202 



 
lcdPlot() – LCD Support (Deprecated) 
 
Currently this function only works on the CEL ZIC2410 firmware, on evaluation boards equipped with 
an LCD display. As CEL is no longer manufacturing the hardware, the function is deprecated and may 
not be supported in future releases. The lcdPlot() function performs different tasks, depending on the 
parameters passed to it: 
 
Calling lcdPlot() with no parameters will trigger “LCD detection.” If an LCD is present, it will be 
cleared, and the function will return True. If an LCD is not present, the function will return False. 
 
Calling lcdPlot(x, y, isSet) will set (isSet=True) or clear (isSet=False) the pixel at the specified x, y 
coordinates. The pixel resolution of the LCD is 64 rows by 128 columns. Coordinate 0,0 is in the 
upper left hand corner. 
 
Calling lcdPlot(str) will print the specified string at the current text cursor position. 
 
Within the string, you can optionally include a “\x01” to turn inverse text on, and a “\x02” to turn 
inverse text off. 
 
Calling lcdPlot(x, y, str) will print the specified string at the specified x (in pixels) and y (in text lines, 
not pixels). 
 
Within the string, you can again turn inverse text on and off. In addition, you can specify a custom 
bitmap by specifying a binary string containing: 
 
 A literal \xF0 (this must be the very first character of the string) 
 A byte specifying the bitmaps width in pixels 
 A byte specifying the bitmaps height in pixels (must be a multiple of 8) 
 Bytes specifying the actual bitmap pixels, in column order. 
 
For example, the following will draw a small triangle in the upper left hand corner of the display: 
 
lcdPlot(0, 0, "\xF0\x08\x08\xFF\x81\x82\x84\x88\x90\xA0\xC0") 
 
len(sequence) – Return the length of a sequence 
 
This function returns the size of parameter sequence. Currently sequence must be a string or a tuple, 
but this may change in a future version of SNAPpy. 
 
print len('123') # Returns 3 
 

Page 60 of 202 SNAP Reference Manual Document Number 600-0007K 



loadNvParam(id) – Read a Configuration Parameter from NV 
 
This function reads a single parameter from the SNAP Node’s NV storage, and returns it to the caller. 
 
Parameter id specifies which parameter to read. For a full list of all the system (reserved) id values, 
refer to section 8. User parameters should have id values in the range 128-254. 
 
See also function saveNvParam(). 
 
localAddr() – Get the node’s SNAP address 
 
The localAddr() function returns a string representation of the node’s 3-byte address on the SNAP 
network. 
 
This function takes no parameters. 
 
mcastRpc(group, ttl, function, args…) – Multicast RPC 
 
Call a Remote Procedure (make a Remote Procedure Call, or RPC), using multicast messaging. This 
means the message could be acted upon by multiple nodes. 
 
Parameter group specifies which nodes should respond to the request. By default, all nodes belong to 
the “broadcast” group, group 0x0001. You can configure your nodes to belong to different or 
additional groups, refer to NV parameter #5 and NV parameter #6 in section 8 on Node Configuration 
Parameters. 
 
Parameter ttl specifies the Time To Live (TTL) for the request. This basically specifies how many 
hops the message is allowed to make before being discarded. 
 
Parameter function specifies which remote function to be invoked. This could be a built-in SNAPpy 
function, or one defined by the SNAPpy script currently loaded into that node. 
 
NOTE! Except for built-ins, what the function actually does depends on what script is loaded 
into each node.  
  
The specified function will be invoked with the parameters specified by args, if any args are present.  
 
For example, mcastRpc(1, 3, 'writePin', 0, True) will ask all nodes in the broadcast 
group and within 3 hops of the sender to do a writePin(0, True). 
 
mcastRpc(3, 5, 'reboot') will ask all nodes within 5 hops and belonging to group 1 (0x0001 
or 0000000000000001b) or group 2 (0x0002 or 0000000000000010b) to do a reboot(). 
 
Notice that groups are bits, not numbers. See the details on NV parameter 5 and NV parameter 6 in 
section 8 for more details. 

SNAP Reference Manual Document Number 600-0007K Page 61 of 202 



 
mcastRpc(6, 2, 'reboot') will ask all nodes within 2 hops and belonging to group 2 (0x0002 
or 0000000000000010b) or group 3 (0x0004 or 0000000000000100b) to do a reboot(). 
 
This function normally returns True. It returns False only if it was unable to attempt the Remote 
Procedure Call (for example, if the node is low on memory, or the RPC was too large to send). 
 
If this function returns True, it does not mean your RPC request was successfully received (SNAP 
multicast messages are unacknowledged). 
 
If you need confirmation that the remote node executed your request, it needs to come from the remote 
node. Refer to the callback() function for one method of doing this. 
 
mcastSerial(destGroups, ttl) – Setup TRANSPARENT MODE 
 
SNAP TRANSPARENT MODE is covered in section 5. 
 
When you want the outbound data to be sent to multiple nodes, use this function. 
 
Parameter destGroups specifies the multicast groups that are eligible to receive this data. Parameter ttl 
specifies the maximum number of hops the data will be re-transmitted (in search of interested nodes).  
 
Note that because the received serial characters will be sent using (unacknowledged) multicast 
messages, multicast TRANSPARENT MODE is less reliable than unicast TRANSPARENT MODE. 
 
If you want the received serial characters to go to only one specific node, you should use function 
ucastSerial() instead. 
 
This function does not return a value. 
 
monitorPin(pin, isMonitored) – Enable/disable monitoring of a pin 
 
This function can be used as an alternative to function readPin(), or in addition to it. 
 
Parameter pin specifies which IO pin to monitor. Parameter isMonitored makes the pin be monitored 
when True, or ignored when False. 
 
“Monitoring” in this context means “sampled periodically in the background,” and only makes sense 
with pins previously configured as digital inputs via setPinDir(). 
 
You could monitor an output pin, but the changes you got notified about would be changes that you 
caused (via writePin()). 
 
When monitored pins change state, a HOOK_GPIN event is sent to the SNAPpy virtual machine. If 
you have assigned a HOOK_GPIN handler (using the “set hook” capability described in section 5), 

Page 62 of 202 SNAP Reference Manual Document Number 600-0007K 



then the previously specified handler function will be invoked with the number of the IO pin that 
changed state, and the pin’s new value. 
 
This function does not return a value.  
 
See also function setRate(), which controls the sampling rate of the background pin monitoring that is 
enabled/disabled by this function. 
 
ord(str) – Return the integer ASCII ordinal value of a character 
 
Parameter str specifies a single-character string to be converted. For example, ord('A') = 65 (0x41), 
and ord('2') = 50 (0x32). 
 
peek(address) or peek(addressHi, addressLow, word) – Read a memory 
location 
 
The peek() function allows you to read a byte from a memory location. On 16-bit platforms, parameter 
address specifies which memory location to read (0-0xFFFF). On 32-bit platforms, the two address 
parameters are required to specify the target address. 
 
On 16-bit platforms, this function returns an integer in the range 0-255. On 32-bit platforms, the size 
and character of the return value is determined by the word parameter: 

0 = Return one byte (0x00 to 0xFF). 
1 = Return one 16-bit integer (0x0000 to 0xFFFF). 
2 = Return the high 16-bit integer of a 32-bit value, storing the low value for later retrieval. 
3 = Return the low 16-bit integer of a 32-bit value, discarding the high value. 
4 = Return the low 16-bit integer of a 32-bit value that has previously been stored using word = 2. 

You can use peek() with no parameters as a substitute for this. Performing this peek before 
storing a value using word = 2 provides an undefined result. 

 
On 32-bit systems, you must have a properly aligned address when reading memory larger than one 
byte, i.e., when peeking a 16-bit value, your address must be even, and when peeking a 32-bit value, 
your address must be divisible by 4. 
 
On platforms using the 8051 processor, special function registers (SFRs) are available in SNAPpy by 
specifying the peek address as -1 * ((SFR_page * 0x100) + SFR_address). For example, if you wanted 
to peek register 0x92 on page 0x0F, you would use: 
Peek(-0x0F92) 
 
If the register you wish to peek is in page 0, the leading byte can be omitted. To peek SFR register 
0xF5 in SFR bank 0, you would use: 
Peek (-0xF5) 
or 
Peek(-0x00F5) 
 
This function is intended for advanced users only. 

SNAP Reference Manual Document Number 600-0007K Page 63 of 202 



 
peekRadio(address) – Read an internal register of the radio 
 
The peekRadio() function allows you to read any location within the radio’s memory space (which on 
many SNAP Engines is separate from the processor’s memory space). Parameter address specifies 
which memory location to read (0-65535). 
 
This function returns an integer in the range 0-255. 
 
This function is intended for advanced users only. 
 
poke(address, value) or poke(addressHi, addressLow, word, data) or 
poke(addressHi, addressLow, word, dataHi, dataLow) – Write to a memory 
location 
 
The poke() function allows you to write a byte to a memory location. 
 
On 16-bit platforms, parameter address specifies which memory location to write to, and parameter 
value specifies the value (0x00 to 0xFF) to be written. 
 
On 32-bit platforms, the addressLo and addressHigh parameters specify the target memory location. 
The word parameter specifies how large the data value is that will be written. For 8- or 16-bit data, a 
single data value is required. For 32-bit data, you must provide two data values, each 0x0000 to 
0xFFFF: 

0 = Poke a single byte (0x00 to 0xFF) into the target memory location. 
1 = Poke a 16-bit value (0x0000 to 0xFFFF) into the target memory location. 
2 = Poke a 32-bit value (0x00000000 to 0xFFFFFFFF) into the target memory location, with the 

data value broken into dataHi and dataLow, each with a range of 0x0000 to 0xFFFF. 
 
On 32-bit systems, you must have a properly aligned address when writing memory larger than one 
byte, i.e., when poking a 16-bit value, your address must be even, and when poking a 32-bit value, 
your address must be divisible by 4. 
 
This function does not return a value. 
 
On platforms using the 8051 processor, special function registers (SFRs) are available in SNAPpy by 
specifying the poke address as -1 * ((SFR_page * 0x100) + SFR_address). For example, if you wanted 
to poke value 0x10 to register 0x92 on page 0x0F, you would use: 
Poke(-0x0F92, 0x10) 
 
This function is intended for advanced users only. 
 
If you are not careful with this function, you could crash or even “unprogram” your device. Still, if 
you know what you are doing, peek() and poke() allow you to take advantage of additional hardware 
resources within the device itself (functions not supported by the “core” firmware). 

Page 64 of 202 SNAP Reference Manual Document Number 600-0007K 



 
See for example sample SNAPpy script PWM.py. 
 
pokeRadio(address, value) – Write to an internal radio register 
 
The pokeRadio() function allows you to write to any location within the radio’s memory space. 
 
On some SNAP Engines (including the Synapse RF100 SNAP Engine), the memory space for the 
802.15.4 radio is not included within the memory space for the processor. The pokeRadio() function 
allows you to access the internal registers of the radio hardware, regardless of how the radio is 
physically accessed. (For example, on an RF100 SNAP Engine, the radio is actually connected to an 
internal SPI bus). 
 
Parameter address specifies which radio register location to write to. Parameter value specifies the 
value to be written. 
 
This function does not return a value. 
 
This function is intended for advanced users only. 
 
If you are not careful with this function, you could disable communications to your SNAP Engine. 
Still, if you know what you are doing, peekRadio() and pokeRadio() allow you to take advantage of 
additional features of the radio itself (features not supported by the “core” firmware). 
 
print – Generate output from your script 
 
The print capability of SNAPpy is not really a function (you don’t put parentheses characters after it, 
for example), but it does let you send output from your SNAPpy scripts. Here are some examples: 
 
print 'hello' 
print 123 
print xyz 
 
You can also print multiple items from a single print statement, though unlike Python, SNAPpy does 
not insert a space between printed elements: 
 
print 'this ', 'is ', 'a ', 'test' 
 
The result of each individual print statement will usually go on a separate line. You must use a trailing 
comma (“,”) character to override this. 
 
print 'line 1' 
print 'line 2' 
print 'line 3', 
print ' and even more line 3' 
 

SNAP Reference Manual Document Number 600-0007K Page 65 of 202 



Output from the print statement is enqueued to STDOUT, which can be connected to a serial port or 
transparent connection using the switchboard API (see the crossConnect() function). 
 
Since a limited number of output RAM buffers can be enqueued to STDOUT, a script doing lots of 
‘print’ output will need to HOOK_STDOUT. This allows your script to ‘print’ more output as space 
becomes available. 
 
pulsePin(pin, msWidth, isPositive) – Generate a timed pulse 
 
You could generate a pulse using an IO pin, and multiple writePin() commands. Function pulsePin() 
lets you initiate the pulse in a single step, gives you finer grained control of the pulse duration, and 
frees your script from having to “time” (countdown) the pulse. 
 
Parameter pin is which IO pin (GPIO_0-GPIO_18 on an RF100 SNAP Engine) to generate the pulse 
on. Parameter msWidth specifies the desired pulse width in milliseconds (1-32767) 
 
Specifying a pulse width of 0 will simply result in no pulse at all. 
 
Specifying a pulse width > 0 will generate a non-blocking pulse – pulsePin() just initiates the pulse, 
but your SNAPpy script continues to run in parallel. Among other things, this means you can have 
multiple pulses in progress at the same time. 
 
As of version 2.2, you can also specify a negative pulse width. Specifying a negative pulse width 
instead of a positive pulse width does two things: 
 

1. It makes the pulse generation “blocking.” When you specify a negative duration, the pulse runs 
to completion, and then your SNAPpy script resumes execution at the next line of code. 

2. The time units are different for negative values. The resolution varies by platform, but is 
typically in the range of 1 microsecond per “tick.” Refer to the “platform section” for your 
hardware in section 10 of this document for specifics. As a quick example, on a Synapse 
RF100 SNAP Engine a msWidth of -10000 would result in a pulse approximately 10 
milliseconds wide. 

 
Parameter isPositive controls the polarity of the pulse. It essentially specifies the logic level of the 
leading edge of the pulse, and the opposite of this value is used for the trailing edge of the pulse. 
 
This function has no effect unless/until the specified IO pin is also configured as an output (via 
setPinDir()). 
 
This function does not return a value. 
 

Page 66 of 202 SNAP Reference Manual Document Number 600-0007K 



random() – Generate a random number 
 
This function returns a random number between 0-4095. 
 
This function does not take any parameters. 
 
readAdc(channel) – Read an Analog Input pin (or reference) 
 
This function can be called to read one of the available analog input channels. Some channels 
correspond to external analog input pins, the internal low voltage reference, or the internal high 
voltage reference. 
 
Parameter channel specifies which analog input channel (platform dependent) to read. 
 
readPin(pin) – Read the logic level of a pin 
 
This function can be called for IO pins that are configured as digital inputs or digital outputs (see also 
setPinDir()). 
 
Parameter pin specifies which IO pin to read. 
 
This function returns a boolean value representing the current logic level of the specified pin. For an 
input pin, this is a “live value.” For an output pin, this is the last value written to the pin. 
 
reboot() – Schedule a reboot 
 
This function takes no parameters, and returns no value. 
 
Approximately 200 milliseconds after this function is called, the SNAP node will reboot. 
 
The 200 milliseconds delay is to allow the node time to acknowledge the reboot() request (in case it 
came in over-the-air). 
 
resetVm() – Reset (shut down) the SNAPpy Virtual Machine 
 
This function takes no parameters, and returns no value. 
 
When this function is called, the SNAPpy Virtual Machine stops running any loaded script (but the 
script remains in the unit). 
 
This function is used (by Portal and SNAPconnect) at the start of the script upload process, and would 
not normally be used by users. However, sometimes when testing a script it is useful to be able to halt 
it. 
 
See also function initVm(), which restarts the SNAPpy VM. 

SNAP Reference Manual Document Number 600-0007K Page 67 of 202 



 
rpc(address, function, args…) – Remote Procedure Call (RPC) 
 
Call a Remote Procedure (make a Remote Procedure Call, or RPC), using unicast messaging. A 
special packet will be sent to the node specified by parameter address, asking that remote node to 
execute the function specified by parameter function. The specified function will be invoked with the 
parameters specified by args, if any args are present. 
 
For example, rpc('\x12\x34\x56', 'writePin', 0, True) will ask the node at address 
12.34.56 to do a writePin(0, True). 
 
rpc('\x56\x78\x9A', 'reboot') will ask the node at address 56.78.9A to do a reboot(). 
 
This function normally returns True. It returns False only if it was unable to attempt the Remote 
Procedure Call (for example, if the node is low on memory, or the RPC was too large to send). 
 
If this function returns True, it does not mean your RPC request was successfully sent and received. 
(SNAP will give up after a programmable number of retries, which defaults to 8.) If you need 
confirmation that the remote node executed your request, it needs to come as an RPC call from that 
remote node. Refer to the callback() function for one method of doing this. 
 
It is important that you provide the correct number of arguments for the function you are calling. The 
tooltip help that displays in Portal shows three arguments for this function (address, function, args), 
but the remote function you are calling might require more or fewer arguments than the one specified. 
A remote call of rpc('\x56\x78\x9A', 'reboot') will ask the node at address 56.78.9A to do a 
reboot(), while rpc('\x56\x78\x9A', 'reboot', '') will not work because the receiving 
node will not find a built-in function with a matching function signature. If the remote function you 
are calling does not require any arguments, you should omit the third “args” argument of the RPC 
function. If the remote function requires more arguments, you should include them, too. 
 
Built-in functions in nodes can always be called interactively from Portal, but if you are invoking a 
built-in function in a node from a script in another node, the node on which the function is being called 
must also have a script loaded, even if it is just an empty script. In the act of loading the script file, 
Portal establishes a function table in the node that must be present before the remote node can find 
built-in functions to run from an RPC call. 
 
rpcSourceAddr() – Who made this Remote Procedure Call? 
 
If a function on a node is invoked remotely (via RPC), then the called function can invoke function 
rpcSourceAddr() to find out the Network Address of the node which initiated the call. (If you call this 
function when an RPC is not in progress, it just returns None). 
 
This function allows a node to respond (answer back) directly to other nodes. An example will make 
this clearer. 
 
Imagine node A is loaded with a script containing the following function definition: 

Page 68 of 202 SNAP Reference Manual Document Number 600-0007K 



 
def pong(): 
    print 'got a response!' 
 
Now imagine node “B” is loaded with a script containing the following function: 
 
def ping(): 
    rpc(rpcSourceAddr(),'pong') 
 
Node A can invoke function “ping” on node B, but it has to know node B’s address to do so: 
    rpc(node_B_address_goes_here, 'ping') 
 
When node B receives the RPC request packet, it will invoke local function ‘ping’, which will 
generate the remote ‘pong’ request. Notice that node B can respond to a ‘ping’ request from any node. 
 
All SNAP Network Addresses are three-byte strings. 
 
This function takes no parameters. 
 
rx(isEnabled) – Turn radio receiver on/off 
 
This function allows you to power down the radio, extending battery life in applications that do not 
actually need the radio (or only need it intermittently). 
 
NOTE! If you turn the radio off (using rx(False)), then you will not receive any more radio 
traffic! 
 
The radio defaults to ON in SNAP Nodes. If you invoke rx(False), the radio will be powered down. 
Invoking rx(True) will power the radio back up. 
 
In addition, sending any data over the radio will automatically wake the radio back up. 
 
To be clear: a node can wake up its own radio by attempting to transmit. A node’s radio will not be 
woken up by transmissions from other nodes. This function does not return a value. 
 
saveNvParam(id, obj) – Save data into NV memory 
 
This function lets you store individual pieces of data into the SNAP node’s Non-Volatile (NV) 
memory. 
 
Parameter id specifies which “key” to store the obj parameter under. NV parameter IDs 0, 255, and 1-
127 all have pre-assigned meanings (refer to section 8). IDs 128-254 are user defined, your script can 
store whatever you want, under any ID (128-254) that you want. See section 8 for a listing of the 
available parameters. 
 
The obj parameter should be the data you want to store, and can be a boolean, an integer, a string, or a 
None. 

SNAP Reference Manual Document Number 600-0007K Page 69 of 202 



 
See also function loadNvParam(). 
 
This function returns a result code from the following list: 
 
  NV_SUCCESS = 0, 
 
  // Possible LOAD errors 
  NV_NOT_FOUND = 1, 
  NV_DEST_TOO_SMALL = 2, 
 
  // Possible SAVE errors 
  NV_FULL = 3, // no more room in NV (even after “compression”) 
  NV_BAD_LENGTH = 4, 
  NV_FAILURE = 5, // literally unable to write to FLASH (should never happen) 
  NV_BAD_TYPE = 6, // invalid or unsupported data type 
  NV_LOW_POWER = 7, // we refuse to even try if power is bad (low voltage) 
 
scanEnergy() – Get energy readings from all channels 
 
The getEnergy() function returns the result of a brief radio Energy Detection scan. 
 
Function scanEnergy() is an extension of getEnergy(). It essentially calls getEnergy() N times in a 
row, changing the frequency before each getEnergy() scan. Here, ‘N’ refers to the number of 
frequencies supported by the radio. 
 
For 2.4 GHz radios, 16 frequencies are supported by the radios, each corresponding to one channel. 
For 900 MHz radios running FHSS (frequency hopping) firmware, the 16 channels cover 66 radio 
frequencies, with each channel making use of 25 of those frequencies. For 868 MHz radios, there are 
three frequencies used, regardless of the channel selected. 
 
See the getChannel() function explanation for more details about how each radio platform uses the 
various frequencies available to it. 
 
Function scanEnergy() returns an N-byte string, where the first character corresponds to the “detected 
energy level” on frequency 0, the next character goes with channel 1, and so on. (For 900 MHz FHSS 
radios, SNAP does not make use of the first and last frequencies, but returns them as part of the string 
for completeness.) 
 
The units for the “detected energy level” are the same as that returned by getLq(). Refer to the 
documentation on that function for more info. 
 
This function takes no parameters. 
 

Page 70 of 202 SNAP Reference Manual Document Number 600-0007K 



setChannel(channel) – Specify which channel the node is on 
 
For all SNAP devices, the setChannel() function takes a number in the 0-15 range to specify which 
frequency (or range of frequencies) the device should use for its communications. Refer to the 
description for function getChannel() for more on this topic. 
 
On 802.15.4/2.4 GHz devices, channels 0-15 correspond to 802.15.4 channel 11-26. 
 
For 900 MHz devices running FHSS (frequency-hopping) firmware, the channel normally specifies 
which range of 25 frequencies SNAP should use to distribute its transmissions across the frequency 
range. However you can set the channel to any value up to 65, and need to do so to get meaningful 
data from the getEnergy() function. See the getEnergy() function for more details on this topic. 
 
Note that this function changes the “live” channel setting, and the effect only lasts until the next 
reboot or power cycle. You can also use saveNvParam() to save the “persisted” channel setting 
into NV parameter 4 if you want the node to stay on that channel. 
 
This function does not return a value. 
 
setNetId(networkId) – Specify which Network ID the node is on 
 
The setNetId() function takes a Network ID parameter 0-0xFFFF representing which SNAP Network 
ID the node should switch to. Note that Network ID 0xFFFF is considered a “wildcard” network ID 
(matches all nodes), and you normally should only use network IDs of 0-0xFFFE.  
 
The Network ID and the channel are what determine which radios can communicate with each other in 
a wireless network. Radios must be set to the same channel and Network ID in order to communicate 
over the air. Nodes communicating over a serial link pay no attention to the channel and Network ID. 
 
See also getNetId(). This function returns no value. 
 
Note that this function changes the “live” network ID setting, and the effect only lasts until the 
next reboot or power cycle. You can also use saveNvParam() to save the “persisted” network ID 
setting in NV parameter 3 if you want the node to stay on that network ID after its next reboot. 
 
setPinDir(pin, isOutput) – Set direction (input or output) for a pin 
 
This function should be called for each IO pin you want to use as either a digital input or digital output 
in your application. 
 
Parameter pin specifies which IO pin to configure. Parameter isOutput makes the pin be an output 
when True, or an input when False. 
 

SNAP Reference Manual Document Number 600-0007K Page 71 of 202 



For a given IO pin, you should call this function once to initialize the pin before calling functions such 
as setPinPullup(), readPin() and monitorPin() (for input pins) or setPinSlew(), writePin() and 
pulsePin() (for output pins). 
 
This function does not return a value. 
 
setPinPullup(pin, isEnabled) – Control internal pull-up resistor 
 
This function should be called for each IO pin you are using as a digital input if you want the internal 
pull-up resistor for that pin to be enabled. (The default pull-up setting is off, so you usually do not 
have to call this function unless you want the pull-up enabled), or you previously enabled it and now 
want to disable it. 
 
Parameter pin specifies which IO pin to configure. Parameter isEnabled makes the internal pull-up for 
the pin be active when True, or inactive when False. 
 
This function has no effect unless/until the pin is also configured as a digital input pin. 
 
This function does not return a value. 
 
setPinSlew(pin, isRateControl) – Enable/disable slew rate control 
 
On every platform except the Si100x, this function should be called for each IO pin you are using as a 
digital output, if you want the internal slew rate control for that pin to also be enabled. (The default 
slew rate setting is off, so you usually do not have to call this function unless you want the slew rate 
control enabled). 
 
Parameter pin specifies which IO pin to configure. Parameter isRateControl makes the slew rate 
control be active when True, or inactive when False. 
 
On Si100x-based modules (such as the RF300), the setPinSlew() function controls the strength at 
which an output is driven. See the platform details in section 10 for more information. 
 
This function has no effect unless/until the pin is also configured as a digital output pin. This function 
does not return a value. 
 
setRadioRate(rate) – Set raw radio data rate 
 
Parameter rate should be set to 0 to specify the standard (and default) data rate for the platform, e.g. 
250 Kbps for 802.15.4 based devices. 
 
The meaning of other rate values is platform specific; refer to section 10 of this document. 
 
NOTE – Only units set to the same rate can talk to each other over the air! 
 

Page 72 of 202 SNAP Reference Manual Document Number 600-0007K 



NOTE – The “encoding” for non-standard data rates may differ between radio manufacturers. This 
means that different radio hardware may not be able to interoperate, even if set to the same (non-
standard) rate. All radios on the same frequency range set to rate 0 will be able to interoperate. 
 
setRate(rate) – Set monitorPin() sample rate 
 
By default, the background pin sampling that is enabled/disabled by function monitorPin() takes place 
10 times a second (every 100 milliseconds). This function allows you to vary that sampling rate. 
 
Parameter rate specifies whether the sampling should be OFF (rate =0), every 100 ms (rate = 1), 
every 10 ms (rate = 2), or every 1 ms (rate = 3). 
 
This function has no effect unless/until you are actually using pin monitoring. 
 
This function does not return a value. 
 
setSegments(segments) – Update seven-segment display 
 
This function is only useful on Synapse boards that have a seven-segment (per digit) display on them. 
It assumes a particular type of “shift register controlled” display, that requires continuous refresh, with 
GPIO pins 13 and 14 controlling the display. 
 
Parameter segments specifies a 16-bit binary pattern that controls which segments will be lit, and 
which will be dark. Because the displays currently used do not have decimal points, only 14 of the 
total 16 bits are meaningful. 
 
A segments value of 0x0000 turns off all segments. A value of 0x7F7F corresponds to “all segments 
on.” 
 
This interface gives you complete control of the display, but you can wrap the display in higher level 
access functions. See for example function display2digits() in supplied script evalBase.py. 
 
Not all platforms have the setSegments(segments) built-in. (See the details for platform you 
are using in Section 10.) For broader compatibility, consider importing synapse.sevenSegment and 
using the SetSegments(segments) function instead. (Note the first letter is capitalized.) 
 
The actual “bit to segment” assignments make sort of a “clockwise inward spiral” path around each 
digit. 
 
Refer to the following table for more details.  
 

SNAP Reference Manual Document Number 600-0007K Page 73 of 202 



Bit (in 
hexadecimal) 

Bit Position 
Within Display 

 Bit (in 
hexadecimal) 

Bit Position 
Within Display 

0x0100 

 

 0x0001 

 
0x0200 

 

 0x0002 

 
0x0400 

 

 0x0004 

 
0x0800 

 

 0x0008 

 
0x1000 

 

 0x0010 

 
0x2000 

 

 0x0020 

 
0x4000 

 

 0x0040 

 
0x8000 
(no effect) 

 

 0x0080 
(no effect) 

 
 
 
sleep(mode, ticks) – Go to sleep (enter low-power mode) 
 
This function puts the radio and CPU on the SNAP node into a low-power mode for a specified 
number of ticks. This is used to extend battery life. 
 
Parameter mode chooses from the available sleep modes. The number of modes available, and their 
characteristics (such as resolution and accuracy), vary from platform to platform. Refer to section 10 at 
the end of this document. 
 
A ticks parameter of 0 can be used to sleep until an IO pin interrupt occurs (see script pinWakeup.py), 
but SNAPpy is smart enough to know if you have not enabled a wakeup pin, and will ignore a 
sleep(mode, 0) if there is no wakeup possible. 
 
Starting with version 2.2, a negative ticks parameter can be used to access alternate sleep timings. 
These also vary between platforms, refer to the section for your hardware. 
 
This function does not return a value. 
 

Page 74 of 202 SNAP Reference Manual Document Number 600-0007K 



spiInit(cpol, cpha, isMsbFirst, isFourWire) – Setup SPI Bus 
 
This function initializes the SNAP node to perform Serial Peripheral Interface (SPI) Bus interfacing. 
 
The SPI standard supports multiple options, hence the large number of parameters in spiInit(). 
 
Parameter cpol refers to Clock Polarity, and can be either True or False. Basically it specifies the level 
of the CLK pin between SPI exchanges. To put it another way, cpol specifies the idle clock level. 
 
Parameter cpha refers to the Clock Phase, and can be True or False. It specifies which clock edge the 
incoming data is to be “latched in.” If you number clock edges from 1, then setting cpha = True 
specifies the even clock edges for incoming data, and setting cpha = False specifies the odd clock 
edges for incoming data. 
 

Because SPI mode is specified using both a cpol and cpha setting, there are four possible 
combinations. Which combination is correct depends on the device you are interfacing to; refer to 
the manufacturer’s data sheets. 

 
Parameter isMsbFirst controls the order in which individual bits within each byte will be shifted out. 
Setting this parameter to True will make the 0x80 bit go out first, setting this parameter to False will 
make the 0x01 bit go out first. 
 

Again, the correct setting for the isMsbFirst parameter depends on the device to which you are 
interfacing. 
 

Parameter isFourWire lets you select the variant of SPI you are connecting to. Three wire SPI omits 
the MISO pin. In three-wire SPI, even if the slave does send data, it is over the MOSI pin. 
 
This function does not return a value. 
 
spiRead(byteCount, bitsInLastByte=8) – SPI Bus Read 
 
This function can only be used after function spiInit() has been called. 
 
This function reads data from a three wire SPI device (for four wire SPI, you should be using the 
bidirectional function spiXfer() instead). 
 
Parameter byteCount specifies how many bytes to read. 
 
Parameter bitsInLastByte makes it possible to accommodate devices with data widths that are not 
multiples of 8 (like 12 bits). The default value of bitsInLastByte is 8. For a device with a data width of 
12 bits, bitsInLastByte would be set to 4. For a device with a data width of 31 bits, bitsInLastByte 
would be set to 7. 
 
The order that bits get shifted in depends on the value of parameter isMsbFirst which was specified in 
the previous spiInit() call. 

SNAP Reference Manual Document Number 600-0007K Page 75 of 202 



 
This function returns a string containing the actual bytes received. 
 
More background information on using SPI is in section 6. 
 
spiWrite(byteStr, bitsInLastByte=8) – SPI Bus Write 
 
This function can only be used after function spiInit() has been called. 
 
This function writes data to a three or four wire SPI device. If you want to write and read data 
simultaneously (four wire SPI only), then you should be using the bidirectional function spiXfer() 
instead of this one). 
 
Parameter byteStr specifies the actual bytes to be shifted out. 
 
Parameter bitsInLastByte makes it possible to accommodate devices with data widths like 12 bits. The 
default value of bitsInLastByte is 8. For a device with a data width of 12 bits, bitsInLastByte would be 
set to 4. For a device with a data width of 31 bits, bitsInLastByte would be set to 7. 
 
The order that bits get shifted out depends on the value of parameter isMsbFirst which was specified 
in the previous spiInit() call. 
 
This function does not return a value. 
 
More background information on using SPI is in section 6. 
 
spiXfer(byteStr, bitsInLastByte=8) – Bidirectional SPI Transfer 
 
This function can only be used after function spiInit() has been called. 
 
This function reads and writes data over a four wire SPI device. If your device is read-only or write-
only, you should look at the spiRead() and spiWrite() routines. 
 
Parameter byteStr specifies the actual bytes to be shifted out. 
 
As these bits are being shifted out to the slave device (on the MOSI pin), bits from the slave device (on 
the MISO pin) are simultaneously shifted in. 
 
Parameter bitsInLastByte makes it possible to accommodate devices with data widths like 12 bits. The 
default value of bitsInLastByte is 8. For a device with a data width of 12 bits, bitsInLastByte would be 
set to 4. For a device with a data width of 31 bits, bitsInLastByte would be set to 7. 
 
The order that bits get shifted in and out depends on the value of parameter isMsbFirst which was 
specified in the previous spiInit() call. 
 

Page 76 of 202 SNAP Reference Manual Document Number 600-0007K 



This function returns a byte string consisting of the bits that were shifted in (as the bits specified by 
parameter byteStr were shifted out). 
 
More background information on using SPI is in section 6. 
 
stdinMode(mode, echo) – Set console input options 
 
This function controls how serial data gets presented to your SNAPpy script (via the HOOK_STDIN), 
and how it appears to the user. 
 
Parameter mode chooses between line-at-a-time (mode = 0) or character based (mode = 1). 
 
In “line mode” (mode 0, the default), characters are buffered up until either a Carriage Return (CR) or 
Line Feed (LF) are received. The complete string is then given to your SNAPpy script in a single 
HOOK_STDIN invocation. Note that either character can trigger the handoff, so if your terminal (or 
terminal emulator) is automatically adding extra CR or LF characters, you will see additional empty 
strings (“”) passed to your script. 
 
 The character sequence A B C CR LF looks like two lines of input to SNAPpy. 
 
In “character mode” (mode 1), characters are passed to your SNAPpy script as soon as they become 
available. If characters are being received fast enough, it still is possible for your script to receive more 
than one character at a time; they are just not buffered waiting for a CR or LF. 
 
While your node is in line mode, SNAP reserves one “medium” string buffer to accept incoming data 
from standard-in. If your script is heavy on string usage but does not make use of the HOOK_STDIN 
hook, you can set the standard-in mode to character mode and recover the use of the medium string. 
 
Parameter echo is a Boolean parameter that controls whether or not the SNAP firmware will “echo” 
(retransmit) the received characters back out (so that the user can see what they are typing). 
 
This function does not return a value. 
 
str(object) – Return the string representation of an object 
 
Function str() returns a string based on the value of the object you give it. 
 
For example, str(123) = ‘123’, str(True) = ‘True’, and str(‘hello’) = ‘hello’. 
 
txPwr(power) – Set Radio TX power level 
 
The radio on the SNAP node defaults to maximum power. Function txPwr() lets you reduce the power 
level from this default maximum. 
 

SNAP Reference Manual Document Number 600-0007K Page 77 of 202 



Parameter power specifies a transmit power level from 0-17, with 0 being the lowest power setting and 
17 being the highest power setting. 
 
This function does not return a value. 
 
ucastSerial(destAddr) – Setup outbound TRANSPARENT MODE 
 
SNAP TRANSPARENT MODE is covered in section 5. 
 
When you want the outbound data to be sent to a specific node, use this function. 
 
Parameter destAddr specifies the Network Address of some other node to give the received serial 
characters to. 
 
If you want the received serial characters to go to more than one node, you should use function 
mcastSerial() instead. 
 
This function does not return a value. 
 
uniConnect(dest, src) – Make a one-way switchboard connection 
 
The SNAPpy switchboard is covered in section 5. 
 
This function establishes a one-way connection between two points. See included script 
switchboard.py for the possible values of parameters src and dest.6 
 
See also function crossConnect() if you need a bi-directional hookup. As an alternative, two 
uniConnect() calls can be equal to one crossConnect() call. For example: 
 
uniConnect(UART0, UART1) 
uniConnect(UART1, UART0) 
 
has the same effect as: 
 
crossConnect(UART0, UART1) 
 
NOTE – A source can only be connected to a single destination. Multiple sources can feed into a 
single destination. 
 
This function does not return a value. 
 

                                                 
6 Most platforms have two UARTs available, so with most SNAP Engines UART0 will connect to the USB port on a 
SN163 board and UART1 will connect to the RS-232 port on any appropriate Synapse demonstration board. However the 
RF300 SNAP Engine has only one UART – UART0 – and it comes out where UART1 normally comes out (to the RS-232 
port, via GPIO pins 7 through 10). If you are working with RF300 SNAP Engines, be sure to adjust your code to reference 
UART0 rather than UART1 for your RS-232 serial connections. 

Page 78 of 202 SNAP Reference Manual Document Number 600-0007K 



vmStat(statusCode, args…) – Invoke “status” callbacks 
 
This function is specialized for management applications (like Portal), and provides a range of 
control/callback functionality. 
 
Parameter statusCode controls what actions will be taken, and what data will be returned (via a 
tellVmStat() callback to the original node). 
 
The currently supported statusCode values are: 
0 = VM_RESET: stop the SNAPpy Virtual Machine (for script uploading) 
1 = VM_IMG_ERASE: erase the current SNAPpy script 
2 = VM_WR_BLK: used when uploading scripts – DO NOT CALL THIS! 
3 = VM_INIT: restart the SNAPpy Virtual Machine (after script uploading) 
4 = VM_NVREAD: read the specified NV Parameter 
5 = VM_NAME: returns NODE NAME if set, else IMAGE NAME, plus Link Quality 
6 = VM_VERSION: returns software version number 
7 = VM_NET: returns Network ID and Channel 
8 = VM_SPACE: returns Total Image (script) Space Available 
9 = VM_SCAN: scans all 16 channels for energy, returns 16 character string 
10 = VM_INFO: returns Image Name (script name) and Link Quality 
 
You probably should not be invoking vmStat() with status codes of 0-3 (unless you are implementing 
your own downloader). Status codes 4-10 are safe to call. 
 
After the statusCode, the next argument varies (depending on the statusCode). 
 
After the “varying” argument comes a final optional argument that specifies a “time window” to 
randomly reply within. (More about this below.) 
 
For VM_NVREAD, the second argument is the ID of the NV Parameter you want to read (these are 
the same IDs used in the saveNvParam() and loadNvParam() functions). You can also optionally 
specify a "reply window." 
 
 The “system” NV Parameter IDs are given in section 8.  
 
The reported values will be a "hiByte" of the NV Parameter ID, and a "data" of the actual NV 
Parameter value. 
 
For VM_NAME, the only parameter is the optional reply window. 
 
The reported “data” value will be a string name and a Link Quality reading. 
 
For VM_VERSION, the only parameter is the optional reply window. 
 
The reported “data” value will be a version number string 
 

SNAP Reference Manual Document Number 600-0007K Page 79 of 202 



For VM_NET, the only parameter is the optional reply window. 
 
The reported values will be a “hiByte” containing the currently active channel (0-15), and a “data” 
value of the current Network ID 
 
For VM_SPACE, the only parameter is the optional reply window. 
 
The reported “data” value will be the Total Image (script) Space Available 
 
For VM_SCAN, the only parameter is the optional reply window. 
 
The reported “data” value will be a 16 character string containing the detected energy levels on all 16 
channels. Note that each scan just represents one point in time, you will probably have to initiate 
multiple scans to determine which channels actually have SNAP nodes on them. 
 
You can see this VM_SCAN function put to use in the Channel Analyzer feature of Portal. 
 
See also function scanEnergy(), which returns data in an equivalent format. 
 
For VM_INFO, the only parameter is the optional reply window. 
 
The reported values will be a “hiByte” of the current Link Quality, and a “data” of the currently loaded 
script name (a string). 
 
Return value format: 
 
All of the VM_xxx functions invoke a callback named tellVmStat(word, data) 
 
The least significant byte of word will be the originally requested statusCode. The most significant 
byte will vary depending on the statusCode, and is the “hiByte” described above. The data value is the 
main return value, and is also dependant on the statusCode. 
 
Return value timing: 
 
If you do not specify a “time window” parameter, the nodes will respond immediately. 
 
Some of these commands are multicast by Portal, and we needed a way to keep all of the nodes from 
trying to respond at once. 
 
Specifying a non-zero “time window” tells the node to pick a random time within the next “time 
window” seconds, and wait until then to reply. 
 
This function does not return a value, but it causes a tellVmStat() call to be made to the node that 
requested the vmStat(). 
 
Note – because of the callback() function, some of the vmStat() capabilities are redundant. 

Page 80 of 202 SNAP Reference Manual Document Number 600-0007K 



 
writeChunk(offset, data) – Synapse Use Only 
 
This function is used by Portal and SNAPconnect as part of the script uploading process. 
 
There should be no reason for user scripts to call this function, and attempting to do so could erase or 
corrupt all of your SNAP firmware, requiring a firmware reload (Portal has the capability to do this). 
 
This function does not return a value. 
 
writePin(pin, isHigh) – Set output pin level 
 
This function allows you to control digital output pins (IO pins configured as digital outputs). 
 
Parameter pin specifies which IO pin to control. Parameter isHigh makes the pin go high (True) or low 
(False). 
 
This function has no effect unless/until the pin is configured as a digital output pin via setPinDir(). See 
also related function setPinSlew(), which controls how quickly the pin will transition to a new value. 
 
This function does not return a value. 
 

SNAP Reference Manual Document Number 600-0007K Page 81 of 202 



Here are the functions again, but this time broken down by category.  
 

ADC 
readAdc(channel) Sample ADC on specified input channel, returns raw reading 
 

CBUS Master Emulation 
cbusRd(numToRead) Reads numToRead bytes from CBUS, returns string 

cbusWr(byteStr) Writes every byte in byteStr to the CBUS 

 
These functions are discussed in section 6 of this document. 
 

GPIO 
setPinDir(pin, isOutput) Set direction for parallel I/O pin 
setPinPullup(pin, isEnabled) Enable pull-up resistor for Input pin 
setPinSlew(pin, isRateControl) Enable slew rate-control for Output pin 
monitorPin(pin, isMonitored) Enable GPIN events on Input pin 
pulsePin(pin, msWidth, isPositive) Apply pulse to Output pin 
readPin(pin) Read current level of pin 
writePin(pin, isHigh) Set Output pin level 
setRate(rateCode) Set pin sampling rate to off (0), 100 ms (1), 10 ms (2), or 1 ms (3) 
 

I2C Master Emulation 
getI2cResult() Returns the result of the most recent I2C operation 

i2cInit(enablePullups) Prepare for I2C operations 

i2cRead(str, numBytes, retries, ignoreFirstAck) Write str out, then read numBytes back in from I2C bus. Parameters 
retries and ignoreFirstAck are used with slow or special case 
devices 

i2cWrite(str, retries, ignoreFirstAck) Write str out over the I2C bus. Parameters retries and 
ignoreFirstAck are used with slow or special case devices 

 
These functions are discussed in section 6 of this document. 
 

Misc 
setSegments(segments) Set eval-board LED segments (clockwise bitmask) 
bist() Built-in self test 
eraseImage() Erase user-application FLASH memory 
resetVm() Reset the embedded virtual machine (prep for upload) 
initVm() Initialize embedded virtual machine 
vmStat(statusCode, args...) Solicit a tellVmStat for system parameters 

Page 82 of 202 SNAP Reference Manual Document Number 600-0007K 



writeChunk(ofs, str) Write string to user-application FLASH memory 
chr(number) Returns the character string representation of “number” 
str(obj) Returns the string representation of obj 
int(obj) Returns the integer representation of obj 

Notice that you cannot specify the base. Decimal is assumed 
len(str) Returns the length of string str (0-255) 
random() Returns a pseudo-random number 0-4095 
stdinMode(mode, echo) mode is 0 for line, 1 for character at a time 

echo is True or False 
 

Network 
getNetId() Current Network ID 

setNetId(netId) Set Network ID (1-0xFFFE) 

localAddr() Local network address (3-byte binary string) 

rpcSourceAddr() Originating address of current RPC context (None if called 
outside RPC) 

mcastSerial(dstGroups, ttl) Set Serial transparent mode to multicast 

ucastSerial(dstAddr) Set Serial transparent mode to unicast 

callback(callbackFnObj, remoteFnObj, args...) Remote Procedure Call (back to the original invoker) of 
Remote Procedure Call results 

callout(addr, callbackFnObj, remoteFnObj, args...) Remote Procedure Call (to an arbitrary node address) of 
Remote Procedure Call results 

rpc(dstAddr, remoteFnObj, args...) Remote Procedure Call (unicast) 

mcastRpc(dstGroups, ttl, remoteFnObj, args...) Remote Procedure Call (multicast) 

 

Non-Volatile (NV) Parameters 
loadNvParam(id) Load indexed parameter from NV storage 

saveNvParam(id, obj) Save object to indexed NV storage location 

 

Radio 
rx(isEnabled) Enable/disable radio receiver 
txPwr(power) Adjust radio transmit level (0 is lowest, 17 is highest) 
setChannel(channel) Set radio channel 
getChannel() Radio channel 
getLq() Link Quality in (-) dBm 
getEnergy() Detected RF energy in (-) dBm (current channel) 
scanEnergy() Detected RF energy in (-) dBm (all 16 channels) 
peekRadio(addr) Read a memory location from inside the radio 

pokeRadio(addr, byteVal) Write a memory location inside the radio 

 

SNAP Reference Manual Document Number 600-0007K Page 83 of 202 



SPI Master Emulation 
spiInit(cpol, cpha, isMsbFirst, isFourWire) setup for SPI, with specified Clock Polarity, Clock Phase, Bit 

Order, and Physical Interface 
spiRead(byteCount, bitsInLastByte) receive data in from SPI – returns response string (three wire SPI 

only) 
spiWrite(byteStr, bitsInLastByte) send data out SPI – bitsInLastByte defaults to 8, can be less 

spiXfer(byteStr, bitsInLastByte) bidirectional SPI transfer – returns response string (four wire SPI 
only) 

 
These functions are discussed in section 6 of this document. 
 

Switchboard 
crossConnect(dataSrc1, dataSrc2) Cross-connect SNAP data-sources 

uniConnect(dst, src) Connect src->dst SNAP data-sources 

 
Use crossConnect() to setup bidirectional transfers. Use uniConnect() to setup a one-way connection. 
Note that multiple sources can be uni-connected to the same destination. 
 

System 
getMs() System millisecond tick (16bit) 

getInfo(which) Get specified system info 

getStat(which) Get radio traffic status info 

call() Invoke a user-defined binary function 

peek(addr) Read a memory location 

poke(addr, byteVal) Write a memory location 

errno() Read and reset last error code 

imageName() Name of current SNAPpy image 

random() Returns a random number (0-4095) 

reboot() Reboot the device 

sleep(mode, ticks) Enter sleep mode for specified number of ticks 
Resolution, accuracy, and maximum duration vary between 
hardware platforms. For example, on an RF100 SNAP Engine: 
In mode 0, ticks are 1.024 seconds each, +/- 30% 
In mode 1, ticks are 1 second each, and can be 0-1073 
On some platforms, negative values for ticks produce times shorter 
than one second. 

 

Page 84 of 202 SNAP Reference Manual Document Number 600-0007K 



UARTs 
initUart(uartNum, bps) Enable UART at specified rate (zero rate to disable) 
initUart(uartNum, bps, dataBits, parity, stop) Enable UART at specified rate (zero rate to disable), data bits, 

parity, and stop bits 
flowControl(uartNum, isEnabled) Enable RTS/CTS flow control. If enabled, the CTS pin functions 

as a “Clear To Send” indicator 
flowControl(uartNum, isEnabled, isTxEnable) Enable RTS/CTS flow control. If enabled and parameter 

isTxEnable is True, then the CTS pin functions as a TXENA 
(transmit enable) signal. If enabled and isTxEnable is False, then 
the CTS pin functions as a “Clear To Send” indicator 

Note: uartNum is 0 or 1 on most platforms. Some platforms will have only UART0 available. 
 

SNAP Reference Manual Document Number 600-0007K Page 85 of 202 



Immediate Functions 
 
Most SNAPpy built-ins (when called) quickly do their job, then return. Script execution then continues 
with the next line of SNAPpy source code. Although technically they are blocking functions (they do 
not return until they have completed), because of their relatively short duration we classify them as 
immediate functions. 
 
The following SNAPpy built-ins are classified as immediate: 
 
chr(), errno(), flowControl(), getChannel(), getI2cResult(), getInfo(), getLq(), getMs(), getNetId(), 
getStat(), imageName(), i2cInit(), initUart(), int(), len(), localAddr(), mcastSerial(), ord(), peek(), 
peekRadio(), poke(), pokeRadio(), random(), readAdc(), readPin(), rpcSourceAddr(), rx(), 
setChannel(), setNetId(), setPinDir(), setPinPullup(), setPinSlew(), setRadioRate(), setRate(), spiInit(), 
stdinMode(), str(), txPwr(), ucastSerial(), uniConnect(), vmStat(), writePin() 

Blocking Functions 
 
Some SNAPpy built-ins take too long to complete to be classified as immediate. Execution of the next 
line of script does not occur until these functions complete.  
 
The following functions are classified as blocking: 
 
bist(), call(), cbusRd(), cbusWr(), eraseImage(), getEnergy(), i2cRead(), i2cWrite(), initVm(), 
lcdPlot(), loadNvParam(), pulsePin() with a negative duration specified on hardware that supports it, 
resetVm(), saveNvParam(), scanEnergy(), sleep(), spiRead(), spiWrite(), spiXfer(), writeChunk() 

Non-blocking Functions 
 
Some functions (once initiated) actually complete in the background. Script execution continues, while 
the requested function continues to take place behind the scenes. 
 
The following functions are classified as non-blocking: 
 
callback(), callout(), mcastRpc(), rpc() – the RPC packet is built immediately (if possible), but the 
actual sending occurs in the background. Reminder – these functions can return False (with no 
background processing) if there is insufficient RAM in which to enqueue the generated packet. 
 
crossConnect() – the actual switchboard configuration takes place immediately, but a crossConnect() 
often results in ongoing data transfer afterwards. 
 
monitorPin() – the tagging of the specified pin as “to be monitored” occurs immediately, but then the 
actual pin polling takes place in the background. 
 
pulsePin() – the leading edge of the requested pulse is generated immediately, but the “countdown” to 
the trailing edge occurs in the background. Calling pulsePin() with a negative duration is blocking. 

Page 86 of 202 SNAP Reference Manual Document Number 600-0007K 



 
print – the textual output is generated in a blocking fashion, but the output is sent in the background. 
 
reboot() – this function schedules a reboot in approximately 200 milliseconds, then allows script 
execution to continue until the reboot occurs. 
 
setSegments() – the new pattern is defined immediately, but the actual periodic refresh occurs in the 
background. 

Non-blocking Functions and SNAPpy Hooks 
 
Some non-blocking functions result in “hook” (HOOK_xxx) callback functions being called, if they 
are defined in your script. 
 
Use of function… …can result in 
rpc(), mcastRpc() HOOK_RPC_SENT 
monitorPin() HOOK_GPIN 
print HOOK_STDOUT 
crossConnect(), uniConnect() HOOK_STDIN 
 

SNAPpy Scripting Hints 
 
The following are some helpful hints for developing custom SNAPpy scripts for your nodes. These are 
not in any particular order. 

Beware of Case SensitiViTy 
Like “desktop” Python, SNAPpy scripts are case sensitive – “foo” is not the same as “Foo”. 
 
Also, because SNAPpy is a dynamically typed language, it is perfectly legal to invent a new variable 
on-the-fly, and assign a value to it. So, the following SNAPpy code snippet: 
 
 foo = 2 
 Foo = "The Larch" 
 
…results in two variables being created, and “foo” still has the original value of 2. 
 
Case sensitivity applies to function names as well as variable names.  
 
 linkQuality = getlq() 
 
…is a script error unless you have defined a function getlq(). The built-in function is not named 
“getlq”.  
 
 linkQuality = getLq() 
 
…is probably what you want.  

SNAP Reference Manual Document Number 600-0007K Page 87 of 202 



Beware of Accidental Local Variables 
All SNAPpy functions can read global variables, but (as in Python) you need to use the “global” 
keyword in your functions if you want to write to them. 
 
count = 4 
 
def bumpCount(): 
    count = count + 1 
 
…is not going to do what you want (count will still equal 4). Instead, write something like: 
 
count = 4 
 
def bumpCount(): 
    global count 
    count = count + 1 

Don’t Cut Yourself Off (Packet Serial) 
Portal talks to its “bridge” (directly connected) node using a packet serial protocol. 
 
SNAPpy scripts can change both the UART and Packet Serial settings. 
 
This means you can be talking to a node from Portal, and then upload a script into that node that starts 
using that same serial port for some other function (for example, for script text output). Portal will no 
longer be able to communicate with that node serially. 

Remember Serial Output Takes Time 
A script that does: 
 
print "imagine a very long and important message here" 
sleep(mode, duration) 
 
…might not be allowing enough time for the text to make it all the way out of the node (particularly at 
slower baud rates) before the sleep() command shuts the node off. 
 
One possible solution would be to invoke the sleep() function from the timer hook. This example 
hooks into the HOOK_100MS event. 
 
In the script startup code: 
 
sleepCountDown = 0 
 
In the code that used to do the “print + sleep” 
 
global sleepCountDown 
 
print "imagine a very long and important message here" 
sleepCountDown = 500 # actual number of milliseconds TBD 
 
In the timer code: 

Page 88 of 202 SNAP Reference Manual Document Number 600-0007K 



 
global sleepCountDown 
 
if sleepCountDown > 0: 
    if sleepCountDown < 100: # timebase is 100 ms 
        sleepCountDown = 0 
        sleep(mode, duration) 
    else: 
        sleepCountDown -= 100 

Remember nodes do not have a lot of RAM 
SNAPpy scripts should avoid generating a flood of text output all at once (there will be no where to 
buffer the output). Instead, generate the composite output in small pieces (for example, one line at a 
time), triggering the process with the HOOK_STDOUT event. 
 
If a script generates too much output at once, the excess text will be truncated. 

Remember SNAPpy Numbers Are Integers 
2/3 = 0 in SNAPpy. As in all fixed point systems, you can work around this by “scaling” your internal 
calculations up by a factor of 10, 100, etc. You then scale your final result down before presenting it to 
the user. 

Remember SNAPpy Integers are Signed 
SNAPpy integers are 16-bit numbers, and have a numeric range of -32768 to +32767. 
 
Be careful that any intermediate math computations do not exceed this range, as the resulting overflow 
value will be incorrect. 

Remember SNAPpy Integers have a Sign Bit 
Another side-effect of SNAPpy integers being signed – negative numbers shifted right are still 
negative (the sign bit is preserved). 
 
You might expect 0x8000 >> 1 to be 0x4000 but really it is 0xC000. You can use bitwise and-ing 
to get the desired effect if you need it. 
 
X = X >> 1 
X = X & 0x7FFF 

Pay Attention to Script Output 
Any SNAPpy script errors (see section 4) that occur can be printed to the previously configured 
STDOUT destination, such as serial port 1. If your script is not behaving as expected, be sure and 
check the output for any errors that may be reported. 
 
If the node having the errors is a remote one (you cannot see its script output), remember that you can 
invoke the “Intercept STDOUT” action from the Node Info tab for that node. The error messages will 
then appear in the Portal event log, depending on the preferences specified in Portal. 

SNAP Reference Manual Document Number 600-0007K Page 89 of 202 



Don’t Define Functions Twice 
In SNAPpy (as in Python), defining a function that already exists counts as a re-definition of that 
function. 
 
Other script code, that used to invoke the old function, will now be invoking the replacement function 
instead. 
 
Using meaningful function names will help alleviate this. 

There is limited dynamic memory in SNAPpy 
Functions that manipulate strings (concatenation, slicing, subscripting, chr()) all pull from a small pool 
of dynamic (reusable) string buffers. 
 
NOTE – this is different from prior versions, which only had a single fixed buffer for each type of 
string operation. 
 
You still do not have unlimited string space, and can run out if you try to keep too many strings. 

Use the Supported Form of Import 
In SNAPpy scripts you should use the form: 
 
from moduleName import * 
from synapse.moduleName import * 

Remember Portal Speaks Python Too 
SNAPpy scripts are a very powerful tool, but the SNAPpy language is a modified subset of full-blown 
Python. 
 
In some cases, you may be able to take advantage of Portal’s more powerful capabilities, by having 
SNAPpy scripts (running on remote nodes) invoke routines contained within Portal scripts. 
 
This applies not only to the scripting language differences, but also to the additional hardware a 
desktop platform adds. 
 
As an example, even though a node has no graphics display, it can still generate a plot of link quality 
over time, by using a code snippet like the following: 
 
rpc("\x00\x00\x01", "plotlq", localAddr(), getLq()) 
 
For this to do anything useful, Portal must also have loaded a script containing the following 
definition: 
 
def plotlq(who, lq): 
  logData(who,lq,256) 
 
The node will report the data, and Portal will plot the data. 

Page 90 of 202 SNAP Reference Manual Document Number 600-0007K 



Remember you can invoke functions remotely 
Writing modular code is always a good idea. As an added bonus, if you are able to break your overall 
script into multiple function definitions, you can remotely invoke the individual routines. This can 
help in determining where any problem lies. 

Be careful using multicast RPC invocation 
Realize that if you multicast an RPC call to function “foo”, all nodes in that multicast group that have 
a foo() function will execute theirs. To put it another way, give your SNAPpy functions distinct and 
meaningful names. 

If all nodes hear the question at the same time, they will all answer at the same time 
If you have more than a few nodes, you will need to coordinate their responses (using a SNAPpy 
script) if you poll them via a multicast RPC call. 

If you want to call a built-in function by name, the called node needs a script loaded, even if it is 
empty 
SNAP Nodes without scripts loaded only support function calls by number. The “name lookup table” 
that lets nodes support “call by name” is part of what gets sent with each SNAPpy Image. 
 
When Portal invokes built-in functions for you (from the GUI), it automatically converts function 
names to function numbers. Standalone SNAP nodes don’t know how to do this conversion. 
 
So, if you don’t have any real script to put into a node that you want to control from something 
besides Portal, upload an empty one. 

SNAP Reference Manual Document Number 600-0007K Page 91 of 202 



8. SNAP Node Configuration Parameters 
You make your SNAP nodes do completely new things by loading SNAPpy scripts into them. You can 
often adjust the way they do the things that are already built-in by adjusting one or more Configuration 
Parameters. 
 
These Configuration Parameters are stored in a section of Non-Volatile (NV) memory within the 
SNAP node. For this reason Configuration Parameters are also referred to as NV Parameters. 
 
SNAPpy scripts can access these NV Parameters by using the loadNvParam(id) function. SNAPpy 
scripts can change these parameters by using the saveNvParam() function (and then rebooting so that 
the changes will take effect). 
 
When using the loadNvParam() and saveNvParam() functions, you must specify which NV Parameter 
by numeric ID. 
 
You can also easily view and edit these parameters using Portal. Refer to the Portal Reference 
Manual. When you view and edit these parameters from Portal, you do not need to know the NV 
Parameter ID. Portal takes care of that for you. 
 
Some of the NV Parameters control the functionality of your nodes at a very fundamental level. 
Making careless changes to these parameters can cause you to lose access to your nodes, either over 
the air, over a serial connection, or both. If you find you are unable to make any connection to a node, 
you will be able to return the node to your control through the Factory Default NV Params... option in 
Portal. (It may first be necessary to use the Erase SNAPpy Image... option in Portal, if the image 
loaded into the node is setting NV Parameters.) 
 
Here are all of the System (Reserved) NV Parameters (sorted by numeric ID), and what they do. 
 
NOTE – You can also define your own NV Parameters (in the range 128-254) which your script can 
access and modify, just like the system ones. 
 

Remember – you must reboot a node after changing any system NV Parameter for the change to 
actually take effect. 

 
ID 0 – Reserved for Synapse Use 
0 means “erased” inside the actual NV storage. 
 
ID 1 – Reserved for Synapse Use 
used to support a NV page-swapping scheme internally. 
 
ID 2 – MAC Address 
The eight byte address of the SNAP Node. This parameter is not modified when you reset parameters 
to factory defaults. 
 

Page 92 of 202 SNAP Reference Manual Document Number 600-0007K 



ID 3 – Network ID 
The 16-bit Network Identifier of the SNAP Node. The Network ID and the Channel are what 
determine which radios can communicate with each other in a wireless network. Radios must be set to 
the same channel and Network ID in order to communicate over the air. Nodes communicating over a 
serial link pay no attention to the channel and Network ID. 
 
Network IDs can be set to any value from 0x0000 through 0xFFFF. However 0xFFFF is a wildcard 
value to which all nodes respond and should generally be avoided. The default Network ID is 0x1C2C. 
 
ID 4 – Channel 
The channel on which the SNAP Node broadcasts. See also, Network ID. 
 
The channel can be set to any value from 0 to 15. The Channel Analyzer in Portal can help you 
determine which channel has the least traffic on it in your environment. The default channel is 4. 
 
ID 5 – Multi-cast Processed Groups 
This is a 16-bit field controlling which multi-cast groups the node will respond to. It is a bit mask, with 
each bit representing one of 16 possible multi-cast groups. For example, the 0x0001 bit represents the 
default group, or “broadcast group.” 
 
One way to think of groups is as “logical sub-channels” or as “subnets.” By assigning different nodes 
to different groups, you can further subdivide your network. 
 
For example, Portal could multi-cast a “sleep” command to group 0x0002, and only nodes with that bit 
set in their Multi-cast Processed Groups field would go to sleep. (This means nodes with their group 
values set to 0x0002, 0x0003, 0x0006, 0x0007, 0x000A, 0x000B, 0x000E, 0x000F, 0x0012, etc., 
would respond.) Note that a single node can belong to any (or even all) of the 16 groups. 
 
Group membership does not affect how a node responds to a direct RPC call. It only affects multi-cast 
requests. 
 
ID 6 – Multi-cast Forwarded Groups 
This is a separate 16-bit field controlling which multi-cast groups will be re-transmitted (forwarded) 
by the node. It is a bit mask, with each bit representing one of 16 possible multi-cast groups. For 
example, the 0x0001 bit represents the default group, or “broadcast group.” 
 
By default, all nodes process and forward group 1 (broadcast) packets. 
 
Please note that the Multi-cast Processed Groups and Multi-cast Forwarded Groups fields are 
independent of each other. A node could be configured to forward a group, process a group, or both. It 
can process groups it does not forward, or vice versa. 
 
NOTE – If you set your bridge node to not forward multi-cast commands, Portal will not be able to 
multi-cast to the rest of your network. 
 

SNAP Reference Manual Document Number 600-0007K Page 93 of 202 



ID 7 – Manufacturing Date 
Synapse use only. This parameter is not modified when you reset parameters to factory defaults. 
 
ID 8 – Device Name 
This NV Parameter lets you choose a name for the node, rather than letting it be determined by what 
script happened to be loaded in the node at the time Portal first detected it. If this parameter is set to 
None, then the first detected script name will determine the node name. If this parameter is blank and 
the node has no script loaded, it will have “Node” as its name. You do not have to give your nodes 
explicit names. 
 
NOTE – It is invalid to put embedded spaces in your Device Name. “My Node” is not a legal name, 
while “My_Node” is. 
 
ID 9 – Last System Error 
If a SNAP Node reboots due to a system error, it stores the error code telling why here in this NV 
Parameter (Synapse internal use only). 
 
ID 10 – Device Type 
This is a user-definable string that can be read by scripts. This allows a single script to fill multiple 
roles, by giving it a way to determine what type of node it is running on. This NV Parameter is one 
way to “categorize” your nodes. 
 
ID 11 – Feature Bits 
These control some miscellaneous hardware settings. The individual bits are: 
Bit 0 (0b0000,0000,0000,0001 0x0001) – Enable Serial Port 0 (USB port on a SN163 board)7 
Bit 1 (0b0000,0000,0000,0010 0x0002) – Enable hardware flow control on Serial Port 0 
Bit 2 (0b0000,0000,0000,0100 0x0004) – Enable Serial Port 1 (RS-232 port on a SN111 or SN171 

board) (This is the only serial port on a SN171 Proto Board) 
Bit 3 (0b0000,0000,0000,1000 0x0008) – Enable hardware flow control on Serial Port 1 
Bit 4 (0b0000,0000,0001,0000 0x0010) – Enable the radio Power Amplifier (PA) 
Bit 5 (0b0000,0000,0010,0000 0x0020) – Enable external power-down output 
Bit 6 (0b0000,0000,0100,0000 0x0040) – Enable alternate clock source 
Bit 7 (0b0000,0000,1000,0000 0x0080) – Enable DS_AUDIO on platforms that support it 
Bit 8 (0b0000,0001,0000,0000 0x0100) – Enable second data CRC 
Bit 9 (0b0000,0010,0000,0000 0x0200) – Reduce TX Power levels to “World Wide” settings 
 
Synapse RF100 SNAP Engines with PA hardware can be identified by the “RFET” on their labels. 
Units without PA hardware say “RFE” instead of “RFET.” 
 

                                                 
7 Most platforms have two UARTs available, so with most SNAP Engines UART0 will connect to the USB port on a 
SN163 board and UART1 will connect to the RS-232 port on any appropriate Synapse demonstration board. However the 
RF300 SNAP Engine has only one UART – UART0 – and it comes out where UART1 normally comes out (to the RS-232 
port, via GPIO pins 7 through 10). If you are working with RF300 SNAP Engines, be sure to adjust your code to reference 
UART0 rather than UART1 for your RS-232 serial connections. 

Page 94 of 202 SNAP Reference Manual Document Number 600-0007K 



For RF100 SNAP Engines, the PA feature bit (0x10) should only be set on “RFET” units. Setting this 
bit on a “RFE” board will not harm the SNAP Engine, but will actually result in lower transmit power 
levels (a 20-40% reduction). The bit should be set for RF200 SNAP Engines, as well. 
 
The external power-down bit (0x20) should be set on units that need to power down external hardware 
before going to sleep, and power it back up after they awake. This bit is not modified when you reset 
parameters to factory defaults. 
 
The alternate clock source bit (0x40) modifies which timer is used on SNAP modules that have 
multiple timers available, for increased PWM flexibility. See the details about the individual platform 
builds to determine if an alternate clock is available on your platform. 
 
The DS_AUDIO enable bit (0x80) enables I2S audio communications over the SNAP network on 
platforms that support it. Refer to each platform’s details to determine whether this capability is 
available. 
 
The second CRC bit (0x100) enables a second CRC packet integrity check on platforms that support it. 
Setting this bit tells the SNAP node to send a second cyclical redundancy check (using a different 
CRC algorithm) on each RPC or multicast packet, and require this second CRC on any such packet it 
receives. This reduces the available data payload by two bytes (to 106 bytes for an RPC message, or 
109 bytes for a multicast message), but provides an additional level of protection against receiving 
(and potentially acting upon) a corrupted packet. The CRC that has always been a part of SNAP 
packets means that there is a one in 65,536 chance that a corrupted packet might get interpreted as 
valid. The second CRC should reduce this to a less than a one in four billion chance. 
 
If you set this bit for the second CRC, you should set it in all nodes in your network, and enable the 
feature in your Portal preferences or as a feature bit in your SNAP Connect NV parameters. A node 
that does not have this parameter set will be able to hear and act on messages from a node that does 
have it set, but will not be able to communicate back to that node. Not all platforms support this 
second CRC. Refer to each platform’s details to determine whether this capability is available. This 
feature was added in release 2.4.20. 
 
The world-wide bit (0x200) enables an alternate set of power restrictions on platforms that support it. 
For example, an SM700 module will normally enforce FCC (US) Transmit Power Restrictions. If the 
0x0200 Feature Bit is set, the SM700 will instead enforce ETSI restrictions. 
 
Binary notations are provided here for clarity. You should specify the parameter value using the 
appropriate hexadecimal notation. For example, 0x001F corresponds to 0b0000,0000,0001,1111. 
 
ID 12 – Default UART 
This controls which UART will be pre-configured for Packet Serial Mode.  
 
Normally the UART related settings would be specified by the SNAPpy scripts uploaded into the 
node. This default setting has been implemented to handle nodes that have no scripts loaded yet.  
 
These defaults are overridden when needed! 

SNAP Reference Manual Document Number 600-0007K Page 95 of 202 



Although you can request that one or both UARTs are disabled (via the Feature Bits), and you can 
request that there is no Packet Serial mode UART (by setting the Default UART parameter to 255), 
both of these user requests will be ignored unless there is also a valid SNAPpy script loaded into the 
unit. If the parameter is set to a value outside the range of UARTs on your module (other than 255), 
UART1 (UART0 on modules with only one UART) will be the default. 
 
If there is no SNAPpy script loaded, a fail-safe mechanism kicks in and forces an active Packet Serial 
port to be initialized on UART1 (or UART0, if so specified in this parameter), regardless of the other 
configuration settings. This was done to help prevent users from “locking themselves out.” 
 
If there is a SNAPpy script loaded, then the assumption is that the script will take care of any 
configuration overrides needed, and the Feature Bits and the Default UART setting will be honored. 
 
ID 13 – Buffering Timeout 
This lets you tune the overall serial data timeout. This value is in milliseconds, and defaults to 5. This 
value controls the maximum amount of time between an initial character being received over the serial 
port, and a packet of buffered serial data being enqueued for processing. Regardless of the number of 
characters buffered or the rate at which they are being buffered, each time this timeout passes any 
buffered data will be queued. 
 
Note that other factors can also trigger the queuing of the buffered serial data. In particular see the next 
two NV Parameters. 
 
The larger this value is the more buffering will take place. In TRANSPARENT MODE, every packet 
has 12-15 bytes of overhead, so sending more serial characters per packet is more efficient. Also, 
when using MULTICAST TRANSPARENT MODE, keeping the characters together (in the same 
packet) improves overall reliability. 
 
The tradeoff is that the larger this value is, the greater the maximum latency can be through the overall 
system. 
 
ID 14 – Buffering Threshold 
This value indicates the total packet size threshold used when sending packets of data. The size 
defaults to 75 bytes. If no timeout limit is reached first, this parameter will cause buffered data to be 
enqueued when there is sufficient data to cause the packet, including header, to be at least this many 
bytes long. At higher serial rates, this size can be overshot between SNAP checks of the packet size. 
There is no guarantee that packets will necessarily be precisely this size. 
 
Each packet of data sent includes a header, which comprises 12 bytes for multicast packets and 15 
bytes for unicast packets. So the actual amount of serial data sent in each packet will be reduced by 
either 12 or 15 fewer bytes, depending on whether the data is being sent by multicast or unicast. 
Additionally, if the feature bit in NV Parameter 11 indicates that SNAP should be using its second 
CRC to prevent data corruption, the data payload will be reduced by an additional two bytes. If you 
want to send N bytes of data per packet, this parameter should be set to N + 12 for multicasting or N + 
15 for unicasting, or N + 14 for multicasting with a secondary CRC or N + 17 for unicasting with a 
secondary CRC. 

Page 96 of 202 SNAP Reference Manual Document Number 600-0007K 



The maximum SNAP packet size is 123 bytes. If you set this parameter to a value greater than 123, the 
system will simply substitute a value of 123. If you set this parameter equal to or less than the packet 
header size, SNAP will construct packets with a complete header and one byte of data. 
 
Like parameters #13 and #15, larger values can result in larger (more efficient) packets, at the expense 
of greater latency. Also, at higher baud rates, setting this value too high can result in dropped 
characters if the packet buffer gets overfilled between SNAP checks. 
 
ID 15 – Inter-character Timeout 
This lets you tune inter-character serial data timeout. This value is in milliseconds, and defaults to 0 
(in other words, disabled). 
 
This timeout is similar to NV Parameter #13, but this one refers to the time between individual 
characters. One way of thinking of it: this timeout restarts with every received character – the other 
timeout always runs to completion. 
 
Larger inter-character timeouts can give better MULTICAST TRANSPARENT MODE reliability, at 
the expense of greater latency. 
 
Note that either timeout #13 or #15 (if enabled) can trigger the transmission of the buffered data before 
the Buffering Threshold (#14) is reached. Conversely, if the timeouts are high (or disabled) to the 
extent that enough data is buffered to reach the Buffering Threshold before the timeouts are reached, 
that threshold will trigger the transmission of the buffered data before either of the timeouts are 
reached. 
 
ID 16 – Carrier Sense 
Basically, this instructs the radio to “listen before you transmit.” 
 
This value defaults to False. Setting this value to True will cause the node to do what is called a Clear 
Channel Assessment (CCA). Basically this means that the node will briefly listen before transmitting 
anything, and will postpone sending the packet if some other node is already talking. This results in 
fewer collisions (which means more multicast packets make it through), but the “listening” step adds a 
small delay to the time it takes to send each packet. 
 
If in your network the probability of collisions is low (you don’t have much traffic), and you need the 
maximum throughput possible, then leave this value at its default setting of False. If in your network 
the probability of collisions is high (you have a lot of nodes talking a lot of the time), then you can try 
setting this parameter to True, and see if it helps your particular application. 
 
ID 17 – Collision Detect 
Basically, this instructs the radio to “listen after you transmit.” 
 
This value defaults to False. Setting this value to True will cause the node to do a CCA after sending a 
multicast packet. This will catch some (but not all) collisions. If the node detects that some other node 

SNAP Reference Manual Document Number 600-0007K Page 97 of 202 



was transmitting at the same time, then it will resend the multicast packet. This results in more 
multicast packets making it through, but again at a throughput penalty. 
 
The same criteria given for NV Parameter #16 apply to this one as well. You can try setting this 
parameter to True, and see if it helps your application. If not, set it back to False. 
 
ID 18 – Collision Avoidance 
This lets you control use of “random jitter” to try and reduce collisions. This setting defaults to True. 
 
The SNAP protocol uses a “random jitter” technique to reduce the number of collisions.  
 
Before transmitting a packet, SNAP does a small random delay. This random delay reduces the 
number of collisions, but increases packet latency 
 
If you set this parameter to False, then this initial delay will not be used. This reduces latency (some 
extremely time critical applications need this option) but increases the chances of an over-the-air 
collision. 
 
You should only change this parameter from its default setting of True if there is something else about 
your application that reduces the chances of collision. For example, some applications operate in a 
“command/response” fashion, where only one node at a time will be trying to respond anyway. 
 
ID 19 – Radio Unicast Retries 
This lets you control the number of unicast transmit attempts. This parameter defaults to 8. 
 
This parameter refers to the total number of attempts that will be made to get an acknowledgement 
back on a unicast transmission to another node. 
 
In some applications, there are time constraints on the “useful lifetime” of a packet. In other words, if 
the packet has not been successfully transferred by a certain point in time, it is no longer useful. In 
these situations, the extra retries are not helpful – the application will have already “given up” by the 
time the packet finally gets through. 
 
By lowering this value from its default value of 8, you can tell SNAP to “give up” sooner. A value of 0 
is treated the same as a value of 1 – a packet gets at least one chance to be delivered no matter what. 
 
If your connection link quality is low and it is important that every packet get through, a higher value 
here may help. However it may be appropriate to reevaluate your network setup to determine if it 
would be better to change the number of nodes in your network to either add more nodes to the mesh 
to forward requests, or reduce the number of nodes broadcasting to cut down on packet collisions. 
 
ID 20 – Mesh Routing Maximum Timeout 
This indicates the maximum time (in milliseconds) a route can “live.” This defaults to 0xEA60, or one 
minute. 
 

Page 98 of 202 SNAP Reference Manual Document Number 600-0007K 



Discovered mesh routes timeout after a configurable period of inactivity (see #23), but this timeout 
sets an upper limit on how long a route will be used, even if it is being used heavily. By forcing routes 
to be rediscovered periodically, the nodes will use the shortest routes possible. 
 
Note that you can set this timeout to zero (which will disable it) if you know for certain that your 
nodes are stationary, or have some other reason for needing to avoid periodic route re-discovery. 
 
You can use getInfo(14) to determine the size of a node’s route table, and getInfo(15) to monitor its 
use. 
 
ID 21 – Mesh Routing Minimum Timeout 
This is the minimum time (in milliseconds) a route will be kept. This defaults to 1000, or one second. 
 
ID 22 – Mesh Routing New Timeout 
This is the grace period (in milliseconds) that a newly discovered route will be kept, even if it is never 
actually used. This defaults to 5000, or five seconds. 
 
ID 23 – Mesh Routing Used Timeout 
This is how many additional milliseconds of “life” a route gets whenever it is used. This defaults to 
5000, or five seconds. 
 
Every time a known route gets used, its timeout gets reset to this parameter. This prevents active 
routes from timing out as often, but allows inactive routes to go away sooner. See also Parameter #20, 
which takes precedence over this timeout. 
 
ID 24 – Mesh Routing Delete Timeout 
This timeout (in milliseconds) controls how long “expired” routes are kept around for bookkeeping 
purposes. This defaults to 10000, or 10 seconds. 
 
ID 25 – Mesh Routing RREQ Retries 
This parameter controls the total number of retries that will be made when attempting to “discover” a 
route (a multi-hop path) over the mesh. This defaults to 3. 
 
ID 26 – Mesh Routing RREQ Wait Time 
This parameter (in milliseconds) controls how long a node will wait for a response to a Route Request 
(RREQ) before trying again. This defaults to 500, or a half second. 
 
Not that subsequent retries use longer and longer timeouts (the timeout is doubled each time). This 
allows nodes from further and further away time to respond to the RREQ packet. 
 
ID 27 – Mesh Routing Initial Hop Limit 
This parameter controls how far the initial “discovery broadcast” message is propagated across the 
mesh. 
 

SNAP Reference Manual Document Number 600-0007K Page 99 of 202 



If your nodes are geographically distributed such that they are always more than 1 hop away from their 
logical peers, then you can increase this parameter. Consequently, if most of your nodes are within 
direct radio range of each other, having this parameter at the default setting of 1 will use less radio 
bandwidth. 
 
If you set this parameter to zero, SNAP will make an initial attempt to talk directly to the destination 
node, on the assumption it is within direct radio range. (It will not attempt to communicate over any 
serial connection.) If the destination node does not acknowledge the message, and your Radio Unicast 
Retries and Mesh Routing Maximum Hop Limit are not set to zero, normal mesh discovery attempts 
will occur (including attempting routes over the serial connection). 
 
This means you can eliminate the overhead and latency required of mesh routing in environments 
where all your nodes are within direct radio range of each other. However it also means that if the 
Mesh Routing Initial Hop Limit is set to zero and there are times when mesh routing is necessary, 
those messages will suffer an additional latency penalty as the initial broadcast times out 
unacknowledged before route requests happen. 
 
This parameter should remain less than or equal to the next parameter, Mesh Routing Maximum 
Hop Limit. 
 
Also, although Portal (or SNAPconnect) are “one hop further away” than all other SNAP nodes on 
your network (they are on the other side of a “bridge” node), the SNAP code knows this, and will 
automatically give a “bonus hop” to this parameter’s value when using it to find nodes with addresses 
in the reserved Portal/SNAPconnect address range of 00.00.01 – 00.00.15. So, you can leave this 
parameter at its default setting of 1 (one hop) even if you use Portals and/or SNAPconnects. 
 
ID 28 – Mesh Routing Maximum Hop Limit 
To cut down on needless broadcast traffic during mesh networking operation (thus saving both power 
and bandwidth), you can choose to lower this value to the maximum number of physical hops across 
your network. The default value is 5. 
 
ID 29 – Mesh Sequence Number 
Reserved for future use. 
 
ID 30 – Mesh Override 
This is used to limit a node’s level of participation within the mesh network. 
 
When set to the default value of 0, the node will fully participate in the mesh networking. This means 
that not only will it make use of mesh routing, but it will also “volunteer” to route packets for other 
nodes. 
 
Setting this value to 1 will cause the node to stop volunteering to route packets for other nodes. It will 
still freely use the entire mesh for its own purposes. 
 

Page 100 of 202 SNAP Reference Manual Document Number 600-0007K 



This feature was added to better supports nodes that spend most of their time “sleeping.” If a node is 
going to be asleep, there may be no point in it becoming part of routes for other nodes while it is 
(briefly) awake. 
 
This can also be useful if some nodes are externally powered, while others are battery-powered. 
Assuming sufficient radio coverage (all the externally powered nodes can “hear” all of the other 
nodes), then the Mesh Override can be set to 1 in the battery powered nodes, extending their battery 
life at the expense of reducing the “redundancy” in the overall mesh network. 
 
NOTE – Enabling this feature on your bridge node means Portal will no longer be able to 
communicate with the rest of your network, regardless of how everything else is configured. No nodes 
in your network (except for your bridge node) will be able to receive commands or information from 
Portal or send commands or information to Portal. 
 
ID 31 – Mesh Routing LQ Threshold 
This allows for penalizing hops with poor Link Quality. 
 
Hops that have a link quality worse than (i.e. a higher value than) the specified threshold will be 
counted as two hops instead of one. This allows the nodes to choose (for example) a two-hop route 
with good link quality over a one-hop route with poor link quality. 
 
The default threshold setting of 127 is the highest valid value, so that no “one hop penalty” will ever 
be applied. 
 
See also NV Parameters #32, #39, and #27. 
 
ID 32 – Mesh Rejection LQ Threshold 
This allows for rejecting hops with poor link quality. 
 
Hops that have a link quality worse than (i.e. a higher value than) the specified threshold will be 
rejected as the node performs route requests. The default threshold setting of 127 is the highest valid 
value, so that all routes will be considered for mesh routing. 
 
See also NV Parameters #31, #39, and #27. 
 
ID 33 – Noise Floor 
The Carrier Sense and Collision Detect features work by checking the current ambient signal level 
before broadcasting (for Carrier Sense) and immediately after broadcasting (for Collision Detect) to 
determine whether some other node is broadcasting. In an environment with a lot of background noise, 
the noise floor can trigger false positives for these features, preventing the node from broadcasting, or 
causing it to endlessly rebroadcast packets. 
 
On platforms that do not allow pokes (or radioPokes) to adjust the noise floor level, NV Parameter 33 
can be used to define the signal strength that must be encountered to trigger the Carrier Sense and 
Collision Detect features. The parameter is in negative dBm, with a range from 0 to 127. Refer to your 

SNAP Reference Manual Document Number 600-0007K Page 101 of 202 



platform’s section at the end of this manual to determine whether this parameter applies to your 
platform. 
 
ID 34 through 38 – Reserved for Future Use 
Reserved for future Synapse use. 
 
ID 39 – Radio LQ Threshold 
This allows for ignoring packets with poor Link Quality. 
 
Link quality values range from a theoretical 0 (perfect signal, 0 attenuation) to a theoretical 127 (127 
dBm “down”). This parameter defaults to a value of 127, which makes it have no effect (you cannot 
receive a packet with a link quality “worse” than 127). 
 
If you lower this parameter from its default value of 127, you are in effect defining an “acceptance 
criteria” on all received packets. If a packet comes in with a link quality worse (higher) than the 
specified threshold, then the packet will be completely ignored. 
 
This gives you the option to ignore other nodes that are “on the edge” of radio range. The idea is that 
you want other (closer) nodes to take care of communicating to that node. 
 
Caution – if you set this parameter too low, your node may not accept any packets. 
 
ID 40 – SNAPpy CRC 
The 16-bit Cyclic Redundancy check (CRC) of the currently loaded SNAPpy script. 
 
Most users will not need to write to this NV parameter. If you do change it from its automatically 
calculated value, you will make the SNAP node think its copy of the SNAPpy script is invalid, and it 
will not use it. 
 
ID 41 – Platform 
This System NV parameter makes it easier to write scripts that work on more than one type of SNAP 
Node. Set this string parameter to some label that identifies your hardware platform.  
 
New RF100 SNAP Engines from Synapse will come with “RF100” in this parameter. Older RF100 
engines may have had “RFEngine” here. If you are working with SNAP-compatible radios or engines 
from another source, the parameter might not be loaded with any meaningful value. Furthermore, like 
other NV parameters the value can be changed. To make use of this field, it is the responsibility of the 
user to ensure that the value in the parameter is meaningful and consistent across your collection of 
nodes. 
 
In your script, you must include the following line:8 
from synapse.snapsys import * 

                                                 
8 The synapse.snapsys file must be imported, but may be imported indirectly. For example, if you import synapse.platforms 
to get a meaningful enumeration of GPIO pins for SNAP Engines, that script already imports synapse.snapsys, so you do 
not need to explicitly import it separately. 

Page 102 of 202 SNAP Reference Manual Document Number 600-0007K 



 
When a script is loaded into a node, the script is compiled for the node. At compile time the 
platform variable is loaded with the contents of NV parameter 41, which you can use to control 
which other SNAPpy modules get imported or what other code will be compiled. 
 
Because the variable is available at compile time (rather than only at run time), the compiler can 
optimize its code generation for the platform you are using, decreasing the code size and increasing the 
amount of space available for more complex scripts. The pinWakeup.py script, itself imported by the 
NewPinWakeupTest.py script, provides an example of this. 
 
If you do not import the synapse.snapsys module, the platform variable will not be defined. 
 
This parameter is not modified when you reset parameters to factory defaults. 
 
ID 42 through 49 – Reserved for Future Use 
Reserved for future Synapse use. 
 
ID 50 – Enable Encryption 
Control whether encryption is enabled, and what type of encryption is in use for firmware that 
supports multiple forms. The options for this field are: 

0 = Use no encryption. (This is the default setting.) 
1 = Use AES-128 encryption if you have firmware that supports it. 
2 = Use Basic encryption. 

 
If you set this to a value that indicates encryption should be used, but either an invalid encryption key 
is specified (in NV Parameter #51), or your firmware does not support the encryption mode specified, 
your transmissions will not be encrypted. 
 
SNAP versions before 2.4 did not include the option for Basic encryption, and nodes upgraded from 
those firmware versions may contain False or True for this parameter. Those values correspond to 0 
and 1 and will continue to function correctly. Basic encryption is not as secure as AES-128 encryption, 
but it is available in all nodes. 
 
If encryption is enabled and a valid encryption key is specified, all communication from the node will 
be encrypted, whether it is sent over the air or over a serial connection. Likewise, the node will expect 
that all communication to it is encrypted, and will be unable to respond to unencrypted requests from 
other nodes. If you have a node that you cannot contact because of a forgotten encryption key, you 
will have to reset the factory parameters on the node to reestablish contact with it. 
 
Even with a valid encryption key, encryption is not enabled until the node is rebooted. See the 
Encryption section in Section 6 for more details. 
 
ID 51 – Encryption Key 
The encryption key used by either AES-128 encryption or Basic encryption, if enabled. This NV 
Parameter is a string with default value of “”. If you are enabling encryption, you must specify an 

SNAP Reference Manual Document Number 600-0007K Page 103 of 202 



encryption key. Your encryption key should be complex and difficult to guess, and it should avoid 
repeated characters when possible. 
 
An encryption key must be exactly 16 bytes (128 bits) long to be valid. This parameter has no effect 
unless NV parameter #50 is also set to enable encryption. 
 
Even if NV parameter #50 is set for AES-128 encryption and parameter 51 has a valid encryption key, 
communications will not be encrypted unless the node is loaded with a SNAP firmware image that 
supports AES-128 encryption. Firmware images supporting AES-128 encryption will have “AES” in 
their filenames. 
 
Refer also to function getInfo() in the SNAPpy API section. 
 
ID 52 – Lockdown 
If this parameter is 0 (or never set at all), access is unrestricted. You can freely upload new scripts. 
 
If you set this parameter to 1, and then reboot the node (as you always have to do for any NV 
Parameter change to take effect), then the system enters a “lockdown” mode where over-the-air script 
erasure or upload is disallowed. 
 
Values other than 0 or 1 are reserved for future use, and should not be used. 
 
While in “lockdown” mode, you also cannot write to NV parameter #52 over-the-air (in other words, 
you cannot bypass the lockdown by remotely turning it off). 
 
Even in this mode, you can still perform all operations (including script upload or erasure) over the 
local Packet Serial link (assuming one is available). The lockdown only applies to over the air access. 
If you have disabled your UARTs and set this parameter, you will have to use Portal to reset your 
factory parameters to regain control of your node script. 
 
ID 53 – Maximum Loyalty 
This parameter, expressed in milliseconds, is valid only for the FHSS (frequency-hopping) firmware 
for the Si100x (including the RF300). It will be ignored on all other platforms. 
 
After transmitting or receiving on a particular frequency, a node will wait for a signal on the next 
expected frequency for the duration of the loyalty period before it begins scanning all frequencies for 
additional communications. 
 
If a node has transmitted or received a message and its loyalty period has not expired before it 
transmits its next message, it will transmit with a shorter preamble, expecting that the receiving node 
is listening on the appropriate channel within its own loyalty period. The shorter preamble allows for 
faster communications, at the risk of packets being missed by nodes that are not currently “loyal” to an 
expected channel. 
 
If you adjust the loyalty period, all nodes in the network should be set to the same value. Setting the 
value to 0 means that no node will ever expect a loyalty period: all broadcasts will begin with a full 

Page 104 of 202 SNAP Reference Manual Document Number 600-0007K 



preamble, and all radios will scan all frequencies for transmissions rather than expecting a 
transmission on any particular channel. The default value is 185. 
 
ID 54 through 59 – Reserved for Future Use 
Reserved for future Synapse use. 
 
ID 60 – Last Version Booted (Deprecated) 
At one time the system tracked this to allow “test driving” a newer demo version of the firmware, even 
after using up the “reboots remaining” with a previous version. The “demo policy” has since been 
changed such that even a reload of the same version of firmware restarts the countdown. 
 
ID 61 – Reboots Remaining 
In a standard (signed, non-demo) build, this parameter is always 32767 (this is the closest we could 
come to “infinity” in a 16-bit signed integer). 
 
In a standard build, this value does not “count down.” Normally you have unlimited reboots. 
 
In a demo build only, this value will “count down” with every reboot. When it reaches 0, the unit will 
go into a “crippled” mode, in which it will not run (or even load) SNAPpy scripts, but can still be 
“pinged.” (No, you cannot write to this parameter yourself to give yourself “more reboots.”) 
 
ID 62 – Reserved for Future Use 
Reserved for future Synapse use. 
 
ID 63 – Alternate Radio Trim value 
This is only used on some platforms. This parameter is not modified when you reset parameters to 
factory defaults. 
 
ID 64 – Vendor-Specific Settings 
Similar in concept to NV parameter #11, but this field is reserved for non-standard settings. For valid 
values, and their exact meaning, refer to the platform specific sections in section 10 of this manual. 
This parameter is not modified when you reset parameters to factory defaults. 
 
ID 65 – Clock Regulator 
In platforms that have sleep modes that do not use a crystal, NV parameter 65 allows you to adjust the 
regulation of the internal timer that controls sleep durations. The parameter does not apply to all 
platforms. See the platform-specific section for your platform to determine how to best adjust this 
value, if necessary. This value has no effect on sleep timings that are crystal-controlled. 
 
ID 66 – Radio Calibration Data 
In platforms that require extra calibration data for proper radio operation, NV parameter 66 is used to 
store this calibration data. The parameter does not apply to all platforms. See the platform-specific 
section for your platform to determine how to best adjust this value, if necessary. 
 

SNAP Reference Manual Document Number 600-0007K Page 105 of 202 



ID 67 through 127 – Reserved for Future Use 
Reserved for future Synapse use.  
 
ID 70 – Transmit Power Limit 
The Transmit Power Limit is a string that specifies, channel by channel, the maximum power level 
that can be transmitted on each channel. The units for the setting match those for the txPwr() function, 
ranging from 0 through 17 (with 17 being the highest power). They represent a cap, or governor, 
limiting how high the output can be on the specified channel, possibly reducing the specified power if 
txPwr() is set higher than the channel setting specified here. 
 
The value in the parameter is a string 16 bytes long, where the first byte represents the maximum 
power on channel 0, the second byte represents the maximum power on channel 1, and the 16th byte 
represents the maximum power on channel 15. For example, if you wanted to crank up the power to 
the maximum possible on all channels, you would use: 
saveNvParam(70,'\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11\x11') 
 
This parameter is only implemented on MC1321x-based hardware. 
 
ID 128 through 254 – Available for User Definition 
These are user-defined NV Parameters, and can be used for whatever purpose you choose. 
 
ID 255 – Reserved for Synapse Use 
Reserved for internal use. (0xFF means “blank” inside the actual NV storage.) 

Page 106 of 202 SNAP Reference Manual Document Number 600-0007K 



9. Example SNAPpy Scripts 
 
The fastest way to get familiar with the SNAPpy scripting language is to see it in use. Portal comes 
with several example scripts pre-installed in the snappyImages directory. 
 
Here is a list of the scripts preinstalled with Portal 2.4, along with a short description of what each 
script does. Take a look at these to get ideas for your own custom scripts. You can also copy these 
scripts, and use them as starting points. 
 
NOTE – some of these scripts are meant to be imported into other scripts. Also, some of these scripts 
are found in a “synapse” subdirectory inside the “snappyImages” directory. 

General Purpose Scripts 
 
Script Name What it does 
BatteryMonitor.py Demonstrates interfacing to an external voltage reference 

in order to determine battery power. 
BuiltIn.py (synapse.BuiltIn.py) Portal uses this script to provide doc strings and 

parameter assistance for all the built-in functions. You 
must not edit, move, or remove this file. 

buzzer.py Generates a short beep when the button is pressed. Also 
provides a “buzzer service” to other nodes. The example 
script DarkDetector.py shows one example of using this 
script. 

CommandLine.py An example of implementing a command line on the 
UART that is normally available on SNAP Engine pins 
GPIO9 through GPIO12. Provides commands for LED, 
relay, and seven-segment display control 

DarkDetector.py Monitors a photocell via an analog input, and displays a 
“percent darkness” value on the seven-segment display. 
Also requests a short beep from a node running the 
buzzer.py script when a threshold value is crossed. 

DarkroomTimer.py Operates a dark room enlarger light under user control 
datamode.py An example of using two nodes to replace a serial cable 
dataModeNV.py A more sophisticated example of implementing a 

wireless UART 
evalBase.py (synapse.evalBase.py) An importable script that adds a library of helpful 

routines for use with the Synapse evaluation boards. 
Board detection, GPIO programming, and relay control 
are just a few examples 

EvalHeartBeat.py Example of displaying multiple networking parameters 
about a node on a single seven-segment display 

gpsNmea.py Example decoding of data from a serial GPS 

SNAP Reference Manual Document Number 600-0007K Page 107 of 202 



Script Name What it does 
hardTime.py (synapse.hardTime.py) Helper script useful for SNAPpy benchmarking. NOTE 

– as of version 2.4, this script imports the correct 
“platform-specific” helper script. 

hexSupport.py (synapse.hexSupport.py) Helper script that can generate hexadecimal output 
i2cTests.py Demonstrates interacting with I2C devices 
ledCycling.py An example of using PWM.py. Varies the brightness of 

the LED on the Demonstration Boards 
ledToggle.py Simple example of toggling an LED based on a switch 

input 
LinkQualityRanger.py Radio range testing helper 
McastCounter.py Maintains and displays a two-digit count, incremented 

by button presses. Resets the count when the button is 
held down. Broadcasts “count changes” to any listening 
units, and also acts on “count changes” from other units. 

NewPinWakeupTest.py Demonstrates using the other Pin Wakeup related scripts 
nvparams.py (synapse.nvparams.py) Provides named enumerations for referencing NV 

parameters. 
pinWakeup.py 
(synapse.pinWakeup.py) 

An importable script that adds “wake up on pin change” 
functionality. NOTE – as of version 2.2, this script 
mainly just imports the correct “platform-specific” 
helper script. 

platforms.py (synapse.platforms.py) Import this to automatically import needed “platform 
dependent” scripts. These scripts enable you to code 
based on SNAP Engine GPIO pin numbers rather than 
tracking pin outputs on different SNAP Engine 
platforms. 

protoFlasher.py Just blinks some LEDs on the SN171 Proto Board. 
protoSleepcaster.py Like McastCounter.py but this script is only for the 

SN171 Proto Board, plus it goes to sleep between button 
presses 

PWM.py (synapse.PWM.py) An importable script that adds support for Pulse Width 
Modulation (PWM) on pin GPIO 0 on platforms based 
on the MC9S08GB60A chip from Freescale. 

servoControl.py A second example of using PWM.py. Controls the 
position of a standard hobby servo motor. 

sevenSegment.py Script providing support for the seven-segment display 
on the Synapse SN163 Bridge demonstration board for 
platforms that do not include the setSegments() built-in 
function. 

snapsys.py (synapse.snapsys.py) Required by Portal, do not edit or delete. Import this 
script to enable compile-time population of the platform 
and version variables. 

spiTests.py Demonstrates interacting with SPI devices. 
switchboard.py (synapse.switchboard.py) An importable script that defines some switchboard 

related constants (for readability) 

Page 108 of 202 SNAP Reference Manual Document Number 600-0007K 



Script Name What it does 
sysInfo.py Defines some constants for the getInfo() function 
Throughput.py Can be used to benchmark packet transfer between two 

units 
 

Scripts Specific to I2C 
 
Script Name What it does 
M41T81.py 
(synapse.M41T81.py) 

Demonstrates interfacing to a Clock Calendar chip via I2C 

CAT24C128.py 
(synapse.CAT24C128.py) 

Demonstrates interfacing to a serial EEPROM chip via I2C 

LIS302DL.py 
(synapse.LIS302DL.py) 

Demonstrates interfacing to an Accelerometer chip via I2C 

 

Scripts Specific to SPI 
 
Script Name What it does 
LTC2412.py 
(synapse.LTC2412.py) 

Demonstrates interfacing to an Analog to Digital Converter 
chip via SPI 

AT25FS010.py 
(synapse.AT25FS010.py) 

Demonstrates interfacing to a 128K FLASH Memory chip 
via SPI 

 

Scripts specific to the EK2100 Kit 
 
Refer to the EK2100 Users Guide for more information about these example scripts. 
 
Script Name What it does 
HolidayBlink.py Demo for the SN171 Proto Board in the EK2100 kit 
HolidayLightShow.py Demo for the USB SN132 in the EK2100 kit 
ManyMeter.py Another Proto Board demo from the EK2100 kit showing 

how the SNAP node can gather information and report it 
back to Portal for display, tracking, or processing. 

TemperatureAlarm.py Script for use on the SN171 Proto Board to demonstrate a 
temperature-sensing alarm system. 

TemperatureAlarmBridge.py Script for use by the bridge node in conjunction with the 
TemperatureAlarm.py script. 

 

SNAP Reference Manual Document Number 600-0007K Page 109 of 202 



Platform-Specific Scripts 
Scripts specific to the RF100 Platform 
 
These scripts are meant to be run on RF100 SNAP Engines (formerly known as RF Engines). 
Script Name What it does 
pinWakeupRF100.py 
(synapse.pinWakeupRF100.py) 

Pin Wakeup functionality specifically for the RF100 
Engine. (Imported automatically by pinWakeup.py) 

RF100.py (synapse.RF100.py) Platform specific defines and enumerations for RF100 
Engines. (Imported automatically by platforms.py) 

rf100HardTime.py 
(synapse.rf100HardTime.py) 

How to reference the clock on the RF100 SNAP Engines. 
(Imported automatically by hardTime.py) 

 
Scripts specific to the RF200 Platform 
 
These scripts are meant to be run on RF200 SNAP Engines (based on the ATMEL Atmega128RFA1 
chip). 
Script Name What it does 
pinWakeupATmega128RFA1.py 
(synapse.pinWakeupATmega128RFA1.py)

Pin Wakeup functionality specifically for nodes based on 
the Atmega128RFA1 chip (which includes the RF200). 
(Imported automatically by pinWakeup.py) 

RF200.py (synapse.RF200.py) Platform specific defines and enumerations for RF200 
Engines. (Imported automatically by platforms.py) 

rf200HardTime.py 
(synapse.rf200HardTime.py) 

How to reference the clock on the RF200 SNAP 
Engines. (Imported automatically by hardTime.py) 

 
Scripts specific to the RF300/RF301 Platform 
 
These scripts are meant to be run on RF300 and RF301 SNAP Engines (based on the Silicon Labs 
Si1000 chip). 
Script Name What it does 
pinWakeupRF300.py 
(synapse.pinWakeupRF300.py) 

Pin Wakeup functionality specifically for the RF300 
Engine. (Imported automatically by pinWakeup.py) 

RF300.py (synapse.RF300.py) Platform specific defines and enumerations for RF300 
Engines. (Imported automatically by platforms.py) 

rf300HardTime.py 
(synapse.rf300HardTime.py) 

How to reference the clock on the RF300 SNAP 
Engines. (Imported automatically by hardTime.py) 

 

Page 110 of 202 SNAP Reference Manual Document Number 600-0007K 



Scripts specific to the Panasonic Platforms 
 
These scripts are meant to be run on the corresponding Panasonic hardware platforms. 
 
Script Name What it does 
PAN4555.py Defines initialization routine to drive unavailable IO pins 

as low outputs or pull them as high inputs. These IO pins 
on the chip are unavailable on the module, but must be 
configured for efficient sleep. 

PAN4555_ledCycling.py Demonstrates extra PWMs on PAN4555 
PAN4555_PWM.py Controls the additional PWMs on a PAN4555 
PAN4555_SE.py Defines the GPIO pins on a PAN4555 SNAP Engine 
pinWakeupPAN4555_SE.py Configures the “wakeup” pins on a PAN4555 SNAP 

Engine. (Imported automatically by pinWakeup.py) 
PAN4561_ledCycling.py Demonstrates extra PWMs on PAN4561 
PAN4561_PWM.py Controls the additional PWMs on a PAN4561 
PAN4561_SE.py Defines the GPIO pins on a PAN4561 SNAP Engine 
pinWakeupPAN4561_SE.py Configures the “wakeup” pins on a PAN4561 SNAP 

Engine. (Imported automatically by pinWakeup.py) 
 

SNAP Reference Manual Document Number 600-0007K Page 111 of 202 



Scripts specific to the California Eastern Labs Platforms 
 
These scripts are meant to be run on the corresponding CEL hardware platform. 
 
Script Name What it does 
pinWakeupZIC2410.py Configures the “wakeup” pins on a ZIC2410. (Imported 

automatically by pinWakeup.py) 
ZIC2410_PWM.py 
(synapse.ZIC2410_PWM.py) 

Support routines for accessing the two pulse-width 
modulation pins on a ZIC2410. 

ZIC2410_SE.py 
(synapse.ZIC2410_SE.py) 

Platform specific defines and enumerations for SNAP 
Engines based on the ZICM2410 modules. (Imported 
automatically by platforms.py) 

ZIC2410EVB3.py Definitions for some of the hardware on the CEL EVB3 
Evaluation Board 

ZIC2410ledCycling.py Demonstrates the PWMs on the ZIC2410 
ZIC2410spiTests.py Demonstrates accessing the AT25FS010 chip built-in to 

the EVB1/2/3 Evaluation Boards, using SPI 
ZicCycle.py Blinks all the LEDs on the EVB3 board 
ZicDoodle.py Draws on the EVB1 LCD display, based on commands 

from another node running ZicDoodleCtrl.py. This script 
used functions deprecated as of release 2.4. 

ZicDoodleCtrl.py Uses the potentiometers on the EVB2 board to control an 
LCD display on an EVB1 board. This script used 
functions deprecated as of release 2.4. 

ZicDoodlePad.py Demonstrates the lcdPlot() built-in on a ZIC2410-LCD 
demonstration board. This script (along with that 
function) is deprecated. 

zicHardTime.py 
(synapse.zicHardTime.py) 

How to reference the clock on the nodes based on the 
ZIC2410 chips. (Imported automatically by hardTime.py) 

ZicLinkQuality.py A ZIC2410 counterpart to the original 
LinkQualityRanger.py 

ZicMcastCtr.py A ZIC2410 counterpart to the original MCastCounter.py 
script 

ZicMonitor.py Reads some ADCs on a CEL EVB1 Evaluation Board, 
plots the data in real-time on the EVB1 LCD display. This 
script used functions deprecated as of release 2.4. 

 

Page 112 of 202 SNAP Reference Manual Document Number 600-0007K 



Scripts specific to the ATMEL ATmega128RFA1 Platforms 
 
These scripts are meant to be run on the corresponding ATMEL hardware platform. See also the 
scripts specific to the RF200, which is based on the ATmega128RFA1 chip. 
 
Demos written for the ATMEL STK600 board will also run on a Dresden “RCB” board, but then any 
references to “LED color” are wrong (All the LEDs are red on the “RCB” board, compared to the 
red/yellow/green set on the STK600). 
 
Script Name What it does 
atFlasher.py Demonstrates light flashing on a Dresden RCB test 

board with an ATmega128RFA1 node. This sample 
script is deprecated and may not be included in future 
releases. 

atMcast.py Demonstrates participation of an Atmega128RFA1 
on a Dresden RCB test board in a group of nodes 
running McastCounter.py. This sample script is 
deprecated and may not be included in future 
releases. 

pinWakeupATmega128RFA1.py 
(synapse.pinWakeupATmega128RFA1.py)

Pin Wakeup functionality specifically for the 
ATmega128RFA1-based modules. (imported 
automatically by pinWakeup.py) 

STK600.py (synapse.STK600.py) Defines and LED control routines for the STK600 
board. This is imported by STK60demo.py. 

STK600demo.py Implements an up/down binary timer on the STK600 
demo board. Push the button to reverse the direction. 

 

SNAP Reference Manual Document Number 600-0007K Page 113 of 202 



Scripts specific to the SM700/MC13224 Platforms 
 
These scripts are meant to be run on the Synapse SM700 surface mount module, or the Freescale 
MC13224 chip on which it is based, or on a compatible board that uses one of the two. 
 
Script Name What it does 
MC13224_PWM.py Demonstrates Pulse Width Modulation on the 

TMR0/TMR1/TMR2 pins (GPIO8-10). For an example 
of using this script, see MC13224_ledCycling.py. 

MC13224_ledCycling.py Uses the PWM support routines in MC13224_PWM.py 
to vary the brightness of an LED attached to the 
TMR0(GPIO8) pin. By changing variable “TMR” within 
the script, the LED can be moved to either TMR1 
(GPIO9) or TMR2 (GPIO10). 

McastCounterSM700evb.py The classic MCastCounter example, this one uses the 
LEDs and the SW1 push button of a CEL Freestar Pro 
Evaluation board (EVB) 

 
 

Page 114 of 202 SNAP Reference Manual Document Number 600-0007K 



Scripts specific to the STM32W108xB Platforms 
 
These scripts are meant to be run on the DiZiC MB851 evaluation board, or on a compatible hardware 
design based on the underlying STM32W108CB and STM32W108HB chips. 
 
Script Name What it does 
STM32W108xB_Example1.py Simple example of how to blink LEDs and read a push 

button input from SNAPpy. The LED and button 
definitions assume the script is running on a DiZiC 
MB851 evaluation board. 

STM32W108xB_GPIO.py Some helper definitions and routines for working with 
the peripherals built into the ST Microelectronics 
STM32W108xB chips. For an example of using this 
script, see STM32W108xB_PWM.py 

STM32W108xB_PWM.py An example of using the 8 PWM channels (2 sets of 4) 
available on this part. For an example of using this 
script, see STM32W108xB_ledCycling.py 

STM32W108xB_ledCycling.py Uses the PWM support routines in 
STM32W108xB_PWM.py to vary the brightness of an 
LED attached to the PB6 (IO14) pin. By changing the 
script, the PWM functionality can be demonstrated on 
the other 11 PWM capable pins 

pinWakeupSTM32W108xB.py Shows how to implement advanced hardware features 
from SNAPpy scripts, in this case how to access the 
“wake up” functionality of the chip 

STM32W108xB_sleepTests.py An example of using the “wake up” capabilitites 
implemented in pinWakeupSTM32W108xB.py 

STM32W108xB_HardTime.py Demonstrates how to access a free running hardware 
timer (for example, for benchmarking purposes) 

LIS302DL.py Demonstrates how to access the accelerometer readings 
from a STMicroelectronics LIS302DL chip 

i2cTestsSTM32W108.py Demonstrates how to access various I2C devices, 
including the LIS302DL chip on the MB851 board 

McastCounterMB851evb.py The classic MCastCounter example, this one uses the 
two LEDs and the S1 push button of a DiZiC MB851  
Evaluation board 

 
 

SNAP Reference Manual Document Number 600-0007K Page 115 of 202 



Here is a second table listing some of the included scripts, this time organizing them by the techniques 
they demonstrate. This should make it easier to know which scripts to look at first. 
 
Technique Example scripts that demonstrate this technique 
Importing evalBase.py and using 
the helper functions within it 

CommandLine.py 
DarkDetector.py 
DarkRoomTimer.py 
EvalHeartBeat.py 
gpsNmea.py 
ledToggle.py 
LinkQualityRanger.py 
McastCounter.py 
protoSleepCaster.py 

Performing actions at startup, 
including using the @setHook() 
function to associate a user-
defined function with the 
HOOK_STARTUP event 

CommandLine.py 
DarkDetector.py 
DarkRoomTimer.py 
EvalHeartBeat.py 
gpsNmea.py 
ledToggle.py 
LinkQualityRanger.py 
McastCounter.py 
protoFlasher.py 
protoSleepCaster 

Performing actions when a 
button is pressed, including the 
use of monitorPin() to enable the 
generation of HOOK_GPIN 
events, and the use of 
@setHook() to associate a user-
defined routine with those events 

buzzer.py 
DarkRoomTimer.py 
gpsNmea.py 
ledToggle.py 
McastCounter.py 
protoSleepCaster.py 

Sending multicast commands LinkQualityRanger.py 
McastCounter.py 
protoSleepCaster.py 

Sending unicast commands DarkDetector.py 
Using global variables to 
maintain state between events 

DarkDetector.py 
DarkRoomTimer.py 
EvalHeartBeat.py 
gpsNmea.py 
ledToggle.py 
LinkQualityRanger.py 
McastCounter.py 
protoFlasher.py 
protoSleepCaster.py 

Page 116 of 202 SNAP Reference Manual Document Number 600-0007K 



Technique Example scripts that demonstrate this technique 
Controlling a GPIO pin using 
writePin(), etc. 

buzzer.py 
evalBase.py 
gpsNmea.py 
ledToggle.py 
protoFlasher.py 
protoSleepCaster.py 

Generating a short pulse using 
pulsePin() 

buzzer.py 

Reading an analog input using 
readAdc(), including auto-
ranging at run-time 

DarkDetector.py 

Performing periodic actions, 
including the use of @setHook() 
to associate a user defined 
routine with the HOOK_100MS 
event or other timed events 

buzzer.py 
DarkDetector.py 
DarkRoomTimer.py 
EvalHeartBeat.py 
gpsNmea.py 
LinkQualityRanger.py 
McastCounter.py 
protoFlasher.py 
protoSleepCaster.py 

Using the seven-segment display DarkRoomTimer.py 
evalBase.py 
EvalHeartBeat.py 
LinkQualityRanger.py 
McastCounter.py 
sevenSegment.py 

Deriving longer time intervals 
from the 100 millisecond event 

buzzer.py 
DarkRoomTimer.py 
EvalHeartBeat.py 
McastCounter.py 

Thresholding, including periodic 
sampling and changing the 
threshold at run-time 

DarkDetector.py 

Discovering another node with a 
needed capability 

DarkDetector.py 

Advertising a service to other 
wireless nodes 

buzzer.py 

Adding new capabilities by 
writing directly to processor 
registers (peek() and poke()) 

pinWakeup.py 
PWM.py 
[Platform]HardTime.py 

Writing parameters to Non-
volatile (NV) storage 

evalBase.py 
DatamodeNV.py 

SNAP Reference Manual Document Number 600-0007K Page 117 of 202 



Technique Example scripts that demonstrate this technique 
The use of “device types” as 
generic addresses, or to make a 
single script behave differently 
on different nodes 

buzzer.py 
DarkDetector.py 
evalBase.py 
hardTime.py 
sevenSegment.py 

Sleeping and waking up on a 
button press, importing and using 
pinWakeup.py 

protoSleepCaster.py 

Knowing when a RPC call has 
been sent out, by using 
HOOK_RPC_SENT. 

protoSleepCaster.py 

Distributing a single application 
across multiple nodes 

DarkDetector.py + buzzer.py 
TemperatureAlarm.py + TemperatureAlarmBridge.py

Monitoring link quality using the 
getLq() function 

LinkQualityRanger.py 

Parsing received serial data in a 
SNAPpy script 
(contrast with Transparent 
Mode) 

CommandLine.py 
gpsNmea.py 

Displaying hexadecimal data on 
the seven-segment display 

EvalHeartBeat.py 
McastCounter.py 
sevenSegment.py 

Displaying custom characters on 
the seven-segment display 

DarkRoomTimer.py 
EvalHeartBeat.py 

Configuring Transparent Mode 
AKA Data Mode 

datamode.py 
dataModeNV.py 

Varying LED brightness using 
Pulse Width Modulation 

ledCycling.py 
PAN4555_ledCycling.py 
PAN4561_ledCycling.py 
ZIC2410ledCycling.py 
MC13224_ledCycling.py 
MC13224_PWM.py 
STM32W108xB_LedCycling.py 

Controlling a servo motor using 
Pulse Width Modulation 

servoControl.py 

Writing a script so that it can run 
on multiple hardware platforms 

NewPinWakeup.py + 
pinWakeup.py + 
pinWakeupRFEngine.py + 
pinWakeupPAN4555_SE.py + 
pinWakeupPAN4561_SE.py + 
pinWakeupZIC2410.py 
pinWakeupSTM32W108xB.py 

Using external memory with a 
SNAP Engine 

i2cTests.py + CAT24C128.py, 
ZIC2410spiTests.py + AT25FS010.py 

Higher resolution ADC spiTests.py + LTC2412.py 

Page 118 of 202 SNAP Reference Manual Document Number 600-0007K 



10. Supported Platform Details 
 
In the remainder of this document, we present some of the low-level details of each platform (physical 
environment) you might be writing SNAPpy scripts for. 
 
Some variations are due to differences in physical I/O (both quantity and capability). Each platform 
specific section starts with information about the physical pins. 
 
Other variations between platforms are due to the varying amounts of RAM available. Here is a high-
level overview of the types of memory management that is going on “behind the scenes.” 
 
SNAP Buffers: The SNAP Protocol Stack uses a pool of “packet buffers.” 
 
Buffer Budgets: The “buffer pool” is shared between the various data sources, but no single source is 
allowed to use up all of the buffers. These numbers refer to how many buffers an individual data 
source is allowed to request. 
 
Dynamic Strings: Two pools of “string buffers” are used to service all the string operations. 
 
The last variations presented are focused around differences in the various SNAPpy built-ins. 
 
These are the currently supported platforms: 
• Synapse RF100 SNAP Engine 
• Freescale MC1321x chip 
• Panasonic PAN4555 module 
• Panasonic PAN4561 module 
• Panasonic PAN4555 SNAP Engine 
• Panasonic PAN4561 SNAP Engine 
• CEL ZIC2410 chip 
• CEL ZIC2410 SNAP Engine 
• ATMEL ATmega128RFA1 chip 
• Synapse RF200 SNAP Engine 
• Synapse SM200 Surface Mount module 
• Synapse RF266 module 
• Silicon Labs Si100x chip 
• Synapse RF300 SNAP Engine 
• Synapse SM300 Surface Mount module 
• Synapse RF301 SNAP Engine 
• Synapse SM301 Surface Mount module 
• Freescale MC13224 chip 
• Synapse SM700 Module 
• ST STM32W108CB chip 
• ST STM32W108HB chip 
 

SNAP Reference Manual Document Number 600-0007K Page 119 of 202 



Each of these is detailed in the following pages. Information is provided on: 
• Platform specs – performance/features 
• Package/pinout options – modules/carriers 

Page 120 of 202 SNAP Reference Manual Document Number 600-0007K 



Synapse RF100 
The original SNAP platform, formerly referred to as the RF Engine®. 

Form factor 
Currently only available in the SNAP Engine form factor, the RF100 supports 19 GPIO pins (GPIO_0 
to GPIO_18), each with different special abilities. 

GPIO pins 
Any of the 19 GPIO can be a digital input, or digital output. 

Wakeup pins 
Six of the 19 GPIO support a hardware “wakeup” capability; see GPIO 1, 2, 5, 6, 9 and 10. 

Analog inputs 
Eight of the 19 GPIO can be used as analog inputs; see GPIO 11-18 (but notice the order in the table 
on the following page). 

UART0 
Four pins support UART 0; see GPIO 3-6. If you do not need RTS/CTS signals, then GPIO 5 and 6 
are available for other usage. 

UART1 
Four pins support UART 1; see GPIO 7-10. If you do not need RTS/CTS signals, then GPIO 9 and 10 
are available for other usage. 

CBUS 
Three pins can optionally be used for CBUS; see GPIO 12-14. You will also need one “CBUS Chip 
Select” pin per external CBUS device. Any available GPIO pin can be used for this purpose. 

SPI 
Three pins can optionally be used for SPI; see GPIO 12-14. You will also need one “SPI Chip Select” 
pin per external SPI device. Any available GPIO pin can be used for this purpose. 

I2C 
Two pins can optionally be used for I2C; see GPIO 17 and 18. 

PWM 
One pin can optionally be used as a Pulse Width Modulation (PWM) output, see GPIO 0. 

Seven-segment displays 
The seven-segment LED displays on the SN163 and SN111 demo boards connect to GPIO 13 and 14. 

Sleep Modes 
There are two sleep modes available on the RF100 SNAP Engines. 

0 =  the radio is put completely to sleep. (The processor measures time.) 
• Parameter ticks is in units of 1.024 seconds 
• The timing in this node is much less accurate (+/- 30%) 

SNAP Reference Manual Document Number 600-0007K Page 121 of 202 



• This mode uses less power than mode 1 
• You can sleep for up to 32767 ticks using this mode 

 
1 =  the radio stays awake just enough to “count down” the sleep interval 

• Parameter ticks is in units of 1.0 seconds 
• The timing in this mode is more accurate 
• This mode uses more power than mode 0 
• You can sleep for up to 1073 ticks using this mode 

Timers 
Normally the RF100 uses timer 2 in the hardware for its system clock. Feature bit 0x40 of NV 
Parameter 11 can be set to instruct SNAP to use timer 1 instead. This affects the availability of PWM 
on associated pins. Refer to the Freescale documentation for details on how to make use of this. 
 

Page 122 of 202 SNAP Reference Manual Document Number 600-0007K 



Synapse RF100 Pin Assignments 
 

Pin No.  Name  Description 

1  GND  Power Supply 

2  GPIO0_TPM1CH2  GPI/O, or Timer1 Channel 2 (ex. PWM out) 

3  GPIO1_KBI0  GPI/O, Keyboard Interrupt 

4  GPIO2_KBI1  GPI/O, Keyboard Interrupt 

5  GPIO3_RX_UART0  GPI/O, or UART0 Data In 

6  GPIO4_TX_UART0  GPI/O, or UART0 Data Out 

7  GPIO5_KBI4_CTS0  GPI/O, Keyboard Interrupt, or UART0 CTS output 

8  GPIO6_KBI5_RTS0  GPI/O, Keyboard Interrupt, or UART0 RTS input 

9  GPIO7_RX_UART1  GPI/O, or UART1 Data In 

10  GPIO8_TX_UART1  GPI/O, or UART1 Data Out 

11  GPIO9_KBI6_CTS1   GPI/O, Keyboard Interrupt, or UART1 CTS output 

12  GPIO10_KBI7_RTS1  GPI/O, Keyboard Interrupt, or UART1 RTS input 

13  GPIO11_AD7  GPI/O or Analog In 

14  GPIO12_AD6  GPI/O, Analog In, CBUS CDATA, or SPI MOSI 

15  GPIO13_AD5  GPI/O, Analog In, CBUS CLK, or SPI CLK 

16  GPIO14_AD4  GPI/O, Analog In, CBUS RDATA, or SPI MISO 

17  GPIO15_AD3  GPI/O, or Analog In 

18  GPIO16_AD2  GPI/O, or Analog In 

19  GPIO17_AD1  GPI/O, Analog In, or I2C SDA 

20  GPIO18_AD0  GPI/O, Analog In, or I2C SCL 

21  VCC  Power Supply 

22  PTG0/BKDG  Background Debug Communications 

23  RESET*  Module Reset, Active Low 

24  GND  Power Supply 

 
 
SNAP Protocol Memory Usage 
 
Global Buffer Pool:  12 
UART Budget:  4 
Mesh Routing Budget: 4 
RPC Budget:   4 
Radio Budget:  4 
STDOUT Budget:  2 
 

SNAP Reference Manual Document Number 600-0007K Page 123 of 202 



SNAPpy Virtual Machine Memory Usage 
 
Number of Tiny Strings:  7 
Tiny String Size:   up to 8 characters 
Number of Medium Strings: 6 
Medium String Size:   up to 62 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
Platform-Specific SNAPpy Built-In Functionality 

Built-in function lcdPlot(): 
On Synapse RF100 Engines, function lcdPlot() has no effect. 

Built-in function pulsePin(): 
On Synapse RF100 Engines, negative durations are in units of approximately 1.1 microsecond. 

Built-in function random(): 
On Synapse RF100 Engines, the pseudo-random number generation is done completely in software. 

Built-in function readAdc() 
On the Synapse RF100 Engine, channels 0-7 correspond to one of the eight external analog input pins. 
Channel 8 refers to the internal high voltage reference. Channel 9 refers to the internal low voltage 
reference. 
 
The mapping of Analog Input Channels to GPIO pins is as follows: 
Analog Input Channel GPIO Pin 
0 18 
1 17 
2 16 
3 15 
4 14 
5 13 
6 12 
7 11 
 
This function returns an integer value 0-1023 (these are 10-bit analog to digital converters). Since the 
full-scale voltage is 3.3 volts, each step represents about 3.2 millivolts. 

Built-in function setRadioRate(): 
On Synapse RF100 Engines, setRadioRate() has no effect. Only the standard 250 Kbps rate is 
supported. 

Built-in function sleep(): 
On Synapse RF100 Engines, there are two sleep modes supported. 

Page 124 of 202 SNAP Reference Manual Document Number 600-0007K 



 
Mode 0 uses the internal Real Time Interrupt (RTI) as a time base. It has the lowest current 
consumption, but the worst accuracy (+/- 30%). 
 
For sleep mode 0, each “tick” is normally 1.024 seconds. The exceptions are when you specify a 
negative number of ticks, as shown in the following table: 
 
“ticks” value Actual sleep duration 
-1 8 ms 
-2 32 ms 
-3 64 ms 
-4 128 ms 
-5 256 ms 
-6 512 ms 
-7 1024 ms 
 
Specifying a negative value beyond -7 is treated as a -7. 
 
Mode 1 uses the radio as the sleep timer. Each “tick” is 1 second. Specifying a negative sleep duration 
when sleeping using mode 1 has no effect. 

UART Performance 
The minimum bps value that can be used on the Synapse RF100 Engine is 20 bps. 
 
The following are the only legal combinations of data bits, stop bits, and parity on the Synapse RF100 
SNAP Engine: 
 
initUart(uart, baud) # default to 8N1 
initUart(uart, baud, 8, 'N', 1) # 8 data bits, no parity 
initUart(uart, baud, 8, 'E', 1) # 8 data bits, even parity 
initUart(uart, baud, 8, 'O', 1) # 8 data bits, odd parity 
initUart(uart, baud, 7, 'E', 1) # 7 data bits, even parity 
initUart(uart, baud, 7, 'O', 1) # 7 data bits, odd parity 
 
In particular, notice that 7 data bits with NO parity is not supported (hardware limitation). 

Vendor-specific settings: 
None as of version 2.4 
 
Performance Metrics 

Time to awaken from sleep: 
< 10 milliseconds 

Time to startup from power-on: 
250 milliseconds 
 

SNAP Reference Manual Document Number 600-0007K Page 125 of 202 



SNAP has to wait for the radio to power up. 

Maximum rate a SNAPpy script can toggle a GPIO pin: 
1.9 kHz 
 
Keep in mind that as a general rule, SNAPpy scripts should not be looping, the 1.9 kHz rate is only 
attainable if the node is doing nothing else (for example, no radio or serial port communication).  

Maximum rate for readAdc() calls: 
maximum 5000 samples/second 
 
NOTE! – This measurement was taken using a script that did not actually do anything with the data. 
You will also have to take into consideration any numeric processing required (data thresholding, etc.), 
as well as the need to actually store the data someplace. 

Propagation Delay Tests 
We used a pair of scripts such that one node would monitor an input pin, and when that pin changed 
state the node would make an RPC call to a second node. The second node (upon receiving the RPC 
call) would then drive one of its output pins to the same state as the first node’s input pin. 
 
Unicast Propagation Delay: Due to the collision avoidance mechanism used by SNAP, the average 
propagation delay is 5 milliseconds. 
 
Multicast Propagation Delay: With a TTL = 1, the pin-to-pin propagation delay was measured at 4 
milliseconds. With a TTL > 1, the RPC message incurs a >20 millisecond delay for each hop, plus 
local retransmit delay. 

I2C Byte Transfer Time 
The actual I2C transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 264 µs per byte. 

SPI Byte Transfer Time 
The actual SPI transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 140 µs per byte. 

Virtual Machine Performance 
Instructions Per Second (IPS): 11400 
 

Page 126 of 202 SNAP Reference Manual Document Number 600-0007K 



Freescale MC1321x Chip 
This section applies to you if you are running SNAP on a “raw” MC1321x chip. 
 
If you are running SNAP on a Panasonic PAN4555 or PAN4561 module which is based on the 
MC1321x, please refer instead to one of the following sections. 
 
The MC1321x port of SNAP implements 33 “IO” pins. (Refer to the SNAP 2.2 Migration Guide if 
you do not understand the difference between an “IO” and a “GPIO.”) 
 
The mapping is as follows: 
 
PTA0-PTA7 are mapped to IO 0-7. These pins also support “wakeup” capability. 
 
PTB0-PTB7 are mapped to IO 8-15. These pins can also be used as analog inputs. 
 
PTC0-PTC7 are mapped to IO 16-23. PTC0/IO 16 can be used as the UART 1 TX. PTC1/IO 17 can be 
used as the UART 1 RX. PTC4 is used as the PA_EN (Power Amplifier Enable) signal when enabled 
by the corresponding Feature Bit (look at NV Configuration Parameter 11). 
 
PTD2 is mapped to IO 24. This pin can also be used for full PWM. 
 
PTD4-PTD7 are mapped to IO 25-28. These four pins can do PWM too, but can only vary the duty 
cycle – the pulse frequency rate is fixed to 1 millisecond, because by default the underlying hardware 
timer is providing the “1 millisecond time base” to the rest of the SNAP firmware. Setting feature bit 
0x40 in NV Parameter 11 causes the system to use a different internal clock, allowing these four pins 
to take full advantage of PWM. 
 
PTE0-PTE1 are mapped to IO 29-30. PTE0/IO29 can also be used as the UART 0 TX. PTE1/IO 30 
can be used as the UART 0 RX. 
 
PTG1-PTG2 are mapped to IO 31-32. 
 
The “missing” pins PTD0, PTD1, PTD3, and PTE2-PTE7 are used inside the MC1321x chip to 
interface to the built-in radio. Since they could never be used for external hardware, we did not give 
them “IO” numbers. 

Some other hardware mappings: 
PTA4/IO 4 can be the CTS output for UART 0. 
PTA5/IO 5 can be the RTS input for UART 0. 
PTA6/IO 6 can be the CTS output for UART 1. 
PTA7/IO 7 can be the RTS input for UART 1. 
The emulated I2C signals are on pins PTB0/IO 8 (SCK) and PTB1/IO 9 (SDA). 
The emulated SPI signals are on pins PTG2/IO 32 (SCLK), PTG1/IO 31(MOSI), and PTD6/IO 27 
(MISO). 

SNAP Reference Manual Document Number 600-0007K Page 127 of 202 



Timers 
Normally the MC1321x uses timer 2 in the hardware for its system clock. Feature bit 0x40 of NV 
Parameter 11 can be set to instruct SNAP to use timer 1 instead. This affects the availability of PWM 
on associated pins. Refer to the Freescale documentation for details on how to make use of this. 
 
MC1321x IO Mapping 

Processor Port Pin  SNAPpy IO    Processor Port Pin  SNAPpy IO 

PTA0/KBD0  0    PTC1/RxD2  17 

PTA1/KBD1  1    PTC2  18 

PTA2/KBD2  2    PTC3  19 

PTA3/KBD3  3    PTC4  20 

PTA4/KBD4  4    PTC5  21 

PTA5/KBD5  5    PTC6  22 

PTA6/KBD6  6    PTC7  23 

PTA7/KBD7  7    PTD2/TPM1CH2  24 

PTB0/AD0  8    PTD4/TPM2CH1  25 

PTB1/AD1  9    PTD5/TPM2CH2  26 

PTB2/AD2  10    PTD6/TPM2CH3  27 

PTB3/AD3  11    PTD7/TPM2CH4  28 

PTB4/AD4  12    PTE0/TxD1  29 

PTB5/AD5  13    PTE1/RxD1  30 

PTB6/AD6  14    PTG1/XTAL  31 

PTB7/AD7  15    PTG2/EXTAL  32 

PTC0/TxD2  16       

 
NOTE – in the above table we are using the chip manufacturer’s naming scheme. Because of this, the 
first UART is designated with a 1 and the second UART is designated with a 2. Within SNAPpy, we 
refer to these as UARTs 0 and 1. 

Page 128 of 202 SNAP Reference Manual Document Number 600-0007K 



SNAP Protocol Memory Usage 
 
Global Buffer Pool:  12 
UART Budget:  4 
Mesh Routing Budget: 4 
RPC Budget:   4 
Radio Budget:  4 
STDOUT Budget:  2 
 
SNAPpy Virtual Machine Memory Usage 
 
Number of Tiny Strings:  7 
Tiny String Size:   up to 8 characters 
Number of Medium Strings: 6 
Medium String Size:   up to 62 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
Platform Specific SNAPpy Built-In Functionality and Performance Metrics 
 
Because the MC1321x chip contains essentially the same 9S08 based processor as the one used on the 
Synapse RF100 SNAP Engine, it matches the Synapse RF100 Engine in capability. Refer to the 
appropriate sections in the RF100 Engine portion of the document. 

SNAP Reference Manual Document Number 600-0007K Page 129 of 202 



Panasonic PAN4555 SNAP Module 
Because it is based on the Freescale MC1321x chip, the PAN4555 wireless module can also run 
SNAP. 
 
NOTE – If you are using a SNAP Engine based on the PAN4555 module, skip ahead to the next 
section. 
 
This section is for users putting the PAN4555 module directly down on their board. Because the 
hardware is not in the SNAP Engine form factor, there is no such concept as GPIO. You should write 
your script using plain “IO” numbering (Refer to the SNAP 2.2 Migration Guide if you don’t know 
what this means). 
 
It is important to note that not all of the MC1321x pins are brought out on the PAN4555 module. The 
table on the following page summarizes the correspondence between SNAPpy IO, module pin, and the 
underlying processor pin. 

Timers 
Normally the PAN4555 uses timer 2 in the hardware for its system clock. Feature bit 0x40 of NV 
Parameter 11 can be set to instruct SNAP to use timer 1 instead. This affects the availability of PWM 
on associated pins. Refer to the Freescale documentation for details on how to make use of this. 
 

Page 130 of 202 SNAP Reference Manual Document Number 600-0007K 



PAN4555 Module IO Mapping 
 

PAN4555 Module Pin Number  PAN4555 Module Pin Name  SNAPpy IO Number 

1, 9, 17, 25, 31  GND  N/A 

2  PTB0  8 

3  PTB1  9 

4  PTB2  10 

5  PTB7  15 

6  VREF  N/A 

7  PTA7  7 

8  PTA5  5 

10  PTA6  6 

11  PTG0/BKGD  N/A 

12  PTG1  31 

13  PTG2  32 

14  CLKO  N/A 

15  PTC0  16 

16  PTC1  17 

18  PTC5  21 

19  PTC3  19 

20  PTC2  18 

21  PTE0  29 

22  PTE1  30 

23  VDDA  N/A 

24, 26  VCC  N/A 

27  RESET  N/A 

28  PTD6  27 

29  PTD4  25 

30  PTD2  24 

32  EXTANT  N/A 

SNAP Reference Manual Document Number 600-0007K Page 131 of 202 



Panasonic PAN4555 (SNAP Engine Form Factor) 
In addition to the existing line of Synapse RF Engines, SNAP 2.2 is also available as a SNAP Engine 
based on Panasonic’s PAN4555 module. Like the other SNAP Engines, this PAN4555 board has 24 
pins, and supports 19 GPIO. These two types of modules are largely interchangeable. However, there 
are a few functional differences to be aware of: 
 
Fewer “Wakeup” Pins 
On a Synapse RF100 Engine, GPIO pins GPIO1, GPIO2, and GPIO5 can be used to wake the module 
from “sleep mode.” On a Panasonic PAN4555 Wireless Module, GPIO pins 1, 2, and 5 cannot wake 
the processor. Note that GPIO pins 1, 2, and 5 can be used as inputs, and they can be monitored. Only 
the “wakeup” functionality is missing. 
 
GPIO pins 6, 9, and 10 can be used to wake from sleep mode on both Synapse RFEs and PAN4555 
wireless modules. 
 
Fewer ADC Input Pins 
On a Synapse RF100 Engine, GPIO pins GPIO11 through GPIO18 can all be used as Analog to 
Digital Converter (ADC) inputs. On the PAN4555 Wireless Module, only GPIO 11, 16, 17, and 18 
support ADC. This means only ADC channels 0, 1, 2, and 7 provide live readings. 
 
You cannot “cheat” and read/write 8 GPIO with a single poke() 
On a Synapse RF100 Engine, GPIO pins GPIO11 through 18 are all mapped to the same I/O register 
on the microcontroller. This means these pins can be used to easily implement an 8-bit wide data bus 
(see for example script “lcd8bit.py”). On the Panasonic PAN4555, the 4 missing ADC pins 
(mentioned above) affect this “data bus” as well. You can still write to the 8-bit wide data register, but 
only 4 of the pins controlled by that register are actually brought out to the real world. 
 
Two Additional PWM Output Pins 
On a Synapse RF100 Engine, only GPIO 0 can perform Pulse Width Modulation (PWM). On the 
PAN4555 Wireless Module, GPIO pins 14 and 15 can also do limited PWM. 
 
The PWM limitation on these two pins (GPIO 14 and 15) has to do with the frequency of the pulse 
that can be modulated. On these two pins, the pulses always occur every 1 millisecond. SNAPpy 
scripts can affect the width of the pulses, but not the rate at which they occur. 
 
Refer to example script PAN4555_ledCycling.py for one example of using these additional PWM 
pins. 
 
If you need a pulse rate different than 1 per millisecond (for example, you are doing servo motor 
control), you will have to use GPIO 0. 

Page 132 of 202 SNAP Reference Manual Document Number 600-0007K 



getInfo() Differences 
On a getInfo(0) call, the parameter value of 0 requests a “vendor code.” 
 
On a Synapse RFE, getInfo(0) returns 0 (meaning “Synapse”). 
 
On a PAN4555, getInfo(0) returns 2 (meaning “Freescale”). 
 
On a getInfo(3) call, the parameter value of 3 requests a “platform code.” The PAN4555 returns a 
value of 5, indicating MC1321x (the chipset the PAN4555 is based on). 
 
SNAPpy scripts can use the getInfo() function to adapt themselves to the board they find themselves 
running on. See also section 5 of this document, where an alternate method is explained. 
 
Sleep() considerations 
For most efficient sleeping, it is important for all the chip’s pins to be configured before sleeping – not 
just the pins brought out by the SNAP Engine. Refer to the initUnusedIO() function in the 
synapse.PAN4555.py sample script as an example of how to do this. 
 
For Advanced Users Only 
Here are the exact pin changes from a Synapse RF100 to a Panasonic PAN4555 when using the 
SNAPpy GPIO import scheme. 

SNAPpy 
GPIO 

Processor pin used on RFE  Processor pin used on 
PAN4555 

1  Port A Bit 0  Port C Bit 3 

2  Port A Bit 1  Port C Bit 2 

5  Port A Bit 4  Port C Bit 5 

12  Port B Bit 6  Port G Bit 1 

13  Port B Bit 5  Port G Bit 2 

14  Port B Bit 4  Port D Bit 6 

15  Port B Bit 3  Port D Bit 4 

SNAP Reference Manual Document Number 600-0007K Page 133 of 202 



Pin Configuration of a PAN4555 in SNAP Engine Format 
Pins that differ from Synapse RF100 Engines are highlighted in bold. 

Pin No.  Name  Description 

1  GND  Power Supply 

2  GPIO0_TPM1CH2  GPI/O or Timer1 Channel 2 (ex. PWM out) 

3  GPIO1  GPI/O 

4  GPIO2  GPI/O 

5  GPIO3_RX_UART0  GPI/O or UART0 Data In 

6  GPIO4_TX_UART0  GPI/O or UART0 Data Out 

7  GPIO5_CTS0  GPI/O or UART0 CTS output 

8  GPIO6_KBI5_RTS0  GPI/O, Keyboard Interrupt, or UART0 RTS input 

9  GPIO7_RX_UART1  GPI/O or UART1 Data In 

10  GPIO8_TX_UART1  GPI/O or UART1 Data Out 

11  GPIO9_KBI6_CTS1   GPI/O, Keyboard Interrupt, or UART1 CTS output 

12  GPIO10_KBI7_RTS1  GPI/O, Keyboard Interrupt, or UART1 RTS input 

13  GPIO11_AD7  GPI/O or Analog In  

14  GPIO12  GPI/O, CBUS CDATA, or SPI MOSI 

15  GPIO13  GPI/O, CBUS CLK, or SPI CLK 

16  GPIO14_TPM2CH3 

GPI/O, CBUS RDATA, SPI MISO 

 or Timer2 Channel 3 (ex. limited PWM out) 

17  GPIO15_TPM2CH1  GPI/O, or Timer2 Channel 1 (ex. limited PWM out) 

18  GPIO16_AD2  GPI/O, or Analog In 

19  GPIO17_AD1  GPI/O, Analog In, or I2C SDA 

20  GPIO18_AD0  GPI/O, Analog In, or I2C SCL 

21   VCC  Power Supply 

22  PTG0/BKDG  Background Debug Communications 

23  RESET*  Module Reset, Active Low 

24  GND  Power Supply 

Page 134 of 202 SNAP Reference Manual Document Number 600-0007K 



PAN4555 GPIO Assignments 
(GPIO assignments defined in PAN4555_SE.py) 
 

SNAPpy GPIO  Processor Port  PAN4555 
Module Pin 

SNAPpy 
IO Num 

GPIO_0  PTD2/TPM1CH2  30  24 

GPIO_1  PTC3/SCL  19  19 

GPIO_2  PTC2/SDA  20  18 

GPIO_3  PTE1/RxD1  22  30 

GPIO_4  PTE0/TxD1  21  29 

GPIO_5  PTC5  18  21 

GPIO_6  PTA5/KBD5  8  5 

GPIO_7  PTC1/RxD2  16  17 

GPIO_8  PTC0/TxD2  15  16 

GPIO_9  PTA6/KBD6  10  6 

GPIO_10  PTA7/KBD7  7  7 

GPIO_11  PTB7/AD7  5  15 

GPIO_12  PTG1/XTAL  12  31 

GPIO_13  PTG2/EXTAL  13  32 

GPIO_14  PTD6/TPM2CH3  28  27 

GPIO_15  PTD4/TPM2CH1  29  25 

GPIO_16  PTB2/AD2  4  10 

GPIO_17  PTB1/AD1  3  9 

GPIO_18  PTB0/AD0  2  8 

 

Vendor-specific settings: 
None as of version 2.4.9 
 
Performance Metrics 
Because the PAN4555 module contains at its heart essentially the same 9S08 based processor as the 
one used on the Synapse RF100 Engine, you can use the performance metrics given in the RF100 
Engine section of the document. 

SNAP Reference Manual Document Number 600-0007K Page 135 of 202 



Panasonic PAN4561 (SNAP Engine Form Factor) 
The PAN4561 utilizes the same core processor as the original RFE and PAN4555 (the Freescale 
HCS08). In fact, the PAN4561 utilizes the same MC13213 integrated IC (HCS08 plus radio front end) 
as the PAN4555.  
 
As such, the PAN4561 will use a firmware version designed for all modules based on the Freescale 
MC1321x series of chipsets. This same firmware will run on the PAN4555, PAN4561, etc. 
 
The version of SNAP software developed for the PAN4561 follows the same GPIO structure of the 
PAN4555 for the first 18 GPIO pins. 
 
However, there are a few functional details to be aware of: 
 
Increased Number of GPIO Pins 
The PAN4561 has a total of 33 available GPIO pins. These include: 
• 8 Analog-to-Digital (ADC) pins 
• UARTs 
• 8 Keyboard Interrupt pins (KBI) 
• Pulse-Width Modulated (PWM) output pins 
 
Platform Specific Settings 
SNAPpy NV-Param #41 is used to store the platform name. For this module the name is ‘PAN4561’. 
This value can be modified by the user. However, this has the potential to affect SNAPpy script 
functionality. The platform name will normally be set during the initial programming of the module at 
the factory. 
 
SNAPpy NV-Param #63 stores the trim value for the radio transceiver’s crystal oscillator (not to be 
confused with the separate trim value related to the HCS08 MCU). If this value is not set, then the 
radio will be configured to use the default value- typically 0x7E (see MC1321x reference manual for 
details). The trim value will be set during the initial programming of the module at the factory.  
 
SNAP feature bits are used to control a number of things, including module specific settings. For the 
PAN4561 mounted onto a SNAPpy Engine carrier, a feature bit has be used to specify that a power 
amplifier exists and that this PA will be disabled before the module enters into a sleep state (and re-
enabled upon waking). The 6th bit (0x20) of Non-Volatile Parameter (NV-Param) #11 is used to store 
this particular setting. The appropriate feature bits will be set during initial programming at the 
factory. This setting has no effect unless the module is mounted on a SNAP Engine carrier board or 
Pin 52 and 45 are tied together (See following section for details). 
 
None of these values will be reset when executing the ‘Factory Default NV Params’ menu option 
within the Portal software. 

Page 136 of 202 SNAP Reference Manual Document Number 600-0007K 



Platform Specific Hardware Configuration 

Low-Noise Amplifier High-Gain Mode (HGM) => Radio Transceiver GPIO- 3:  
The LNA located on the PAN4561 module supports a high-gain mode. This can be enabled or disabled 
by using GPIO-3 of the MC1321x’s radio transceiver.  

HGM State  GPIO‐3 

Enabled  High 

Disabled  Low 

 
This GPIO pin can be read and/or controlled by using SNAP’s peekRadio() and pokeRadio() built-in 
functions. This pin is driven high during the startup process when SNAP Feature Bit 5 (0x20) is set. 
 
Refer to the reference manual for the MC1321x and PAN4561 for details regarding memory locations 
and pin behavior. 

Power Amplifier Enable/Disable (PA_EN) 
The Power Amplifier located on the PAN 4561 module can be enabled or disabled by manipulating 
external pin 52. Setting this pin high will enable the Power Amplifier.  

PA State  Pin 52 

Enabled  High 

Disabled  Low 

 
NOTE: When the PAN4561 is mounted onto a SNAP Engine carrier board, pin 52 and pin 45 
(SNAPpy Raw IO 20/ PTC4) are connected together. This allows the PA to be enabled/disabled by 
manipulating SNAPpy IO 20 (PTC4). This pin is driven high during the startup process when SNAP 
Feature Bit 5 (0x20) is set. 

Timers 
Normally the PAN4561 uses timer 2 in the hardware for its system clock. Feature bit 0x40 of NV 
Parameter 11 can be set to instruct SNAP to use timer 1 instead. This affects the availability of PWM 
on associated pins. Refer to the Freescale documentation for details on how to make use of this. 
 
ADC Pins 
8 ADC (Analog-to-Digital) pins are available for use on the PAN 4561. This is like the Synapse 
RF100 SNAP Engines, but dislike the PAN4555 that only brings out 4 ADC pins. 
 
Low Power Settings (LNA/PA) 
The PAN4561 module includes a Low-Noise Amplifier (for receiving) and Power Amplifier (for 
transmitting). This power amplifier needs to be placed in a disabled mode in order for the entire 
module to reach low power operation. The SNAP core will disable the PA during the sleep process 
and will re-enable once the system has emerged from sleep. The user does not need to take any action. 
 

SNAP Reference Manual Document Number 600-0007K Page 137 of 202 



The LNA is set to a high-gain mode and the PA is enabled by default during startup when feature bit 5 
(0x20) is set and module pin 45 is tied to pin 52. 
 
Default UART remains UART1 
The default UART is still designated as UART1. This is consistent with SNAP ports to other devices. 
I2C Emulation vs. Hardware pins 
The hardware I2C pins designated as SCL and SDA are assigned to GPIO pins 1 and 2 respectively. 
However, hardware I2C is not currently enabled within the SNAP core. Instead, the pins associated 
with SNAPs I2C software emulation (GPIO 17 and 18) remain unchanged from the Synapse RFE and 
PAN4555. 
 
Additional PWM Output Pins 

PWM on GPIO 0, 14, 15, 31, and 32 
On a Synapse RF Engine, only GPIO 0 can perform Pulse Width Modulation (PWM). On the 
PAN4555 Wireless Module, GPIO pins 14 and 15 can also do limited PWM. On the PAN4561 GPIO 
pins 31 and 32 can also do limited PWM. 
 
The PWM limitation on these four pins (GPIO 14, 15, 31, 32) has to do with the frequency of the pulse 
that can be modulated. On these pins, the pulses occur every 1 millisecond. SNAPpy scripts can affect 
the width of the pulses, but not the rate at which they occur. If you need a pulse rate different than 1 
per millisecond (for example, you are doing servo motor control), you will have to use GPIO 0. 
 
Refer to example script PAN4561_ledCycling.py for one example of using some of these additional 
PWM pins. 
 
getInfo() Differences 
A call to the SNAP function getInfo() with a parameter value of 0 will request a “vendor code.” 
 
On a Synapse RFE, getInfo(0) returns 0 (meaning “Synapse”). 
 
On a PAN4561, getInfo(0) returns 2 (meaning “Freescale”). 
 
On a getInfo(3) call, the parameter value of 3 requests a “platform code.” The PAN4561 returns a 
value of 5, indicating MC1321x (the chipset the PAN4561 is based on). 
 
SNAPpy scripts can use the getInfo() function to adapt themselves to the board they find themselves 
running on. See also section 5 of this document, where an alternate method is explained. 
 
Please refer to the PAN 4561 Product Specification from Panasonic and the MC1321x Reference 
Manual from Freescale for more information regarding pin and module functionality. 
 

Page 138 of 202 SNAP Reference Manual Document Number 600-0007K 



 PAN4561 GPIO Assignments 
(GPIO assignments defined in PAN4561_SE.py) 

 
Bold indicates the pins that are the same on the PAN 4555 and 4561 

SNAPpy GPIO  Processor Port  PAN4561 Pin 
SNAPpy 
IO Num 

GPIO_0  PTD2/TPM1CH2  6  24 

GPIO_1  PTC3/SCL  11  19 

GPIO_2  PTC2/SDA  10  18 

GPIO_3  PTE1/RxD1  47  30 

GPIO_4  PTE0/TxD1  46  29 

GPIO_5  PTC5  44  21 

GPIO_6  PTA5/KBD5  36  5 

GPIO_7  PTC1/RxD2  9  17 

GPIO_8  PTC0/TxD2  8  16 

GPIO_9  PTA6/KBD6  35  6 

GPIO_10  PTA7/KBD7  34  7 

GPIO_11  PTB7/AD7  19  15 

GPIO_12  PTG1/XTAL  25  31 

GPIO_13  PTG2/EXTAL  26  32 

GPIO_14  PTD6/TPM2CH3  4  27 

GPIO_15  PTD4/TPM2CH1  2  25 

GPIO_16  PTB2/AD2  14  10 

GPIO_17  PTB1/AD1  13  9 

GPIO_18  PTB0/AD0  12  8 

GPIO_19  PTA0/KBD0  41  0 

GPIO_20  PTA1/KBD1  40  1 

GPIO_21  PTA2/KBD2  39  2 

GPIO_22  PTA3/KBD3  38  3 

GPIO_23  PTA4/KBD4  37  4 

GPIO_24  PTB3/AD3  15  11 

GPIO_25  PTB4/AD4  16  12 

GPIO_26  PTB5/AD5  17  13 

GPIO_27  PTB6/AD6  18  14 

GPIO_28  PTC4  45  20 

GPIO_29  PTC6  43  22 

GPIO_30  PTC7  42  23 

GPIO_31  PTD5/TPM2CH2  3  26 

GPIO_32  PTD7/TPM2CH4  5  28 

SNAP Reference Manual Document Number 600-0007K Page 139 of 202 



Pin Functionality for the PAN4561 Module 
 

Processor Port  PAN4561 
Pin 

SNAPpy 
IO Num 

SNAPpy 
GPIO 

PTA0/KBD0  41  0  GPIO_19 

PTA1/KBD1  40  1  GPIO_20 

PTA2/KBD2  39  2  GPIO_21 

PTA3/KBD3  38  3  GPIO_22 

PTA4/KBD4  37  4  GPIO_23 

PTA5/KBD5  36  5  GPIO_6 

PTA6/KBD6  35  6  GPIO_9 

PTA7/KBD7  34  7  GPIO_10 

PTB0/AD0  12  8  GPIO_18 

PTB1/AD1  13  9  GPIO_17 

PTB2/AD2  14  10  GPIO_16 

PTB3/AD3  15  11  GPIO_24 

PTB4/AD4  16  12  GPIO_25 

PTB5/AD5  17  13  GPIO_26 

PTB6/AD6  18  14  GPIO_27 

PTB7/AD7  19  15  GPIO_11 

PTC0/TxD2  8  16  GPIO_8 

PTC1/RxD2  9  17  GPIO_7 

PTC2/SDA  10  18  GPIO_2 

PTC3/SCL  11  19  GPIO_1 

PTC4  45  20  GPIO_28 

PTC5  44  21  GPIO_5 

PTC6  43  22  GPIO_29 

PTC7  42  23  GPIO_30 

PTD2/TPM1CH2  6  24  GPIO_0 

PTD4/TPM2CH1  2  25  GPIO_15 

PTD5/TPM2CH2  3  26  GPIO_31 

PTD6/TPM2CH3  4  27  GPIO_14 

PTD7/TPM2CH4  5  28  GPIO_32 

PTE0/TxD1  46  29  GPIO_4 

PTE1/RxD1  47  30  GPIO_3 

PTG1/XTAL  25  31  GPIO_12 

PTG2/EXTAL  26  32  GPIO_13 

 

Page 140 of 202 SNAP Reference Manual Document Number 600-0007K 



Another view of the same data (PAN4561) 
 

PAN4561 
Pin 

Processor Port   SNAPpy 
IO Num 

SNAPpy 
GPIO 

2  PTD4/TPM2CH1  25  GPIO_15 

3  PTD5/TPM2CH2  26  GPIO_31 

4  PTD6/TPM2CH3  27  GPIO_14 

5  PTD7/TPM2CH4  28  GPIO_32 

6  PTD2/TPM1CH2  24  GPIO_0 

8  PTC0/TxD2  16  GPIO_8 

9  PTC1/RxD2  17  GPIO_7 

10  PTC2/SDA  18  GPIO_2 

11  PTC3/SCL  19  GPIO_1 

12  PTB0/AD0  8  GPIO_18 

13  PTB1/AD1  9  GPIO_17 

14  PTB2/AD2  10  GPIO_16 

15  PTB3/AD3  11  GPIO_24 

16  PTB4/AD4  12  GPIO_25 

17  PTB5/AD5  13  GPIO_26 

18  PTB6/AD6  14  GPIO_27 

19  PTB7/AD7  15  GPIO_11 

25  PTG1/XTAL  31  GPIO_12 

26  PTG2/EXTAL  32  GPIO_13 

34  PTA7/KBD7  7  GPIO_10 

35  PTA6/KBD6  6  GPIO_9 

36  PTA5/KBD5  5  GPIO_6 

37  PTA4/KBD4  4  GPIO_23 

38  PTA3/KBD3  3  GPIO_22 

39  PTA2/KBD2  2  GPIO_21 

40  PTA1/KBD1  1  GPIO_20 

41  PTA0/KBD0  0  GPIO_19 

42  PTC7  23  GPIO_30 

43  PTC6  22  GPIO_29 

44  PTC5  21  GPIO_5 

45  PTC4  20  GPIO_28 

46  PTE0/TxD1  29  GPIO_4 

47  PTE1/RxD1  30  GPIO_3 

 

SNAP Reference Manual Document Number 600-0007K Page 141 of 202 



Pin Configuration of a PAN4561 in SNAP Engine Format 
Pins that differ from Synapse RF Engines are highlighted in bold. 

Pin No.  Name  Description 

1  GND  Power Supply 

2  GPIO0_TPM1CH2  GPI/O or Timer1 Channel 2 (ex. PWM out) 

3  GPIO1  GPI/O 

4  GPIO2  GPI/O 

5  GPIO3_RX_UART0  GPI/O or UART0 Data In 

6  GPIO4_TX_UART0  GPI/O or UART0 Data Out 

7  GPIO5_CTS0  GPI/O or UART0 CTS output 

8  GPIO6_KBI5_RTS0  GPI/O, Keyboard Interrupt, or UART0 RTS input 

9  GPIO7_RX_UART1  GPI/O or UART1 Data In 

10  GPIO8_TX_UART1  GPI/O or UART1 Data Out 

11  GPIO9_KBI6_CTS1   GPI/O, Keyboard Interrupt, or UART1 CTS output 

12  GPIO10_KBI7_RTS1  GPI/O, Keyboard Interrupt, or UART1 RTS input 

13  GPIO11_AD7  GPI/O or Analog In  

14  GPIO12  GPI/O, CBUS CDATA, or SPI MOSI 

15  GPIO13  GPI/O, CBUS CLK, or SPI CLK 

16  GPIO14_TPM2CH3 

GPI/O, CBUS RDATA, SPI MISO 

 or Timer2 Channel 3 (ex. limited PWM out) 

17  GPIO15_TPM2CH1  GPI/O, or Timer2 Channel 1 (ex. limited PWM out) 

18  GPIO16_AD2  GPI/O, or Analog In 

19  GPIO17_AD1  GPI/O, Analog In, or I2C SDA 

20  GPIO18_AD0  GPI/O, Analog In, or I2C SCL 

21   VCC  Power Supply 

22  PTG0/BKDG  Background Debug Communications 

23  RESET*  Module Reset, Active Low 

24  GND  Power Supply 

Page 142 of 202 SNAP Reference Manual Document Number 600-0007K 



Vendor-specific settings: 
NV Parameter 64 is used on the PAN4561. 
 
Bit 0x0001 – Indicates PAN4561 module is older (Rev B) hardware, and requires special handling for 
I/O differences. 
 
Users should verify this bit is set to 1 for the older units, and set to 0 for the newer (Rev C) units. 
 
Performance Metrics 
 
Because the PAN4561 module contains at its heart essentially the same 9S08 based processor as the 
one used on the Synapse RF Engine, you can use the performance metrics given in the RF Engine 
section of the document. 

SNAP Reference Manual Document Number 600-0007K Page 143 of 202 



California Eastern Labs ZIC2410 Chip and Module 
In addition to modules built on a SNAP Engine footprint, you will find SNAP running on CEL chips 
(ZIC2410) and modules (ZICM2410P0, without a power amplifier, and ZICM2410P2, with a power 
amplifier). Versions with the power amplifier require SNAP firmware version 2.2.16 or higher. See 
the following section for details unique to the SNAP Engine form factor. 
 
The default setting for NV parameters is to assume that the power amplifier is available. Users running 
on the original (non-PA) hardware will need to clear the “PA” Feature Bit (0x10). SNAP modules with 
the hardware amplifier will be labeled ZICM2410P2, while those without the amplifier will be labeled 
ZICM2410P0. 
 
For example, if your feature bits are currently 0x1F, then a saveNvParam(11, 0x0F) will clear the 
“PA” bit. 
 
The following table summarizes the IO mapping on the ZIC2410 chip. 
 
ZIC2410 IO Mapping 
Processor Port Pin (P0)  SNAPpy IO    Processor Port Pin (P1)  SNAPpy IO    Processor Port Pin (P3)  SNAPpy IO 

P0.0  0    P1.0/RXD1  8    P3.0/RXD0  16 

P0.1  1    P1.1/TXD1  9    P3.1/TXD0  17 

P0.2  2    P1.2  10    P3.2/INT0  18 

P0.3  3    P1.3  11    P3.3/INT1  19 

P0.4  4    P1.4  12    P3.4/RTS0/ SPIDI  20 

P0.5  5    P1.5*  13    P3.5/CTS0/ SPIDO  21 

P0.6  6    P1.6*  14    P3.6/RTS1/ 
PWM2/SPICLK 

22 

P0.7  7    P1.7  15    P3.7/CTS1/ PWM3  23 

 
The same IO numbering scheme applies to the ZICM2410P0 and ZICM2410P2 modules, but be aware 
that not all of the chip’s pins are brought out of the module. Specifically, P1.2 (IO 10) and P1.5 (IO 
13) are not brought out, and so cannot be used in your module scripts. (You can use these pins if you 
are running SNAP on the bare ZIC2410 chip.) 
 
Additionally, P1.6 (IO 14) and P1.7 (IO 15) are available on the ZICM2410P0 modules, but are not 
connected on the ZICM2410P2 modules, as they are used internally to control the power amplifier. 
 
Separate Analog Input Pins 
Unlike many of the SNAP platforms, the analog input pins on the ZIC2410 do not overlap any of the 
digital IO or other peripherals. You still use the readAdc(channel) SNAPpy built-in to access the four 
ACHx channels on the ZIC2410. 
 

Page 144 of 202 SNAP Reference Manual Document Number 600-0007K 



I2C Emulation 
The ZIC2410 has no I2C hardware, but SNAP emulates I2C (I2C master only) in software, using the 
following two pins: 
 
I2C SDA is emulated using P1.3 / SNAPpy IO 11 
 
I2C CLK is emulated using P1.4 / SNAPpy IO 12 
 
Please refer to the CEL ZIC2410 and ZICM2410 data sheets for more information on the pinouts and 
capabilities of these parts. 
 
Memory Usage 
 
In the current version of ZIC2410 code, AES-128 encryption support has an impact on the amount of 
RAM available. 

Memory Usage without AES-128 Support 
Here are the settings in ZIC2410 builds without AES-128 encryption support: 

SNAP Protocol Memory Usage: 
 
Global Buffer Pool:  20 
UART Budget:  6 
Mesh Routing Budget: 6 
RPC Budget:   6 
Radio Budget:  6 
STDOUT Budget:  4 

SNAPpy Virtual Machine Memory Usage: 
 
Number of Tiny Strings:  14 
Tiny String Size:   up to 16 characters 
Number of Medium Strings: 8 
Medium String Size:   up to 126 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
 

SNAP Reference Manual Document Number 600-0007K Page 145 of 202 



Memory Usage with AES-128 Support 
Here are the settings in ZIC2410 builds with AES-128 encryption support: 

SNAP Protocol Memory Usage: 
 
Global Buffer Pool:  16 
UART Budget:  6 
Mesh Routing Budget: 6 
RPC Budget:   6 
Radio Budget:  6 
STDOUT Budget:  4 

SNAPpy Virtual Machine Memory Usage: 
 
Number of Tiny Strings:  7 
Tiny String Size:   8 characters 
Number of Medium Strings: 6 
Medium String Size:   62 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
Platform Specific SNAPpy Functionality 

Audio Enable: 
Feature bit 0x80 in NV Parameter 11 is available on the ZIC2410, allowing two ZIC2410-based SNAP 
nodes to transmit and receive audio data across a SNAP network. Each end of such a network must 
have this feature enabled, though any other nodes used to form a mesh network to forward these 
communications do not have to be enabled. 

Carrier Sense: 
The Carrier Sense function (NV Parameter 16) does not affect nodes based on the ZIC2410. This 
platform has this type of functionality built into the hardware. 

Built-in functions cbusRd() and cbusWr(): 
These functions have no effect on the ZIC2410.  

Built-in function lcdPlot(): 
Built-in function lcdPlot() is fully functional in the ZIC2410 builds. For it to be of any use, you must 
connect the same type of LCD as used on the CEL EVB1 Evaluation Board, and you must wire it up in 
the same way. Refer to the CEL EVB1 Data Sheets for more information. 

Built-in functions peek() and poke(): 
Use negative address values to peek and poke special function registers. See the peek() and poke() 
description for more details. 

Page 146 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in functions peekRadio() and pokeRadio(): 
These functions are not necessary on the ZIC2410. The internal radio registers are in the main memory 
space of the ZIC2410, and can be read or written using the regular peek() and poke() functions. 

Built-in function pulsePin(): 
On the ZIC2410, negative durations are in units of approximately 1.63 microsecond. 

Built-in function random(): 
On the ZIC2410, the pseudo random number generation is done in hardware, not software. 

Built-in function readAdc() 
On the ZIC2410, channels 0-3 correspond to direct reads of one of the four external analog input pins. 
Channels 4 and 5 are differential versions of the channel 0/1 pair, and the channel 2/3 pair. Channel 6 
is based on the internal temperature of the ZIC2410. Channel 7 is connected to an internal battery 
monitor circuit. Channel 8 refers to the internal high voltage reference. Channel 9 refers to the internal 
low voltage reference. 
 
This function normally returns an integer value 0-255 (these are 8-bit analog to digital converters). 
 
The ZIC2410 hardware also supports reading an uncalibrated 16-bit value. You can take these 
alternate readings by adding 10 to the channel number. 
 
The following table summarizes the ADC related options on the ZIC2410: 
 
Channel Meaning Channel Number 

for 8-bit 
calibrated read 

Channel Number 
for 16-bit 
uncalibrated read 

ACH0 0 10 
ACH1 1 11 
ACH2 2 12 
ACH3 3 13 
Differential read 
from ACH0/ACH1 

4 14 

Differential reading 
from ACH2/ACH3 

5 15 

Internal Temperature 6 16 
Battery Monitor 7 17 
High Reference 8 18 
Low Reference 9 19 
 
Refer to the ZIC2410 datasheets for more information. 
 
NOTE – The ADC on this chip is 1.5 volts. You should not scale it off VCC. 
 
NOTE – SNAPpy only supports signed integers (-32768 to 32767), so you will need to account for 
that when performing calculations from raw sensor readings > 32767. 

SNAP Reference Manual Document Number 600-0007K Page 147 of 202 



 
A raw reading of 0x8000 will look like -32768 to SNAPpy. 0x8001 will be interpreted as -32767, 
0xFFFE will be -2, and 0xFFFF will be -1. 
 
To compensate, you will likely need to adjust for this at the point you try to actually use the results of 
readAdc(10) – readAdc(19). 
 
For example, in your Portal script you might need a function like the following: 
 
def signedToUnsigned(value):  
    if value > 0: 
        return value # already a positive number, no adjustment needed 
 
    unsignedValue = 65535 + value + 1 
    # if you are on a processor with >= 32-bit integers, you can just say 65536 + 
value 
  
    return unsignedValue 
 
In other programming languages, like C or C++, you can do what is called a cast: 
adjustedValue = (unsigned int) signedValue. 
 

Built-in function setRadioRate(): 
On the ZIC2410, setRadioRate() supports values of 0, 1, and 2. The resulting data rates are as follows: 
 
setRadioRate() parameter Radio Data Rate 
0 250 Kbps 
1 500 Kbps 
2 1 Mbps 
 
Radio rate 0 is compatible with any 802.15.4 SNAP radio using rate 0. Any other rate may not work 
with any non-ZIC2410 radio, and will only work with a ZIC2410 radio working at the same rate. 

Built-in function sleep(): 
On ZIC2410, there are three sleep modes supported. Unlike on some of the other platforms, these 
sleep modes do not differ in accuracy or tick units. Instead they differ in how they treat I/O pins, how 
they recover from sleep, and how much current they draw while sleeping. 
 
Mode 0 maintains all I/O pins while sleeping, and wakes up normally after the requested seconds have 
elapsed, or an external interrupt occurs. 
 
Mode 1 does not maintain I/O while sleeping, and instead of waking up, it completely reboots after the 
requested seconds have elapsed, or an external interrupt occurs. 
 
Mode 2 does not maintain I/O while sleeping, and also reboots instead of truly waking up. In addition, 
this sleep mode does not support timed sleep. The only way to exit a mode 2 sleep is via one of the 
external interrupt pins (EXT0 or EXT1). 

Page 148 of 202 SNAP Reference Manual Document Number 600-0007K 



 
NOTE – The ZICM2410P2, which includes a power amplifier, requires that you have P3.2 (pin 18) 
and P3.3 (pin 19) pulled high (CEL recommends a 10 KΩ pull-up resistor between VCC and the pins) 
in order to prevent internal interrupts from waking the module prematurely when sleep modes 1 and 2 
are used. 
 
For more information on the sleep modes of the ZIC2410, refer to the manufacturers data sheets. 
 
In each mode, one tick is one second. The maximum sleep duration for timed sleep on the ZIC2410 is 
256 seconds. Time values larger than 256 will be reduced by modulo 256 (e.g., values of 258 or 514 
would both result in 2-second sleeps). No “negative” sleep durations are supported. 
 
NOTE – The ZIC2410 data sheets refer to 4 “power modes,” where 0 is awake, and “power modes” 1-
3 correspond to SNAPpy sleep modes 0-2. 
 
Performance Metrics 
 
Here are the results of some performance measurements, which may help you gauge if SNAPpy can 
address your application’s timing requirements. 
 
These results are for the California Eastern Labs ZIC2410. 

Time to awaken from sleep (mode 0): 
< 200 microseconds 

Time to startup from power-on: 
< 60 milliseconds 

Maximum rate a SNAPpy script can toggle a GPIO pin: 
528.5 Hz 
 
Keep in mind that as a general rule, SNAPpy scripts should not be looping, the above rate is only 
attainable if the node is doing nothing else (for example, no radio or serial port communication).  

Maximum rate for readAdc() calls: 
maximum 696 samples/second 
 
NOTE! – This measurement was taken using a script that did not actually do anything with the data. 
You will also have to take into consideration any numeric processing required (data thresholding, etc.), 
as well as the need to actually store the data someplace. 

I2C Byte Transfer Time 
The actual I2C transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 710 µs per byte. 

SNAP Reference Manual Document Number 600-0007K Page 149 of 202 



SPI Byte Transfer Time 
The actual SPI transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 1600 µs (1.6 ms) per byte. 

Virtual Machine Speed 
SNAP 2.2 Instructions Per Second (IPS): 1770 

Page 150 of 202 SNAP Reference Manual Document Number 600-0007K 



California Eastern Labs ZIC2410 (SNAP Engine Form Factor) 
SNAP Engines based on the ZICM2410P2 are available. All the details appropriate for the chip- and 
module-based SNAP Modules apply to module-based SNAP Engines, with the following additions. 
 
SNAP Engines based on the ZIC2410 should not be used on the Synapse SN111 End Device board. 
The power-up state of the pins conflicts with the relay controls on that board. 
 
Just as the module exposes fewer pins than the chip, the SNAP Engine based on the module is further 
reduced. Pin 10 and pins 12 through 15 are not brought out to GPIO pins on the SNAP Engine 
footprint. 
 
Separate Analog Input Pins 
Unlike many of the SNAP platforms, the analog input pins on the ZIC2410 do not overlap any of the 
digital IO or other peripherals. On SNAP Engines based on the ZICM2410, the analog pins are not 
available by default. You must enable each analog pin you want to use by jumpering one pair of pads 
and cutting the trace between another pair of pads on the underside of the SNAP Engine, which 
disables the associated pin as a digital I/O. 
 

Analog Channel SNAP Engine GPIO Pin Short Pad Cut Trace on Pad 
ACH0 Pin 14 R1 R6 
ACH1 Pin 13 R2 R7 
ACH2 Pin 12 R3 R8 
ACH3 Pin 11 R4 R5 

 
Once enabled on the hardware, you can read the analog channel as an 8-bit calibrated value or a 16-bit 
uncalibrated value, just as you can with the modules when they are not on the SNAP Engine form 
factor. 
 

SNAP Reference Manual Document Number 600-0007K Page 151 of 202 



Pin Configuration of a ZICM2410P2 in SNAP Engine Format 
Engine Pin 

No. 
SNAPpy 
IO No. 

Name  Description 

1    GND  Power Supply 

2  11  GPIO0_P1.3  GPIO_0 

3  18  GPIO1_INT0_P3.2  GPIO_1 or interrupt 

4  19  GPIO2_INT1_P3.3  GPIO_2 or interrupt 

5  16  GPIO3_RXD0_UART0_P3.0  GPIO_3 or UART0 Data In 

6  17  GPIO4_TXD0_UART0_P3.1  GPIO_4 or UART0 Data Out 

7  21  GPIO5_CTS0_SPIDO_P3.5  GPIO_5 or UART0 CTS Output or SPI MOSI 

8  20  GPIO6_RTS0_SPIDI_P3.4  GPIO_6 or UART0 RTS Input or SPI MISO 

9  8  GPIO7_RXD1_UART1_P1.0  GPIO_7 or UART1 Data In 

10  9  GPIO8_TXD1_UART1_P1.1  GPIO_8 or UART1 Data Out 

11  23  GPIO9_CTS1_PWM3_P3.7  GPIO_9 or UART1 CTS output or PWM3 

12  22  GPIO10_RTS1_PWM2_SPICLK_P3.6  GPIO_10 or UART1 RTS input or PWM2 or SPI SCLK 

13  7 (or 3)  GPIO11_P0.7 (or ACH3)  GPIO_11 (or Analog In if pads jumped and trace cut) 

14  6 (or 2)  GPIO12_P0.6 (or ACH2)  GPIO_12 (or Analog In if pads jumped and trace cut) 

15  5 (or 1)  GPIO13_P0.5 (or ACH1)  GPIO_13 (or Analog In if pads jumped and trace cut) 

16  4 (or 0)  GPIO14_P0.4 (or ACH0)  GPIO_14 (or Analog In if pads jumped and trace cut) 

17  3  GPIO15_P0.3  GPIO_15 

18  2  GPIO16_P0.2  GPIO_16 

19  1  GPIO17_P0.1  GPIO_17 

20  0  GPIO18_P0.0  GPIO_18 

21     VCC  Power Supply 

22    ISP  In‐System Programming Line 

23    RESET*  Module Reset, Active Low 

24    GND  Power Supply 

 
 
 
 
 

Page 152 of 202 SNAP Reference Manual Document Number 600-0007K 



ATMEL ATmega128RFA1 
In addition to modules built on the SNAP Engine footprint, you will find SNAP running on ATMEL 
chips. See the following section for details unique to the SNAP Engine form factor. 

IO pins 
The ATmega128RFA1 supports 38 IO pins. Any of the 38 IO can be a digital input, or digital output. 

Wakeup pins 
Seventeen of the 38 IO support a hardware “wakeup” capability. See IO 0-7, 8-11, 16, and 20-23. 
Setting the unit to wake from an edge-triggered interrupt on INT4-INT7 (SNAPpy IOs 20-23) will 
work, but will result in higher power consumption during sleep. If you must have an edge-triggered 
wake signal, it is recommended you use a different pin. 

Analog inputs 
Eight of the 38 IO can be used as analog inputs. See IO 24-31. 

UART0 
Four pins support UART 0, see IO 16, 17, 20, and 21. If you do not need RTS/CTS signals, then IO 20 
and 21 are available for other usage. 

UART1 
Four pins support UART 1, see IO 10, 11, 12, and 23. If you do not need RTS/CTS signals, then IO 12 
and 23 are available for other usage. 

SPI 
Three pins can optionally be used for SPI. See IO 28-30. 
 
NOTE – these are not the hardware SPI pins. SNAPpy SPI is done via software emulation. 
You will also need one “SPI Chip Select” pin per external SPI device. Any available IO pin can be 
used for this purpose. 

I2C 
Two pins can optionally be used for I2C, see IO 24 and 25. 
NOTE – these are not the hardware I2C pins. SNAPpy I2C is done via software emulation. 

PWM 
Eight pins can optionally be used as Pulse Width Modulation (PWM) outputs, see IO 4-7, 19-21, and 
37. 
 
The table on the following page summarizes the IO mapping on the ATmega128RFA1 chip. 
 
You will notice that the “IO” numbering scheme chosen simply steps through the available ports in 
alphabetical order: ports B, D, E, F, and G. (There is no port A or port C on an ATmega128RFA1). 

SNAP Reference Manual Document Number 600-0007K Page 153 of 202 



ATmega128RFA1 Port mappings 
Processor Port Pin  SNAPpy IO    Processor Port Pin  SNAPpy IO 

PB0 PCINT0  0    PE3 RTS0 OC3A AIN0  19 

PB1 PCINT1  1    PE4 INT4 OC3B  20 

PB2 PCINT2  2    PE5 INT5 OC3C  21 

PB3 PCINT3  3    PE6 INT6  22 

PB4 PCINT4 OC2  4    PE7 INT7 ICP3  23 

PB5 PCINT5 OC1A  5    PF0 ADC0 I2C_SCL  24 

PB6 PCINT6 OC1B  6    PF1 ADC1 I2C_SDA  25 

PB7 PCINT7 OC1C OC0A  7    PF2 ADC2  26 

PD0 INT0  8    PF3 ADC3  27 

PD1 INT1  9    PF4 ADC4  28 

PD2 INT2 RXD1  10    PF5 ADC5  29 

PD3 INT3 TXD1  11    PF6 ADC6  30 

PD4 CTS1 ICP1  12    PF7 ADC7  31 

PD5 RTS1  13    PG0  32 

PD6  14    PG1  33 

PD7  15    PG2  34 

PE0 RXD0 PCINT8  16    PG3  35 

PE1 TXD0  17    PG4  36 

PE2 CTS0  18    PG5 OC0B  37 

 
More “Wakeup” Pins 
 
On an ATMEL ATmega128RFA1 Wireless Module, any of the following IOs can be used to wake the 
processor: 
 
IO0 –IO7: Map to PCINT0 – PCINT7 
IO8 –IO11: Map to INT0 – INT3 
IO16: Maps to PCINT8 
IO20 –IO23: Map to INT4 – INT7 
 
Analog Input Pins 
 
On the ATmega128RFA1 Wireless Module, the physical ADC inputs map to IO24 through IO31. 
These correspond to processor pins PF0-PF7. 
 

Page 154 of 202 SNAP Reference Manual Document Number 600-0007K 



Serial port 0 
 
Four IO pins can optionally function as UART0. IO16 becomes RXD0 and IO17 becomes TXD0. If 
hardware flow control is required, IO20 becomes CTS0 and IO21 becomes RTS0. 
 
Serial port 1 
 
Four IO pins can optionally function as UART1. IO10 becomes RXD1 and IO11 becomes TXD1. If 
hardware flow control is required, IO12 becomes CTS1 and IO23 becomes RTS1. 
 
PWM Output Pins 
 
On the ATmega128RFA1 Wireless Module, you can use the following IOs for pulse width modulation 
PWM: 
 
IO4: Maps to OC2 
IO5: Maps to OC1A 
IO6: Maps to OC1B 
IO7: Maps to OC1C and OC0A 
IO19: Maps to OC3A 
IO20: Maps to OC3B 
IO21: Maps to OC3C 
IO37: Maps to OC0B 
 
SPI 
 
Three IO pins can optionally function as an SPI bus. IO29 becomes SCLK, IO30 becomes MOSI, and 
IO28 becomes MISO. 
 
I2C 
 
Two IO pins can optionally function as an I2C bus. IO24 becomes SCL, and IO25 becomes SDA. 
 

SNAP Reference Manual Document Number 600-0007K Page 155 of 202 



Memory Usage 
 
SNAP Protocol Memory Usage: 
 
Global Buffer Pool:  20 
UART Budget:  6 
Mesh Routing Budget: 6 
RPC Budget:   6 
Radio Budget:  6 
STDOUT Budget:  4 
 
SNAPpy Virtual Machine Memory Usage: 
 
Number of Tiny Strings:  14 
Tiny String Size:   up to 16 characters 
Number of Medium Strings: 8 
Medium String Size:   up to 126 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
 
Platform Specific SNAPpy Built-In Functionality 

Built-in function getInfo(): 
On a getInfo() call, a parameter value of 0 requests a “vendor code.” 
 
On a ATmega128RFA1, getInfo(0) returns 4 (meaning “Atmel”). 
 
On a getInfo() call, a parameter value of 3 requests a “platform code.” These are “per vendor” (not 
global), so both RF Engines and ATmega128RFA1 nodes return a value of 0, indicating they are the 
first platform from their respective vendors. 

Built-in functions cbusRd() and cbusWr(): 
These functions have no effect on the ATmega128RFA1. 

Built-in functions peekRadio() and pokeRadio(): 
These functions are not necessary on the ATmega128RFA1. The internal radio registers are in the 
main memory space of the chip, and can be read or written using the regular peek() and poke() 
functions. 

Built-in function lcdPlot(): 
Built-in function lcdPlot() has no effect in ATmega128RFA1 builds. 

Built-in function setPinSlew(): 
Built-in function setPinSlew() has no effect in ATmega128RFA1 builds. 

Page 156 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in function pulsePin(): 
On the ATmega128RFA1, negative durations are in units of approximately 0.94 microsecond. 
 
Here are some requested versus measured pulse timings, taken with a logic analyzer. 
 
Requested duration Measured Pulse Width (µs) 
-1 0.94 
-2 1.37 
-3 1.82 
-10 4.88 
-20 9.25 
-30 13.63 
 

Built-in function random(): 
On the ATmega128RFA1, the pseudo random number generation is done in hardware, not software. 

Built-in function readAdc() 
On the ATmega128RFA1, channels 0-7 correspond to direct reads of one of the eight external analog 
input pins. Channels 8-29 return various “differential” readings, as shown in the following table. 
 
Channel Number Returns 
0 ADC0 
1 ADC1 
2 ADC2 
3 ADC3 
4 ADC4 
5 ADC5 
6 ADC6 
7 ADC7 
8 10 * (ADC0 – ADC0) 
9 10 * (ADC1 – ADC0) 
10 200 * (ADC0 – ADC0) 
11 200 * (ADC1 – ADC0) 
12 10 * (ADC2 – ADC2) 
13 10 * (ADC3 – ADC2) 
14 200 * (ADC2 – ADC2) 
15 200 * (ADC3 – ADC2) 
16 ADC0 – ADC1 
17 ADC1 – ADC1 
18 ADC2 – ADC1 
19 ADC3 – ADC1 
20 ADC4 – ADC1 
21 ADC5 – ADC1 
22 ADC6 – ADC1 

SNAP Reference Manual Document Number 600-0007K Page 157 of 202 



23 ADC7 – ADC1 
24 ADC0 – ADC2 
25 ADC1 – ADC2 
26 ADC2 – ADC2 
27 ADC3 – ADC2 
28 ADC4 – ADC2 
29 ADC5 – ADC2 
 
This function returns an integer value 0-1023 (these are 10-bit analog to digital converters). 
 
The reference voltage is 1.6 volts. Refer to the ATmega128RFA1 datasheets for more information. 

Built-in function setRadioRate(): 
On the ATmega128RFA1, setRadioRate() supports values of 0, 1, 2, and 3. The resulting data 
rates are as follows: 
 
setRadioRate() parameter Radio Data Rate 
0 250 Kbps 
1 500 Kbps 
2 1 Mbps 
3 2 Mbps 
 
Radio rate 0 is compatible with any 802.15.4 SNAP radio using rate 0. Any other rate may not work 
with any non-ATMEL ATmega128RFA1 radio, and will only work with an ATmega128RFA1 radio 
working at the same rate. 

Built-in function setSegments(): 
On the ATmega128RFA1, setSegments() has no effect. 

Built-in function sleep(): 
The ATmega128RFA1 supports two sleep modes. Mode 1 should always be used if a 32kHz crystal is 
installed on the target. Use mode 0 if no RTC is available. 
 
In the original RF100 SNAP Engine, the ticks parameter could accept either a zero, a positive, or a 
negative number. Zero indicates “untimed sleep” (i.e. wake up on pin-interrupt only). Positive 
numbers indicated how long to sleep in mode-dependant “ticks,” and negative numbers indicated 
fractions of a second. 
 
On the ATmega128RFA1, zero still indicates “untimed sleep.” Positive numbers indicate how long to 
sleep in 1.0s “ticks” (regardless of mode), and negative numbers indicate the following fractions of a 
second: 
 
Ticks Mode 0 

Sleep Time 
Mode 1 
Sleep Time 

-1 33 ms 82 ms 
-2 33 ms 82 ms 

Page 158 of 202 SNAP Reference Manual Document Number 600-0007K 



-3 66 ms 82 ms 
-4 132 ms 111 ms 
-5 263 ms 236 ms 
-6 508 ms 486 ms 
-7 1000ms 986 ms 
 
Maximum allowed sleep: 1023s 
 
Note – Do not configure the ATmega128RFA1 to wake up from an edge-triggered interrupt on INT4-
INT7. This will work, but the processor will not go into a very “deep” sleep, and it will continue to 
draw a substantial amount of current (~900µA). 

Built-in function getLq(): 
The ATmega128RFA1 supports two getLq() modes: 
 
Invoking getLq() or getLq(0) returns a signal strength in negative dBm. So a return value of 20 
indicates that the last transmission received had a signal strength of -20dBm. This matches the 
behavior of the other SNAP platforms. 
 
Invoking getLq(1) returns a link quality measurement from 0 – 255, where 255 indicates the best 
possible link quality, and 0 indicates the worst. 

Relevant Feature Bits (NV #11): 
 
Bit 0x0200 – Sets the radio to control transmit power based on European protocols and standards. If 
you are using nodes based on the ATmega128RFA1 in Europe, you should set this feature bit. 
Otherwise, you should leave the bit unset. 

Vendor-specific settings: 
NV Parameter 64 is used on the ATmega128RFA1. 
 
Bit 0x0001 – Enables a “turbo” mode in the node, allowing for slightly faster radio communications 
between nodes by reducing the pauses between packets. You can set this bit (and reboot the node) to 
slightly increase throughput, but the node will only be able to communicate over the air with other 
ATmega128RFA1 nodes that also have the bit set. The node will no longer be able to communicate 
with other 2.4 GHz SNAP nodes based on other platforms, or based on this platform but with the bit 
not set. 
 
Performance Metrics 
 
Here are the results of some recent performance measurements, which may help you gauge if SNAPpy 
can address your application’s timing requirements. 
 
These results are for the ATMEL ATmega128RFA1. 

SNAP Reference Manual Document Number 600-0007K Page 159 of 202 



Time to awaken from sleep (mode 0): 
< 850 microseconds 

Time to startup from power-on: 
< 250 milliseconds 

Maximum rate a SNAPpy script can toggle a GPIO pin: 
9518 Hz 
 
In other words, each True/False cycle took 105.06 microseconds. 
(To change the state of a pin takes 52.56 microseconds, and each pulse requires two state changes). 
 
Keep in mind that as a general rule, SNAPpy scripts should not be looping, the above rate is only 
attainable if the node is doing nothing else (for example, no radio or serial port communication).  

Maximum rate for readAdc() calls: 
maximum 19952 samples/second 
 
In other words, each sample took 50.12 microseconds to gather. 
 
NOTE! – This measurement was taken using a script that did not actually do anything with the data. 
You will also have to take into consideration any numeric processing required (data thresholding, etc.), 
as well as the need to actually store the data someplace. 
 
Also note that the very first readAdc() call takes 174 microseconds (not 50.12 microseconds) 
because of some initial “first time only” hardware initialization that is required. You may want to 
make a “setup” readAdc() call in your script’s startup event handler. 

I2C Byte Transfer Time 
The actual I2C transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 239 µs per byte. 

SPI Byte Transfer Time 
The actual SPI transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 177 µs per byte. 

Virtual Machine Speed 
SNAP 2.3 Instructions Per Second (IPS): 39240 
 

Page 160 of 202 SNAP Reference Manual Document Number 600-0007K 



Reserved Hardware 
 
On the ATmega128RFA1, SNAP uses Timer 4 and Timer 5 internally. 
 
Timer 4 provides the 1 millisecond “heartbeat” and Timer 5 is used in some sleep modes. 
 
Do not peek()/poke() these timers! 
 
The remaining timers are available for use by your scripts (for example, PWM). 
 

SNAP Reference Manual Document Number 600-0007K Page 161 of 202 



Synapse RF200 
SNAP Engines based on the ATmega128RFA1 are available. All the details appropriate for the chip-
based SNAP Modules (see the previous section) apply to the SNAP Engine, with the following 
additions and exceptions. Pin numbers below refer to the pin on the SNAP Engine footprint. To 
reference the pins in your code, use the SNAPpy IO number from the table below. Note that the SPI 
and I2C locations are different on the RF200 than they are on the ATmega128RFA1. 
 
RF200 SNAP Engines should not be used on the Synapse SN111 End Device board. The power-up 
state of the pins conflicts with the relay controls on that board. 

Form Factor 
The RF200 SNAP Engine is the SNAP Engine based on the ATMEL ATmega128RFA1. 

IO pins 
The RF200 supports 20 GPIO pins, one more than the original RF100 SNAP Engine. GPIO_19 is 
available on pin 22 of the SNAP Engine. 

Sleep 
The RF200 includes a 32kHz crystal RTC, so for most efficient sleep you should use sleep mode 1. 

Wakeup pins 
Nine of the IO pins can be used to wake a sleeping engine: pins 2-5 (GPIO_0-GPIO_3), pins 7-10 
(GPIO_5-GPIO_8), and pin 12 (GPIO_10). Using pins 7, 8, or 12 (GPIO_5, GPIO_6, or GPIO_10) as 
an edge-triggered wakeup signal will work, but will result in higher power consumption. 

Analog inputs 
Seven of the IO pins support Analog Input: pins 13-15 and pins 17-20. 

UART0 
Four pins support UART 0: pins 5-8 (GPIO_3-GPIO_6). If you do not need RTS/CTS signals, then 7 
and 8 are available for other usage. 

UART1 
Four pins support UART 1: pins 9-11 (GPIO_7-GPIO_10). If you do not need RTS/CTS signals, then 
IO 10 and 11 are available for other usage. 

SPI 
Three pins can optionally be used for SPI: pins 14-16 (GPIO_12-GPIO_14) are MISO, SCLK and 
MOSI. These are not the hardware SPI pins. SNAPpy SPI is done via software emulation. 
You will also need one “SPI Chip Select” pin per external SPI device. Any available IO pin can be 
used for this purpose. 

I2C 
Two pins can optionally be used for I2C: pins 19 and 20 (GPIO_17 and GPIO_18). These are not the 
hardware I2C pins. SNAPpy I2C is done via software emulation. These are also not the same pins 
used for I2C on the ATmega128RFA1 build of the firmware. 

Page 162 of 202 SNAP Reference Manual Document Number 600-0007K 



PWM 
Six pins can optionally be used as Pulse Width Modulation (PWM) outputs: pins 2-4 (GPIO_0-
GPIO_2), pins 7 and 8 (GPIO_5 and GPIO_6), and pin 22 (GPIO_19). 
 
Pin Configuration of an ATmega128RFA1 in SNAP Engine Format (RF200) 
Engine Pin  SNAPpy IO  Name  Description 

1    GND  Power Supply 

2  7  GPIO0 OC0A OC1C PCINT7 PB7  GPIO_0 or PWM or Interrupt 

3  6  GPIO1 OC1B PCINT6 PB6  GPIO_1 or PWM or Interrupt 

4  5  GPIO2 OC1A PCINT5 PB5  GPIO_2 or PWM or Interrupt 

5  16  GPIO3 RXD0 PCINT8 PE0  GPIO_3 or UART0 Data In or Interrupt 

6  17  GPIO4 TXD0 PE1  GPIO_4 or UART0 Data Out 

7  20  GPIO5 OC3B INT4 PE4  GPIO_5 or UART0 CTS Output or PWM or Interrupt 

8  21  GPIO6 OC3C INT5 PE5  GPIO_6 or UART0 RTS Input or PWM or Interrupt 

9  10  GPIO7 RXD1 INT2 PD2  GPIO_7 or UART1 Data In or Interrupt 

10  11  GPIO8 TXD1 INT3 PD3  GPIO_8 or UART1 Data Out or Interrupt 

11  12  GPIO9 CTS1 ICP1 PD4  GPIO_9 or UART1 CTS output or Input Capture 

12  23  GPIO10 RTS1 ICP3 INT7 CLKO  GPIO_10 or UART1 RTS input or Clock Output Buffer or 
Interrupt 

13  24  GPIO11 ADC0 PF0  GPIO_11 or Analog0 

14  25  GPIO12 ADC1 MOSI PF1  GPIO_12 or Analog1 or SPI MOSI 

15  26  GPIO13 ADC2 DIG2 SCLK PF2  GPIO_13 or Analog2 or SPI CLK or Antenna Diversity Control 

16  18  GPIO14 XCK0 AIN0 MISO PE2  GPIO_14 or SPI MISO or Analog Comparator or External 
Clock9

17  28  GPIO15 ADC4 TCK PF4  GPIO_15 or Analog4 or JTAG Test Clock 

18  29  GPIO16 ADC5 TMS PF5  GPIO_16 or Analog5 or JTAG Test Mode Se ct le

19  30  GPIO17 ADC6 TDO SDA PF6  GPIO_17 or Analog6 or JTAG Test Data Out or  2C SDA I

20  31  GPIO18 ADC7 TDI SCL PF7  GPIO_18 or Analog7 or JTAG Test Data In or I C SCL 2

21    VCC  Power Supply 

22  19  GPIO19 OC3A AIN1 PE3  “GPIO_19” or An  PWM or Output alog Comparator or
10Compare Match

23    RESET*  Module Reset, Active Low 

24    GND  Power Supply 

 

                                                 
9 On RF200 SNAP Engines with no power amplifier, pin 16 (GPIO_14) provides Analog3 (ADC3/PF3) instead of the 
characteristics of PE2. Analog3 is unavailable on RF200 SNAP Engines with a power amplifier. 
10 Other SNAP Engines have a debug connection on pin 22. The architecture of the RF200 requires multiple debug 
connections, which come out on other pins. Rather than leave pin 22 useless, it is available as an additional GPIO or 
Analog Comparator. This will not be directly accessible on Synapse development boards, but custom circuit designs have 
the pin available for specialized purposes. 

SNAP Reference Manual Document Number 600-0007K Page 163 of 202 



Synapse SS200 
Synapse also offers the SNAP Stick 200. This device, based on the ATMEL ATmega128RFA1 
hardware, is a USB dongle - about the size of a thumb drive. It is designed to act as a bridge between 
Portal or SNAP Connect and your 802.15.4 2.4 GHz wireless network. 
 
Because it is based on the ATmega128RFA1, the SS200 has the same capabilities as the underlying 
hardware, relating to sleep options and radio rates. 
 
The USB dongle form factor means that only 
one UART is available on the SS200. UART1 
connects through the USB port. If you change 
the default UART (NV Parameter 12) to 0, you 
will not be able to communicate directly with 
the device, and will have to either use Portal to 
Factory Default NV Params or use a different 
SNAP Device as a bridge and reset the default 
UART over the air. 
 
Also because of the form factor, you do not have normal access to the GPIO pins on the SS200. The 
device was designed to primarily act as a bridge device. The only feedback available from the device 
comes in the form of a tri-color LED, controlled by pins 5 and 6: 
 

LED State Pin 5 Pin 6 
Off High (True) High (True) 
Red Low (False) High (True) 
Green High (True) Low (False) 
Amber Low (False) Low (False) 

 
The SS200 includes an internal power amplifier. It also has a 32 kHz crystal, so for most efficient 
sleep you should use sleep mode 1. Note that there is no way to trigger an external wakeup signal to 
the device, so you should be careful to only use timed sleep. 
 

Page 164 of 202 SNAP Reference Manual Document Number 600-0007K 



Silicon Labs Si100x 
In addition to RF300 and RF301 modules built on the SNAP Engine footprint, you will find SNAP 
running on Silicon Labs Si100x chips. (See the following section for details unique to the 
RF300/RF301 on the SNAP Engine form factor.) 
 
There are two versions of the Si100x firmware: One version provides frequency hopping in the 900 
MHz range, and the other provides service in the 868 MHz range. Details below refer to both versions 
of the firmware except where explicitly specified as different. 

IO pins 
The Si100x supports 19 output pins. 18 of these can be input pins. 

Wakeup pins 
Nine of the 19 IO support a hardware “wakeup” capability. see IO 1-8. 

Analog inputs 
Seventeen of the 19 IO can be used as analog inputs. See IO 0-15 and 17. 

UART0 
Four pins support UART 0, see IO 1-4. If you do not need RTS/CTS signals, then IO 1 and 2 are 
available for other usage. For serial connections, the UART is more restricted than on some other 
platforms. The only serial configurations available are 8N1 and 8N2. 

UART1 
There is only one UART (UART 0) available on the Si100x. Any call to initUart() that 
references UART 1 will be applied to UART 0 instead. 

SPI 
Three pins can optionally be used for SPI, see IO 6-8. 
 
NOTE – these are not hardware SPI pins. SNAPpy SPI is done via software emulation. 
You will also need one “SPI Chip Select” pin per external SPI device. Any available IO pin can be 
used for this purpose. 

I2C 
Two pins can optionally be used for I2C. see IO 10 and 11. 
NOTE – these are not hardware I2C pins. SNAPpy I2C is done via software emulation. 

PWM 
Six pins can optionally be used as Pulse Width Modulation (PWM) outputs. The pins are user-
configurable. 

Serial rates 
The lowest serial data transfer rate supported is 889 baud. 
 
The table on the following page summarizes the IO mapping on the Si100x chip. 

SNAP Reference Manual Document Number 600-0007K Page 165 of 202 



Si100x Port mappings 
Processor Port Pin  SNAPpy IO    Processor Port Pin  SNAPpy IO 

P0.0 ADC0 VREF  0    P2.1 ADC17  10 

P0.2 ADC2 RTS0  1    P2.2 ADC18  11 

P0.3 ADC3 CTS0  2    P2.3 ADC19  12 

P0.4 ADC4 TXD0  3    P2.4 ADC20  13 

P0.5 ADC5 RXD0  4    P2.5 ADC21  14 

P0.6 ADC6 CNVSTR  5    P2.6 ADC22  15 

P1.5 ADC13 SPI_SPLK  6    P2.7 C2D  16 

P1.6 ADC14 SPI_MISO  7    GPIO_0  17 

P1.7 ADC15 SPI_MOSI  8    ANT_A  1811
 

P2.0 ADC16  9       

 
 “Wakeup” Pins 
On an Si100x Wireless Module, any of the following IOs can be used to wake the processor: 
 
IO0  Map to P0.0 
IO1–IO5: Map to P0.2–P0.6 
IO6–IO8: Map to P1.5–P1.7 
 
Analog Input Pins 
On the Si100x Wireless Module, 16 pins can be used as ADC inputs. P0.0-P0.6 (excepting P0.1) are 
available as ADC0-ADC6 (excepting ADC1), P1.5-P1.7 as ADC13-15, and P2.0-P2.6 as ADC16-22, 
are all available. 
 
Serial port 0 
Four IO pins can optionally function as UART0. IO4 becomes RXD0 and IO3 becomes TXD0. If 
hardware flow control is required, IO2 becomes CTS0 and IO1 becomes RTS0. 
 
PWM Output Pins 
On the Si100x Wireless Module, you can configure up to six PWM pins. These are user-assignable to 
any available IO (except IO16-IO18). 
 
SPI 
Three IO pins can optionally function as an SPI bus. IO6 becomes SCLK, IO7 becomes MISO, and 
IO8 becomes MOSI. 
 

                                                 
11 IO18 is available for output only. 

Page 166 of 202 SNAP Reference Manual Document Number 600-0007K 



I2C 
Two IO pins can optionally function as an I2C bus. IO11 becomes SCL, and IO10 becomes SDA. Use 
external pull-up resistors to VCC. Resistors on the order of 10 KΩ work well. 
 
Memory Usage 
 
SNAP Protocol Memory Usage: 
 
Global Buffer Pool:  7 
UART Budget:  4 
Mesh Routing Budget: 4 
RPC Budget:   4 
Radio Budget:  4 
STDOUT Budget:  2 
 
SNAPpy Virtual Machine Memory Usage: 
 
Number of Tiny Strings:  7 
Tiny String Size:   up to 8 characters 
Number of Medium Strings: 6 
Medium String Size:   up to 62 characters 
Global Variables:   64 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
Platform-Specific SNAPpy Functionality 

900 MHz Channel usage: 
FCC rules for FHSS radios in the 900 MHz range require that the transmitting radio hop across 
multiple frequencies rather than performing all its transmissions on a single frequency. FHSS SNAP 
modules based on the Si100x select a range of 25 frequencies from the 66 available, based on the 
channel specified for the node (in NV parameter 4), and hop amongst those 25 frequencies. 
 
Adjacent SNAP channels will have overlap in the frequencies in use with FHSS firmware, but 
interference will be minimized by the frequency hopping. There will not be any cross-channel 
communications: Even though nodes on different channels may be sharing some subset of frequencies, 
they will not “hear” each others’ communications. 
 
Consult the getChannel() function for details about which channels and frequencies are used. 
 
If your operating environment has issues with noise and interference in the 900 MHz range, you may 
find that changing to a different channel (which provides a different pool of 25 frequencies) reduces or 
eliminates the interference. 

SNAP Reference Manual Document Number 600-0007K Page 167 of 202 



868 MHz Channel usage: 
Si100x radios operating in the 868 MHz range share the same pool of three frequencies regardless of 
the radio channel specified. Controls within the SNAP firmware prevent communications from 
bleeding across channels. 

Carrier Sense (NV Parameter 16) and Collision Detect (NV Parameter 17): 
The default values for Carrier Sense (NV Parameter 16) and Collision Detect (NV Parameter 17) are 
disabled. (This is true for all SNAP platforms.) Enabling Carrier Sense or Collision Detect can 
increase the reliability of multicast messaging, but may provide a performance hit. If you wish to 
enable these abilities, you may want to adjust Silicon Labs’ default value for the RSSI Threshold for 
Clear Channel Indicator, which you can do with the pokeRadio(0x27, value) command, to 
meet the needs of your network and environment. 
 
Setting the value too low will cause SNAP to interpret noise as interference and needlessly rebroadcast 
multicast packets. In a worst-case scenario, the node may get stuck rebroadcasting hundreds or 
thousands of times before it can receive or transmit any other radio traffic. Silicon Labs’ default value 
for the register is 30 (0x1E), and higher values make the radio accept a higher noise floor before 
indicating that a transmission has been compromised. The SNAP firmware defaults the value to 65. 
Reference the manufacturer’s documentation for more details. 

Maximum Loyalty (NV Parameter 53): 
The requirement for channel hopping in the 900 MHz FHSS firmware means that a listening radio will 
constantly be scanning the available frequencies to listen for transmissions from other nodes on the 
same channel. Because the frequency hopping order is defined, after sending or receiving a 
transmission a node will know where to expect the next transmission. It will wait, listening on that 
frequency, for the duration of the Maximum Loyalty period (in milliseconds) before resuming its scan 
of all frequencies. 
 
If a node is broadcasting sequential packets, it will assume that the receiving radio will be expecting 
its next packet on a defined frequency and will broadcast its next packet with a shorter preamble, 
allowing for faster data throughput. If a node sends a broadcast and is expecting a reply, it will 
likewise wait on that next hop frequency for that reply for the duration of the loyalty period before 
resuming a scan of all channels. 
 
The default value of 185 is an optimized value for most environments. If you modify this parameter, 
be sure to set it to the same value for all nodes in your network. Setting the value to 0 means that no 
node will ever delay before scanning all channels when listening for messages, and that no 
transmitting node will ever transmit packets with a shorter preamble. 

Clock Regulator (NV Parameter 65): 
For Si100x implementations that do not have an external crystal to control RTC and sleep timing, NV 
Parameter 65 allows you to regulate the internal clock somewhat to adjust for differences in your 
hardware and your environment. For most accurate timing, you may need to adjust this value 
depending on the ambient temperature and the operating voltage of your node. The range for the value 
is 0-15, and the default value is 8. The change takes effect only after rebooting. 
 
This parameter has no effect if you have an external crystal controlling your sleep timing. 

Page 168 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in functions cbusRd() and cbusWr(): 
These functions have no effect on the Si100x. 

Built-in functions getEnergy() and scanEnergy(): 
For FHSS firmware, the getEnergy() and scanEnergy() built-in functions return the energy levels 
heard on the frequency you specify. (Each channel uses 25 frequencies in the 900 MHz band. In the 
868 MHz band, all channels use the same three frequencies.) See the getEnergy() and getChannel() 
functions for details about how the frequencies are distributed through the SNAP channels. 
 
For 900 MHz firmware, the scanEnergy() function returns a 66-character string instead of the normal 
16-character string returned on other platforms. For 868 MHz firmware, the scanEnergy() function 
returns a 3-character string. 

Built-in function getInfo(): 
On a getInfo() call, a parameter value of 0 requests a “vendor code.” 
On an Si100x, getInfo(0) returns 5 (meaning “Silicon Labs”). 
 
On a getInfo() call, a parameter value of 3 requests a “platform code.” On 900 MHz Si100x-based 
nodes (including the RF300), this function returns an 11 for FHSS firmware. On 868 MHz Si100x-
based nodes (including the RF301), this function returns an 8. 

Built-in function getStat(): 
The results of the getStat(3) and getStat(4) calls are undefined, as the Si100x-based nodes 
have only one UART. 

Built-in function lcdPlot(): 
Built-in function lcdPlot() has no effect in Si100x builds.  

Built-in functions peek() and poke(): 
Use negative address values to peek and poke special function registers. See the peek() and poke() 
description for more details. 

Built-in function pulsePin(): 
On the Si100x, negative durations are in units of approximately 1.0 µs, once certain overhead 
minimum limits are exceeded. Here are some requested versus measured pulse timings, taken with a 
logic analyzer. 
 

Measured Pulse Width (µs) Requested 
duration GPIO_0-GPIO_16 GPIO_17-GPIO_18

-1 15.917 29.813 
-10 16.000 29.750 
-20 20.000 29.813 
-50 50.417 50.063 
-100 100.167 99.875 
-200 199.583 199.250 

 

SNAP Reference Manual Document Number 600-0007K Page 169 of 202 



Built-in function readAdc() 
The reference voltage is 3.3 volts. In addition to the 10-bit ADC channels listed in the Port Mappings 
table, readAdc(27) can provide a reading of an internal temperature sensor in the module, and 
readAdc(28) can provide an indication of voltage supply. (readAdc(28)  requires additional 
pokes to enable the reading. Refer to the Silicon Labs documentation for more details.) 
 
You can also choose to scale your ADC readings to 1.65 volts. To do so, poke(-0xE8, 0x80) to enable 
the ADC and then poke(-0xBC, 0x1B) to set the ADC to a 6.075 MHz sample clock that samples on 
demand on a 1.65 volt scale. Refer to the Si100x documentation for further details. 

Built-in function setPinPullup(): 
Built-in function setPinPullup() has no effect on any pin except pin 17 (radio GPIO_0). If you 
need to establish pin pull-ups, you can poke(-0xE3, 0x40) to set the pull-up on pins 0-16. Use 
poke(-0xE3, 0xC0) to disable the pull-ups. You cannot set a pull-up on an individual pin. 

Built-in function setPinSlew(): 
Built-in function setPinSlew() has a different purpose on the Si100x builds. Rather than controlling 
the slew rate for a pin, it controls the strength at which the pin can drive an output signal. The default 
setting (False) provides a standard output signal strength. Calling setPinSlew(pin, True) allows the 
module to push more current through the pin, which may be necessary for some applications (such as 
driving a relay). 

Built-in function setRadioRate(): 
On the Si100x, setRadioRate() has no effect. Only the standard 150 Kbps rate is supported. 

Built-in function setSegments(): 
On the Si100x, setSegments() has no effect. 

Built-in function sleep(): 
The Si100x supports four sleep modes. Modes 0 and 1 require the presence of an external 32kHz 
crystal to regulate your sleep timing. Using these modes with no crystal present will “hang” the node. 
Modes 2 and 3 should be used when there is no external crystal present, and will “hang” the node if 
the crystal is present. Modes 0 and 2 provide a slightly “deeper” sleep (lower power consumption) 
than modes 1 and 3. However modes 0 and 2 require an additional 300 ms to wake up, and do not 
maintain state for IO17 or IO18 while sleeping. 
 
If a crystal is present, the first timed sleep executed after a node boots requires approximately 80 
milliseconds of additional configuration time to initialize the clock. Subsequent timed sleeps will not 
have this overhead. 
 

Page 170 of 202 SNAP Reference Manual Document Number 600-0007K 



On the Si100x, zero indicates “untimed sleep.” Positive numbers indicate how long to sleep in 1.0s 
“ticks” (regardless of mode), and negative numbers indicate the following fractions of a second: 
 
Ticks Sleep time 
-1 16ms 
-2 31ms 
-3 63ms 
-4 125ms 
-5 250ms 
-6 500ms 
-7 1000ms 
 
Maximum allowed sleep: 32767 seconds, or 9:06:07. 

Encryption 
The Si100x supports Basic encryption. AES-128 encryption is not available in the Si100x firmware. 
(It is available for RF300/RF301 firmware.) 

Alternate Radio Trim settings: 
NV Parameter 63 is used on the Si100x. The default value is 183 but you can override this by saving a 
new value in NV #63. For the definition of the trim value, refer to the Silicon Labs datasheets. 

Vendor-specific settings: 
NV Parameter 64 is used on the Si100x. 
 
Bit 0x0001 – Indicates how the TX and RX registers are set in the hardware. 
 
When this bit is clear (set to 0), register 0x0C is set to 0x15, the receive state, and register 0x0D is set 
to 0x12, the transmit state. This is the appropriate setting for the RF30x SNAP Engine and any 
hardware similarly connected. 
 
When this bit is set (to 1), register 0x0C is set to 0x12 and register 0x0D is set to 0x15. This is the 
appropriate setting for the Silicon Labs EZRadio Pro 1000-TCB1 development board and any 
hardware similarly connected. 
 
If this bit is incorrectly set radio signal strength will be diminished, as will the radio’s ability to clearly 
receive signals. Users developing their own hardware according to the Silicon Labs demonstration 
board should be sure to set this feature bit. 
 
Resetting factory parameters does not modify this parameter. 
 

SNAP Reference Manual Document Number 600-0007K Page 171 of 202 



Performance Metrics 
Here are the results of some recent performance measurements, which may help you gauge if SNAPpy 
can address your application’s timing requirements. 

Time to awaken from sleep (mode 0): 
340 ms 

Time to awaken from sleep (mode 1): 
1.2 ms 

Time to startup from power-on: 
677 ms 

Maximum rate a SNAPpy script can toggle a GPIO pin: 
1149.6 Hz 
 
In other words, each True/False cycle took 869.9 µs. 
(To change the state of a pin takes 434.9 µs, and each pulse requires two state changes). 
 
Keep in mind that as a general rule, SNAPpy scripts should not be looping, the above rate is only 
attainable if the node is doing nothing else (for example, no radio or serial port communication).  

Maximum rate for readAdc() calls: 
maximum 1107 samples/second. In other words, each sample took 903.1 µs to gather. 
 
NOTE! – This measurement was taken using a script that did not actually do anything with the data. 
You will also have to take into consideration any numeric processing required (data thresholding, etc.), 
as well as the need to actually store the data someplace. 

I2C Byte Transfer Time 
The actual I2C transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 460 µs per byte. 

SPI Byte Transfer Time 
The actual SPI transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 390 µs per byte. 

Virtual Machine Speed 
SNAP 2.4 Instructions Per Second (IPS): 3600 
 

Page 172 of 202 SNAP Reference Manual Document Number 600-0007K 



Reserved Hardware 

Timers 
On the Si100x, SNAP uses Timer 1 and Timer 2 internally. 
 
Timer 2 provides the 1 millisecond “heartbeat.” You should not do anything that makes explicit use of 
that timer. 
 
Timer 1 is used to set the UART baud rate. If you are not using a serial connection, you can use Timer 
1 for your own purposes. (The real-time clock is also available to you. Initialization of the real-time 
clock is cumbersome, but can be automated by executing a brief timed sleep.) 
 
Timers 0 and 3 are available for user interaction. See the manufacturer’s documentation for details in 
using these. 

Advanced SNAP Hardware Assumptions 
If you are designing your own circuitry using the Si100x, keep these assumptions in mind: 
• The radio shutdown pin is tied to P0.7. 
• The radio interrupt pin is tied to P0.1. 
• Tie GPIO_1 to receive on the RF multiplexer. 
• Tie GPIO_2 to transmit on the RF multiplexer. 

SNAP Reference Manual Document Number 600-0007K Page 173 of 202 



Synapse RF300/RF301 
SNAP Engines based on the Si1000 are available. All the details appropriate for the chip-based SNAP 
Modules (see the previous section) apply to the SNAP Engine, with the following additions and 
exceptions. Pin numbers below refer to the pin on the SNAP Engine footprint. To reference the pins in 
your code, use the SNAPpy IO number from the table below, or import synapse.platforms into your 
script and refer to the pins by their GPIO number. 
 
The RF300 operates in the 900 MHz range with frequency hopping. The RF301 operates in the 868 
MHz range. They will collectively be referred to as the RF30x SNAP Engine in this section, with 
RF300 and RF301 being used where distinctions are necessary. 
 
RF30x SNAP Engines should not be used on a Synapse SN111 End Device board. The power-up state 
of the pins conflicts with the relay controls on that board. 
 
The RF30x SNAP Engines make use of an external memory chip to increase the available script space. 
This memory availability comes at a cost, though: GPIO pins 11 through 14 (pins 13 through 16 on the 
SNAP Engine footprint) are not available. If you have need of these pins and do not need the extra 
script space, you can load the RF30x with the frequency-appropriate Si100x firmware to recover the 
use of the pins.  

Form Factor 
The RF30x SNAP Engines are the SNAP Engines based on the Silicon Labs Si1000. 

IO pins 
The RF30x SNAP Engines support 14 GPIO pins, plus pin 20 (GPIO_18), which is an output-only pin. 
Pin 18 (GPIO_16) has limited drive strength, as it routes through a 1 KΩ resistor. Pins 13-16 (GPIOs 
11-14) are not available for use when using the RF30x firmware. (If you load the RF30x SNAP 
Engine with the appropriate Si100x firmware you recover the use of these four pins, but lose script 
space.) Note that while using the RF30x firmware, attempts to use GPIO_14 as an input will give 
accurate readings but may conflict with the module’s ability to access your script from the external 
memory, and could cause the SNAP Engine to hang. You should not connect any signals to GPIOs 11-
14 when using the RF30x firmware. 

Wakeup pins 
Six of the IO pins can be used to wake a sleeping engine: Pins 8-12 (GPIOs 6-10), and pin 17 (GPIO 
15). (If you load the RF30x SNAP Engine with the appropriate Si100x firmware, you recover the use 
of GPIOs 11-14 as interrupt pins, but lose script space.) 

Analog inputs 
Twelve of the IO pins support Analog Input: pins 2-12 (GPIOs 0-10) and pin 17 (GPIO 15). (If you 
load the RF30x SNAP Engine with the appropriate Si100x firmware, you recover the use of GPIOs 
11-14 as analog inputs, but lose script space.) 

UART0 
Four pins support UART 0: pins 9-12 (GPIO_7-GPIO_10). If you do not need RTS/CTS signals, then 
pins 11 and 12 (GPIO_9 and GPIO_10) are available for other uses. Note that on other SNAP Engines, 

Page 174 of 202 SNAP Reference Manual Document Number 600-0007K 



these pins are used for UART 1. However there is only one UART (UART 0) on any Si100x-based 
SNAP device. 

UART1 
There is only one UART on the RF30x. It is UART 0, though it comes out on the pins normally used 
for UART 1. 

SPI 
SPI uses pins GPIO_4, GPIO_5 and GPIO_6 as MOSI, SCLK, and MISO, respectively. Additionally, 
you will need to define a chip select pin for each SPI device. (If you load the RF30x SNAP Engine 
with the appropriate Si100x firmware, the SPI interface shifts back to GPIO_12, GPIO_13, and 
GPIO_14, as MOSI, SCLK, and MISO, consistent with other SNAP Engines. You will no longer have 
access to SPI on GPIOs 4-6 if you do this.) 

I2C 
Two pins can optionally be used for I2C: pins 2 and 3 (GPIO_0 and GPIO_1, for SDA and SCL, 
respectively). Use external pull-up resistors to VCC. Resistors on the order of 10 KΩ work well. 
NOTE – these are not the hardware I2C pins. SNAPpy I2C is done via software emulation. 

PWM 
You can configure up to six Pulse Width Modulation (PWM) outputs, assigned to the available GPIO 
pins of your choice, except GPIO_16 through GPIO_18. (If you load the RF30x SNAP Engine with 
the appropriate Si100x firmware, GPIOs 11-14 can be used for PWM.) 

Virtual Machine Speed 
RF30x firmware SNAP 2.4 Instructions Per Second (IPS): 3300 

Sleep 
If using the Si100x firmware on an RF30x SNAP Engine and you need to use a low-power sleep 
mode, you should make sure pin 13 (GPIO_11) is high before sleeping. Setting this pin low activates 
the external memory, causing it to draw current while the node sleeps. The RF300 includes a crystal to 
regulate sleep timings, so you must use only sleep modes 0 and 1. NV Parameter 65 has no effect. 

Alternate Radio Trim settings: 
NV Parameter 63 is used on the Si100x. The default value is 183 but you can override this by saving a 
new value in NV #63. For the definition of the trim value, refer to the Silicon Labs datasheets. 

Vendor-specific settings: 
NV Parameter 64 is used on the RF30x. 
 
Bit 0x0001 – For the RF30x, the bit should be clear (set to 0). See the Si100x section for details about 
the setting. 

Encryption 
RF30x SNAP Engines do have AES-128 firmware available. The default firmware for the nodes does 
not include AES-128 capability, but you can load AES-128-capable firmware into the modules. All 
RF30x SNAP Engines have Basic encryption available. 
 

SNAP Reference Manual Document Number 600-0007K Page 175 of 202 



Pin Configuration of an Si1000 in SNAP Engine Format (RF300/RF301) 
Engine Pin  SNAPpy IO  Name  Description 

1    GND  Power Supply 

2  10  GPIO0 ADC17 P2.1  GPIO_0 or ADC17 or I2C SDA 

3  11  GPIO1 ADC18 P2.2  GPIO_1 or ADC18 or I2C SCL 

4  12  GPIO2 ADC19 P2.3  GPIO_2 or ADC19 

5  13  GPIO3 ADC20 P2.4  GPIO_3 or ADC20 

6  14  GPIO4 ADC21 P2.5  GPIO_4 or ADC21 or SPI MOSI 

7  15  GPIO5 ADC22 P2.6  GPIO_5 or ADC22 or SPI SCLK 

8  0  GPIO6 ADC0 P0.0 VREF  GPIO_6 or ADC0 or INT or external voltage reference or SPI MISO 

9  4  GPIO7 ADC5 P0.5 UARTRX  GPIO_7 or ADC5 or INT or UART0_RX 

10  3  GPIO8 ADC4 P0.4 UARTTX  GPIO_8 or ADC4 or INT or UART0_TX 

11  2  GPIO9 ADC3 P0.3 CTS  GPIO_9 or ADC3 or INT or UART0_CTS 

12  1  GPIO10 ADC2 P0.2 RTS  GPIO_10 or ADC2 or INT or UART0_RTS 

13  (9)  (GPIO11 ADC16 P2.0)  Not Available12
 

14  (8)  (GPIO12 ADC15 P1.7)  Not Available 

15  (6)  (GPIO13 ADC13 P1.5)  Not Available 

16  (7)  (GPIO14 ADC14 P1.6)  Not Available13
 

17  5  GPIO15 ADC6 P0.6 CNVSTR  GPIO_15 or ADC6 or INT or external convert start input for ADC0 

18  16  GPIO16 P2.7  GPIO_1614
 

19  17  GPIO17 (GPIO_0) 15  GPIO_17 

20  18  ANT_A  GPIO_18 (output only) 

21    VCC  Power Supply 

22    C2D  Background Debug Communications 

23    RESET*  Module Reset, Active Low 

24    GND  Power Supply 

 

                                                 
12 Pins 13-16 are not available for use on the RF30x, and should not be tied to any hardware on devices you design. You 
can load an RF30x with the Si100x firmware and have access to these pins, including SPI MOSI on GPIO_12, SPI SCLK 
on GPIO_13, and SPI MISO on GPIO_14, with interrupts on those three pins as well. However you lose access to the 
external memory on the RF30x, significantly reducing your available code space. If using the Si100x firmware, GPIO_4, 
GPIO_5, and GPIO_6 do not have SPI capabilities. 
13 The SNAP code will respond to attempts to read GPIO_14, and will even trigger GPIN-hooked events if monitored. 
However if you connect external hardware to this pin, you might end up disabling the external memory on the RF30x, 
rendering the chip inoperable. (Don’t do that.) 
14 GPIO_16 has limited drive or sink strength, as it routes through a 1 KΩ resistor. The signal from (or to) GPIO_16 can 
also be read from (or driven into) Engine pin 22, the debug pin, to route around this resistor instead. 
15 This is GPIO_0 of the underlying radio hardware, and is unrelated to the GPIO_0 of the SNAP Engine. Refer to the 
EZRadioPRO documentation for details. 

Page 176 of 202 SNAP Reference Manual Document Number 600-0007K 



Freescale MC13224 chip 
This section applies if you are running SNAP on a Freescale MC13224 chip in your own hardware. If 
you instead are running SNAP on a Synapse SM700 module, refer also to the section following this 
one. 

IO pins 
The MC13224 supports 64 GPIO input/output pins, referenced as GPIO_0 through CPIO_63. 

Wakeup pins 
Four pins, GPIO_26 through GPIO_29, can be configured to wake the module from sleep. Note that 
these pins automatically become inputs when entering sleep. Four other pins, GPIO_22 through 
GPIO_25 automatically become outputs when entering sleep (this behavior is not under software 
control). 

Analog inputs 
Eight pins support ADC usage. GPIO_30 through GPIO_37 can be read as ADC0 through ADC7, 
respectively. The ADCs can be read against VCC or either of two external reference voltages. 

UART0  
Four pins support UART 0. GPIO_14 and GPIO_15 perform as TX and RX, respectively, and 
GPIO_16 and GPIO_17 perform as CTS and RTS, respectively. If you do not need RTS/CTS signals, 
then those pins are available for other uses. The serial port requires 8 data bits, and ignores any other 
value set in the initUart() function. Each serial port supports 1 or 2 stop bits, and Odd, Even, or No 
parity. 

UART1  
Four pins support UART 1. GPIO_18 and GPIO_19 perform as TX and RX, respectively, and 
GPIO_20 and GPIO_21 perform as CTS and RTS, respectively. If you do not need RTS/CTS signals, 
then those pins are available for other uses. The serial port requires 8 data bits, and ignores any other 
value set in the initUart() function. Each serial port supports 1 or 2 stop bits, and Odd, Even, or No 
parity. 

SPI 
Three pins can optionally be used for SPI. GPIO_5, GPIO_6, and GPIO_7 are MISO, MOSI, and 
SCK, respectively. 
  
NOTE – these are not hardware SPI pins. SNAPpy SPI is done via software emulation. 
You will also need one “SPI Chip Select” pin per external SPI device. Any available IO pin can be 
used for this purpose. 

I2C 
Two pins can optionally be used for I2C. GPIO_12 and GPIO_13 are SCL and SDA, respectively. 
NOTE – these are not hardware I2C pins. SNAPpy I2C is done via software emulation. 

SNAP Reference Manual Document Number 600-0007K Page 177 of 202 



PWM 
Three pins support hardware PWM, refer to GPIO_8, GPIO_9, and GPIO_10 (These pins are also 
referred to as TMR0, TMR1, and TMR2 in the MC1322x data sheets). 

Serial rates 
1200-65535 bps as well as 115.2Kbps (115.2Kbps is specified using a “baudrate” of 1). 

Network IDs 
The MC13224 hardware does not function properly with all network IDs. An MC13224 node set to a 
network ID that fits the pattern 0xn2nn or 0xnAnn will not be able to receive radio transmissions, 
though it can still send them. This is an issue with the underlying Freescale radio. 
 
For example: 
Network ID 0xFADE does not work. Network ID 0xFBDE does work.  
 
  
Platform-Specific SNAPpy Functionality 

Noise Floor (NV Parameter 33): 
You can adjust NV Parameter 33 on MC13224 nodes to tune the node’s sensitivity to background 
noise to prevent improper triggering of the Carrier Sense and Collision Detect features (if they have 
been enabled). The parameter is specified in negative dBm, with a range from 0 to 127. Setting the 
value too high (closer to 127) will cause the unit to interpret the background “noise floor” as real 
communications, and can prevent the node from broadcasting if Carrier Sense and/or Collision Detect 
are active. Setting it too low will render the Carrier Sense and Collision Detect features useless. 
 
The default value is 57. Changes take effect only after rebooting. 

Clock Regulator (NV Parameter 65): 
MC13224 implementations offer sleep modes that use the external crystal (if available), and other 
sleep modes that do not rely on an external crystal. NV Parameter 65 allows you to regulate the 
internal clock (the one that does not use a crystal) to adjust for differences in your hardware and 
environment. For most accurate timing, you may need to adjust this value depending on the ambient 
temperature and the operating voltage of your node. 
 
The range for the value is 0-0xFFFF, and the default value is 0x1F8F. The change takes effect only 
after the radio restarts, which can be caused by several things. For the greatest predictability, it is 
recommended that you reboot the node after setting this parameter. 
 
This parameter has no effect on odd-numbered sleep modes. 

Page 178 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in function getInfo(): 
The values returned by the getInfo() function for the first four parameters vary by platform. For nodes 
based on the MC1322x, getInfo() will return the following enumerations: 
 
Command Value  Command Value  Command Value  Command Value
getInfo(0)    2  getInfo(1) 0  getInfo(2) 4  getInfo(3) 9 

Built-in function peek(): 
The MC1233x modules use a 32-bit architecture, so the signature for the peek() function has 
changed to accommodate the larger address space and the potential for return values of different sizes. 
The new function signature is: 
peek(addrHi, addrLow, word) 
 
The addrHi and addrLow parameters are 16-bit values. The word parameter determines the size and 
character of the return value, with the following options valid: 

• word = 0: return value is one byte, in the range 0 to 255 (0x00 to 0xFF). 
• word = 1: return value is one 16-bit signed integer, in the range -32768 to 32767 (0x0000 to 

0xFFFF). 
• word = 2: peeks a 32-bit value, returning the high value and preserving the low value, which 

can be subsequently retrieved with a peek of the same address using word = 4, or with a simple 
peek() command with no parameters. The return value is in the range -32768 to 32767 (0x0000 
to 0xFFFF). 

• word = 3: peeks a 32-bit value, returning the low value and discarding the high value. The 
return value is in the range -32768 to 32767 (0x0000 to 0xFFFF). 

• word = 4: performs no peek, but returns the value previously stored when a peek with word = 2 
was performed. If no peek with word = 2 has been performed, the result of this function is 
undefined. Each new peek with word = 2 replaces the previous stored value; there is no 
stacking or queueing of results. The return value is in the range -32768 to 32767 (0x0000 to 
0xFFFF). 

Using peek() with no parameters is a shortcut for performing the peek with word = 4. The return value 
is in the range -32768 to 32767 (0x0000 to 0xFFFF). 
 
Peeks that return values larger than one byte must be appropriately word-aligned. In other words, the 
addrLow value must be even for a peek of a 16-bit value, and must be a multiple of 4 for any of the 
32-bit result peeks. If you are not appropriately word-aligned, the result of your peek is undefined. 

SNAP Reference Manual Document Number 600-0007K Page 179 of 202 



Built-in function poke(): 
The MC1233x modules use a 32-bit architecture, so the signature for the poke() function has 
changed to accommodate the larger address space and the potential for different value sizes being 
poked. The new function signature is: 
peek(addrHi, addrLow, word, data) 
with word = 0 or word = 1, or 
peek(addrHi, addrLow, word, dataHi, dataLow) 
with word = 2. 
 
The addrHi and addrLow parameters are 16-bit values. The word parameter determines the size and 
character data being poked: 

• word = 0: data value is one byte, in the range 0 to 255 (0x00 to 0xFF). 
• word = 1: data value is one 16-bit signed integer, in the range -32768 to 32767 (0x0000 to 

0xFFFF). 
• word = 2: pokes a 32-bit value, specified as two data values in dataHi and dataLow.  

 
Pokes that store values larger than one byte must be appropriately word-aligned. In other words, the 
addrLow value must be even for a poke of a 16-bit value, and must be a multiple of 4 for a 32-bit 
poke. If you are not appropriately word-aligned, the result of your poke is undefined, and may result in 
system issues with your module.  

Built-in functions peekRadio() and pokeRadio(): 
The peekRadio() and pokeRadio() functions are not implemented on this platform.  

Page 180 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in functions readAdc(): 
The ADC on an MC13224 returns a 12-bit value (0x0000 to 0x0FFF, 0 to 4096), with 8 to 9 bits of 
precision. Most other SNAP platforms return 10-bit values from their ADCs. In order to scale these 
values to match, you can shift right two bits or divide by four, without any loss of precision. 
 
On an MC13224, a call to readAdc() clears any state set on a pin by the setPinDir() function 
to define the pin as either a digital input or output. If your design requirements mandate that a pin be 
able to function as both an ADC and either a digital input or output, you must use setPinDir() to 
define the digital state of the pin between readAdc() calls. 
 
The following table indicates which “virtual” channel to use, depending on which voltage reference 
you want to use, and which analog channel you want to read. 
 
For example, if you wanted to take a reading from the ADC3 pin and use the external VREF1 pin as a 
reference voltage, you would call readAdc(12). 
 
ADC signal GPIO pin VCC Channel VREF1 Channel VREF2 Channel 
ADC0 30 0 9 18 
ADC1 31 1 10 19 
ADC2 32 2 11 20 
ADC3 33 3 12 21 
ADC4 34 4 13 22 
ADC5 35 5 14 23 
ADC6 36 6 15 24 
ADC7 37 7 16 25 
Battery (internal) 8 17 N/A 
 

Built-in functions setPinDir(): 
The state of a pin set using the setPinDir() function is lost on GPIO_30 through GPIO_37 if you 
perform a readAdc() function on the pin. If your design requirements mandate that a pin be able to 
function as both an ADC and either a digital input or output, you must use setPinDir() to define 
the digital state of the pin between readAdc() calls. 
 
Similarly, using setPinDir() on GPIO_38 through GPIO_41 removes those pins’ abilities to 
function as VREF pins for the ADCs. If your design requirements mandate that a pin be able to 
function as both an ADC VREF and either a digital input or output, you must use setPinDir() to 
define the digital state of the pin before reading from or writing to it, and then use pokes to reset 
keepers on the pins before making any use of the pin as a VREF. Please reference the Freescale 
MC1322x reference manual for details on the GPIO_PAD_KEEP1 register.  

SNAP Reference Manual Document Number 600-0007K Page 181 of 202 



Built-in functions setPinPullup(): 
The setPinPullup() function does not apply a pull-up to GPIO_30 through GPIO_41. No 
internal pull-ups are available on these pins, and it is not recommended that external pull-ups be 
applied as they do not function well with the keepers that must be applied to those pins to allow them 
to function as digital inputs or outputs rather than ADCs or VREFs. If your design requirements 
mandate that an input have a pull-up or pull-down resistor, it would be best to use a different pin. 

Built-in functions setPinSlew(): 
The setPinSlew() function configures the pin’s hysteresis rather than setting a slew rate.  

Built-in functions setRadioRate(): 
The setRadioRate() function does not do anything on the MC13224. The only radio rate 
available is the default rate of 250 Kbps, compatible with other 2.4 GHz-based SNAP nodes. 

Built-in functions sleep(): 
There are four sleep() modes on the MC13224 module. Even-numbered sleep modes do not require 
that an external 32 kHz crystal be connected, and are less accurate with their timing. (The internal 
clock can be regulated on a node-by-node basis, if necessary, using NV Parameter 65.) Odd-numbered 
sleep modes provide very accurate timing, but require the presence of the external crystal. 
 

Sleep Mode Details 
0, 1 • Fast recovery 

• GPIO states are maintained during sleep16 
• Highest current usage 

2, 3 • Fast recovery 
• GPIO states are NOT maintained (though they are reset on waking) 

 
Negative durations for sleep values are valid for these seven enumerations. The sleep durations listed 
here represent the time the node spends sleeping, and do not include the node’s recovery time. 
  

Ticks enumeration Sleep duration
-1 15.625 ms 
-2 31.25 ms 
-3 62.5 ms 
-4 125 ms 
-5 250 ms 
-6 500 ms 
-7 1000 ms 

 
The first odd-mode sleep (using the external crystal) after a reboot of the node requires additional time 
to enable the crystal. 

                                                 
16 Pins GPIO_22, GPIO_23, GPIO_24, and GPIO_25 will always shift to being outputs while the node is sleeping in all 
sleep modes. Pins GPIO_26, GPIO_27, GPIO_28, and GPIO_29 will always shift to being inputs while the node is 
sleeping in all sleep modes. 

Page 182 of 202 SNAP Reference Manual Document Number 600-0007K 



 
Memory Usage 
 
SNAP Protocol Memory Usage: 
Global Buffer Pool:  20 
UART Budget:  6 
Mesh Routing Budget: 6 
RPC Budget:   6 
Radio Budget:  6 
STDOUT Budget:  4 
 
SNAPpy Virtual Machine Memory Usage: 
Number of Tiny Strings:  32 
Tiny String Size:   up to 16 characters 
Number of Medium Strings: 16 
Medium String Size:   up to 255 characters 
Global Variables:   128 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 

Virtual Machine Speed 
SNAP 2.4 Instructions Per Second (IPS): 667914 
 
Reserved Hardware 
Internal timer TMR3 is used to generate the 1 millisecond time base for SNAP. Timers TMR0, TMR1, 
and TMR2 remain available for use. 
 
GPIO pins GPIO_42, GPIO_44, and GPIO_45 are normally available for use. However, if you set the 
Power Amplifier (PA) Feature Bit (NV Parameter #11 bit 0x0100), then these pins will be used for PA 
control instead, as follows: 
 

GPIO_42 will enable power to the external amplifier. Basically, GPIO_42 will be high unless 
the chip enters sleep mode. 
 
GPIO_44 and GPIO_45 will be used as the TX_ON and RX_ON signals. 

 
 

SNAP Reference Manual Document Number 600-0007K Page 183 of 202 



Synapse SM700 Surface-Mount Module 
 
The SM700 surface-mount module is based on the Freescale MC13224 chip. All the details described 
for the MC13224 in the previous section apply to the SM700 as well, with these exceptions and 
elaborations. 

getInfo() return values 
A call to built-in function getInfo(0) returns 0 (zero, meaning Synapse) on an SM700 module. 

Sleep 
The SM700 includes an external 32kHz crystal, so you should use odd-numbered sleep modes for the 
most accurate sleep timing. You can still use sleep modes 0 and 2, if you prefer, but there is no power-
consumption advantage, and the timing of your sleep will be adversely affected. 

Feature Bits 
The SM700 defaults to enforcing FCC TX Power restrictions. You can set the 0x200 bit of NV 
Parameter #11 (Feature Bits) to enforce ETSI restrictions instead. 
 
When enforcing FCC restrictions, the SM700 reduces power to minimum on channels 0 and 1, and 
disables packet transmission on channel 15 entirely (you can call setChannel(15) on an SM700, but the 
end result is a “receive only” node). 
 
When enforcing ETSI restrictions, the SM700 reduces power on all channels to minimum (as if you 
had invoked txPower(0) explicitly). This includes channel 15, which remains usable for packet 
transmission under ETSI rules. 

IO pins 
The SM700 supports 46 GPIO input/output pins. 
 
GPIO_0 through GPIO_41 and GPIO_46 through GPIO_49 are accessible.  
 
GPIO_42 through GPIO_45 are not accessible. GPIO_42, GPIO_44, and GPIO_45 are always used 
inside the module for Power Amplifier control. 
  
GPIO_50 through GPIO_63 are not accessible.  
 
The table on the following page summarizes the IO mapping on the SM700 module. 

Page 184 of 202 SNAP Reference Manual Document Number 600-0007K 



SM700 Port Pin mappings 
Module 
Pin 

Processor Port Pin  SNAPpy IO    Module 
Pin 

Processor Port Pin  SNAPpy IO 

1  Ground      31  VCC   

2  Ground      32  GPIO_10 17  10 

3  Ground      33  GPIO_9 18  9 

4  GPIO_39 ADC2_VREFL  39    34  GPIO_8 19  8 

5  GPIO_41 ADC1_VREFL  41    35  GPIO_7 SPI_SCK  7 

6  GPIO_40 ADC1_VREFH  40    36  GPIO_14 UART0_TX  14 

7  GPIO_38 ADC2_VREFH  38    37  GPIO_15 UART0_RX  15 

8  GPIO_30 ADC0  30    38  Ground   

9  GPIO_31 ADC1  31    39  GPIO_6 SPI_MOSI  6 
10  GPIO_32 ADC2  32    40  GPIO_5 SPI_MISO  5 

11  GPIO_33 ADC3  33    41  GPIO_4  4 

12  VCC      42  GPIO_3  3 

13  GPIO_34 ADC4  34    43  GPIO_2  2 

14  GPIO_35 ADC5  35    44  GPIO_1  1 

15  GPIO_36 ADC6  36    45  GPIO_0  0 

16  GPIO_37 ADC7  37    46  GPIO_29 INT KBI_7  29 

17  GPIO_49  49    47  COIL_BK20
  

18  GPIO_48  48    48  GPIO_28 INT KBI_6  28 

19  GPIO_47  47    49  RESET*   

20  GPIO_46  46    50  LREG_BK_FB   

21  GPIO_21 UART1_RTS  21    51  Ground   

22  Ground      52  GPIO_27 INT KBI_5  27 

23  GPIO_20 UART1_CTS  20    53  GPIO_26 INT KBI_4  26 

24  GPIO_19 UART1_RX  19    54  GPIO_25 KBI_321
 25 

25  GPIO_18 UART1_TX  18    55  GPIO_24 KBI_2  24 

26  GPIO_17 UART0_RTS  17    56  GPIO_23 KBI_1  23 

27  GPIO_16 UART0_CTS  16    57  GPIO_22 KBI_0  22 

28  GPIO_13 I2C_SDA  13    58  Ground   

29  CPIO_12 I2C_SCL  12    59  Ground   

30  GPIO_11  11    60  Ground   

 

                                                 
17 GPIO_10 can be used for hardware PWM (TMR2). 
18 GPIO_9 can be used for hardware PWM (TMR1). 
19 GPIO_8 can be used for hardware PWM (TMR0). 
20 COIL_BK and LREG_BK_FB (pins 47 and 50) can be used to connect a buck regulator to reduce system power 
consumption when running on batteries. See the Freescale MC1322x documentation for details. 
21 KBI_3 through KBI_0 are considered outputs for the keyboard interface. They do not function as interrupts capable of 
waking a sleeping node (in spite of their name). 

SNAP Reference Manual Document Number 600-0007K Page 185 of 202 



STMicroelectronics STM32W108xB chip 
This section applies if you are running SNAP on a STMicroelectronics STM32W108CB or 
STM32W108HB chip. At the time of this writing there is no SNAP Engine or other Synapse module 
based on this chip. 

IO pins 
The STM32W108CB supports 24 input/output pins, referenced as IO 0 through IO 23. 
 
Port Pin SNAPpy IO Port Pin SNAPpy IO Port Pin SNAPpy IO 
PA0 0 PB0 8 PC0 16 
PA1 1 PB1 9 PC1 17 
PA2 2 PB2 10 PC2 18 
PA3 3 PB3 11 PC3 19 
PA4 4 PB4 12 PC4 20 
PA5 5 PB5 13 PC5 21 
PA6 6 PB6 14 PC6 22 
PA7 7 PB7 15 PC7 23 
 
The STM32W108HB supports 24 IO, but only 18 of them are brought out to external pins due to the 
smaller 40-pin package. The following table shows the pins that are not available for use if you use 
the smaller package/lower pin count chip. For more details refer to the manufacturer’s datasheet. 
 
Pin Name Functions SNAPpy IO Number 
PA6 PA6, TIM1C3 6 
PA7 PA7, TIM1C4, REG_EN 7 
PB0 PB0, VREF, IRQA, TRACECLK, TIM1CLK, TIM2MSK 8 
PB5 PB5, ADC0, TIM2CLK, TIM1MSK 13 
PC6 PC6, OSC32B, TX_ACTIVE* 22 
PC7 PC7, OSC32A, OSC32EXT 23 
VDD_PADS  N/A 
VDD_SYNTH  N/A 
  
The remainder of this document will present the chip-specific details in a “STM32W108CB-centric” 
fashion. 

Wakeup pins 
All 24 pins, IO 0 through IO 23, can be configured to wake the chip from sleep. Note that these pins 
automatically wake the chip on any transition, there is no notion of “configurable polarity” on this 
particular hardware. 
 

To repeat – wakeup polarity on the STM32W108 is not under software control. 

Page 186 of 202 SNAP Reference Manual Document Number 600-0007K 



Analog inputs 
Six pins support ADC usage. 
 
ADC STM32W108 Signal Name SNAPpy IO 
0 PB5 13 
1 PB6 14 
2 PB7 15 
3 PC1 17 
4 PA4 4 
5 PA5 5 
 
For more about using the ADC channels on this part, refer to the text on readAdc() later in this section 
of the document. 

UART  
Four pins support UART 0. IO 9 and IO 10 perform as TX and RX, respectively, and IO 12 and IO 21 
perform as CTS and RTS, respectively. If you do not need RTS/CTS signals, then those two pins are 
available for other uses. (If you do not need a UART at all, then those two pins can be used for other 
purposes as well). The serial port supports 7 or 8 data bits, and ignores any other value set in the 
initUart() function. The serial port supports 1 or 2 stop bits, and Odd, Even, or No parity. Hardware 
limits the supported baud rates to to >= 300 and <= 921600 bps. 
 
 NOTE – There is only one UART on this platform. 

SPI 
Three pins can optionally be used for SPI. IO 1, IO 0, and IO 2 are MISO, MOSI, and SCK, 
respectively. 
  
NOTE – these are hardware SPI pins on the chip, but SNAPpy SPI is done via software emulation. 
You will also need one “SPI Chip Select” pin per external SPI device. Any available IO pin can be 
used for this purpose. 

I2C 
Two pins can optionally be used for I2C. By default, IO 2 and IO 1 are used for SCL and SDA, 
respectively. These two pins were chosen to match the physical hardware. 
 
NOTE – SNAPpy I2C is done via software emulation. Because of this, on the STM32W108xB the 
I2C pins can be dynamically relocated to other pins, refer to the writeup on i2cInit() later in this 
section. 

SNAP Reference Manual Document Number 600-0007K Page 187 of 202 



PWM 
Twelve pins support hardware PWM, refer to the following table. Note that there are really only 8 
PWM generators on this chip, four of them have the ability to be routed to one of two different pins 
(only one of the two pins can be a PWM output at a time). So keep in mind there are 8 total PWM 
generators, not 12. 
 
Timer Channel Output Pin SNAPpy IO Alternate Output Pin Alternate SNAPpy IO 
TIM 1 C1 PB6 14 N/A N/A 
TIM 1 C2 PB7 15 N/A N/A 
TIM 1 C3 PA6 6 N/A N/A 
TIM 1 C4 PA7 7 N/A N/A 
TIM 2 C1 PA0 0 PB1 9 
TIM 2 C2 PA3 3 PB2 10 
TIM 2 C3 PA1 1 PB3 11 
TIM 2 C4 PA2 2 PB4 12 
 

Serial rates 
The initUart() built-in supports 300-65535 bps as well as 115.2Kbps (115.2Kbps is specified using a 
“baudrate” of 1). Other baud rates are attainable using poke() statements. 

Page 188 of 202 SNAP Reference Manual Document Number 600-0007K 



Platform-Specific SNAPpy Functionality 

Radio Calibration Info (NV Parameter 66): 
The system automatically maintains calibration data for 16 radio channels (4 bytes per channel). This 
calibration info is stored in NV Parameter 66. 
 
To see how to trigger radio calibration, refer to the descriptions of pokeRadio(5) and pokeRadio(6) 
later in this section. 

Built-in function getInfo(): 
The values returned by the getInfo() function for the first four parameters vary by platform. For nodes 
based on the STM32W108xB chips, getInfo() will return the following enumerations: 
 
Command Value  Command Value  Command Value  Command Value
getInfo(0)    9  getInfo(1) 0  getInfo(2) 10  getInfo(3) 20 
 
Calling getInfo(0) returns a vendor code. Vendor code 9 means “STMicroelectronics”. 
Calling getInfo(1) returns a radio code. Radio code 0 means “2.4 GHz 802.15.4”. 
Calling getInfo(2) returns a CPU code. CPU code 10 means “ARM Cortex-M3”. 
Calling getInfo(3) returns a  platform code. Platform code 20 means “STM32W108xB”. 

Built-in function i2cInit(): 
On most SNAP platforms, the i2cInit() built-in only accepts a single parameter, controlling the use of 
internal pull-up resistors. 
 
On the STM32W108xB, you can also call i2cInit() with three parameters: 

i2cInit(enablePullups, SCL_pin, SDA_pin) 
 
The second and third parameters allow you to “move” the I2C pins to another pair of IO pins on the 
chip. This opens up the possibility of using both I2C and SPI peripherals in the same design, while at 
the same time providing compatibility with existing hardware designs (on the physical chip, the 
hardware I2C and SPI pins really do overlap). 
 
Note that calling i2cInit(xxx, 2, 1) is the same as calling i2cInit(xxx) – the pin assignments default to 
SCL = IO 2 and SDA = IO 1. 

Built-in function lcdPlot(): 
Built-in function lcdPlot() has no effect in STM32W108xB builds.  

SNAP Reference Manual Document Number 600-0007K Page 189 of 202 



Built-in function peek(): 
The STM32W108xB chips use a 32-bit architecture, so the signature for the peek() function has 
changed to accommodate the larger address space and the potential for return values of different sizes. 
The new function signature is: 
 
peek(addrHi, addrLow, word) 
 
The addrHi and addrLow parameters are 16-bit values. The word parameter determines the size and 
character of the return value, with the following options valid: 

• word = 0: return value is one byte, in the range 0 to 255 (0x00 to 0xFF). 
• word = 1: return value is one 16-bit signed integer, in the range -32768 to 32767 (0x0000 to 

0xFFFF). 
• word = 2: peeks a 32-bit value, returning the high value and preserving the low value, which 

can be subsequently retrieved with a peek of the same address using word = 4, or with a simple 
peek() command with no parameters. The return value is in the range -32768 to 32767 (0x0000 
to 0xFFFF). 

• word = 3: peeks a 32-bit value, returning the low value and discarding the high value. The 
return value is in the range -32768 to 32767 (0x0000 to 0xFFFF). 

• word = 4: performs no peek, but returns the value previously stored when a peek with word = 2 
was performed. If no peek with word = 2 has been performed, the result of this function is 
undefined. Each new peek with word = 2 replaces the previous stored value; there is no 
stacking or queueing of results. The return value is in the range -32768 to 32767 (0x0000 to 
0xFFFF). 

 
Using peek() with no parameters is a shortcut for performing the peek with word = 4. The return value 
is in the range -32768 to 32767 (0x0000 to 0xFFFF). 
 
Peeks that return values larger than one byte must be appropriately word-aligned. In other words, the 
addrLow value must be even for a peek of a 16-bit value, and must be a multiple of 4 for any of the 
32-bit result peeks. If you are not appropriately word-aligned, the result of your peek is undefined. 
 

Page 190 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in function poke(): 
The STM32W108xB chips use a 32-bit architecture, so the signature for the poke() function has 
changed to accommodate the larger address space and the potential for different value sizes being 
poked. The new function signature is: 
 
peek(addrHi, addrLow, word, data) 
 
with word = 0 or word = 1, or 
 
peek(addrHi, addrLow, word, dataHi, dataLow) 
 
with word = 2. 
 
The addrHi and addrLow parameters are 16-bit values. The word parameter determines the size and 
character data being poked: 

• word = 0: data value is one byte, in the range 0 to 255 (0x00 to 0xFF). 
• word = 1: data value is one 16-bit signed integer, in the range -32768 to 32767 (0x0000 to 

0xFFFF). 
• word = 2: pokes a 32-bit value, specified as two data values in dataHi and dataLow.  

 
Pokes that store values larger than one byte must be appropriately word-aligned. In other words, the 
addrLow value must be even for a poke of a 16-bit value, and must be a multiple of 4 for a 32-bit 
poke. If you are not appropriately word-aligned, the result of your poke is undefined, and may result in 
system issues with your module.  

SNAP Reference Manual Document Number 600-0007K Page 191 of 202 



Built-in functions peekRadio() and pokeRadio(): 
The internal radio registers inside the STM32W108xB are not documented by ST. Instead, they supply 
a binary (no source code) library of routines with which to control the lowest level functionality of the 
internal radio. 
 
For this reason, the peekRadio() and pokeRadio() functions as implemented in this version of SNAP 
are somewhat non-standard: they do not provide access to low-level radio registers. Instead they 
provide a means to invoke low-level API functions that normally would not otherwise be available to 
the user. 
 
All of the “addresses” in the following two tables are a total fabrication (they can be considered 
“virtual addresses”). 
 
peekRadio(address) What it really does… 
0-4 Always returns 0 
5 Returns the result of calling ST_RadioCheckRadio(): 

0 if the radio does NOT need to be recalibrated 
1 if the radio DOES need to be recalibrated 
(see pokeRadio(5, xx) in the next table) 

Any other “address” Always returns 0 
 

pokeRadio(address, value) What it really does… 

0 Invokes ST_RadioSetPowerMode(value) 

1 Invokes either ST_RadioStartTransmitTone()  
(when value == 1) 
or ST_RadioStopTransmitTone() 
(when value == 0) 

2 Invokes either ST_RadioStartTransmitStream() 
(when value == 1) 
or ST_RadioStopTransmitStream() 
(when value == 0) 

3 Invokes ST_RadioSetPower(value) 

4 Invokes ST_RadioSetEdCcaThreshold(value) 

5 Invokes ST_RadioCalibrateCurrentChannel() 
(regardless of value). You might choose to do this if peekRadio(5) 
returns 1 

6 Invokes ST_RadioSetChannelAndForceCalibration(value) 
Where value should be a 802.15.4 channel number 11-26 

Page 192 of 202 SNAP Reference Manual Document Number 600-0007K 



Built-in function pulsePin(): 
On the STM32W108xB, negative durations are in units of approximately 1.4 µs. Here are some 
requested versus measured pulse timings, taken with a logic analyzer. 
 

Requested Duration Measured Pulse Width 

-1 1.42 uS 

-2 2.34 uS 

-3 3.43 uS 

-4 4.42 uS 

-5 5.43 uS 

-10 10.34 uS 

-100 100.42 uS 

-10000 10,000.4 mS 

-20000 19,999.5 mS 

-30000 29,999 mS 

SNAP Reference Manual Document Number 600-0007K Page 193 of 202 



Built-in function readAdc(): 
 
The ADCs on a STM32W108xB return signed 16-bit values, but the data sheets state that only 12 bits 
are significant. So, SNAPpy returns signed 12-bit values in the range -4096 to 4095. 
 

Note that this is different than many versions of SNAP to date – usually the values returned by 
the SNAPpy readAdc() built-in are unsigned numbers. 

 
There are also optional “divide by 4” (gain = 0.25) “buffers” that can be switched in. 
 
A bigger difference compared to other SNAP ports is that the ADCs on the STM32W108 chips are 
always differential – ADC readings are always relative to another signal, even if that signal happens to 
be GND (analog ground). The possible voltage references are: 
 
GND 
VREF / 2 (0.6 volts) 
VREF (1.2 volts) 
VREG / 2 (0.9 volts) 
 
(VREG on this chip is 1.8 volts, but is not directly selectable as an analog reference). 
 
Between the 6 different ADC pins, the optional “buffers”, and the 4 voltage references, there are many 
possible sampling combinations. The desired combination is specified by choosing two nibbles from 
the following table, and combining them together in high nibble/low nibble format. 
 
Hexadecimal Value Normal Meaning (there are exceptions) 
0x0 ADC 0 pin, NOT using the divide by 4 
0x1 ADC 1 pin, NOT using the divide by 4 
0x2 ADC 2 pin, NOT using the divide by 4 
0x3 ADC 3 pin, NOT using the divide by 4 
0x4 ADC 4 pin, NOT using the divide by 4 
0x5 ADC 5 pin, NOT using the divide by 4 
0x6 ADC 0 pin, USING the divide by 4 
0x7 ADC 1 pin, USING the divide by 4 
0x8 GND as a reference 
0x9 VREF / 2 (0.6 volts) as a reference 
0xA VREF (1.2 volts) as a reference 
0xB VREG / 2 (0.9 volts) as a reference 
0xC ADC 2 pin, USING the divide by 4 
0xD ADC 3 pin, USING the divide by 4 
0xE ADC 4 pin, USING the divide by 4 
0xF ADC 5 pin, USING the divide by 4 
 

Page 194 of 202 SNAP Reference Manual Document Number 600-0007K 



For example, invoking readAdc(0x08) would give a comparision between ADC 0 (code 0x0) and 
GND (code 0x8). Invoking readAdc(0x80) would compare the same two voltages, but the sign of the 
result would be negated, since the voltage comparison itself would be reversed in polarity. 
 
To give another example, invoking readAdc(0x12) would return a reading of the differential voltage 
between the ADC1 and ADC2 pins. 
 
For a call to readAdc(0x23), the internal divide-by-4 “buffer” would not be switched inline. This 
would increase the resolution, but the voltage being presented to the analog input might be out of 
range.  
 

When the input voltages are out of range, the ADC channel will return a full scale value (either 
-4096 or +4095, depending on the actual voltage polarity). 

 
A call to readAdc(0xCD) would be taking a differential reading between the same two pins, but with 
the internal divide-by-4-buffer switched in. This would scale the value down by a factor of 4. 
 
Since not all 256 possible combinations (16 possible upper nibbles x 16 possible lower nibbles) are 
equally useful, a few special code combinations were re-assigned to make it possible to access some 
hardware combinations referenced in the STM32W108 datasheets. 
 
Special Value What it does… 
0xAA Read VREF relative to VREF_DIV_2 but 

with the “divide by 4” buffer switched in 
0xBB Read VREG relative to VREF_DIV_2 but 

with the “divide by 4” buffer switched in 
0xCC Read VREF_DIV_2 relative to VREF_DIV_2 but 

with the “divide by 4” buffer switched in 
 
Refer to the manufacturer datasheets for more information on the ADC subsystem. 

Built-in function setPinPullup(): 
The setPinPullup() function enables internal pullup resistors as expected. However, on this 
hardware you actually have the hardware capability to have a pull up or pull DOWN resistor. The “up 
or down-ness” is controlled by the pin’s data output register. 
 
This means for example that the following sequence will result in IO 0 being an input pin with an 
internal pull-DOWN resistor enabled. 
 
setPinDir(0, False) # NOT an output, so it becomes an input 
setPinPullup(0, True) # We DO want it “pulled”, the default direction is pull-UP 
writePin(0, False) # The pin is still an input, but now it is pulled DOWN instead of up 

Built-in function setPinSlew(): 
There is no slew rate control capability in this hardware. Built-in setPinSlew() configures the pin 
as an open drain output (rather than having it do nothing at all).  

SNAP Reference Manual Document Number 600-0007K Page 195 of 202 



Built-in function setRadioRate(): 
The setRadioRate() function does not do anything on the STM32W108xB. The only radio rate 
available is the default rate of 250 Kbps, compatible with other 2.4 GHz-based SNAP nodes. 

Built-in function setSegments(): 
On the STM32W108xB, setSegments() has no effect. 

Built-in function sleep(): 
There are three sleep() modes on the MC13224 module. Higher numbered sleep modes draw less 
current, but have increasing limitations. Refer to the following table: 
 

Sleep Mode Details 
0 • Can be timed sleep 

• Can also be woken by a pin transition (if enabled) 
• Highest current usage of the three modes 

1 • Cannot be timed sleep (pin wakeup only) 
• The hardware sleep timer is maintained (even though it cannot be used 

as a wakeup source) 
2 • Cannot be timed sleep (pin wakeup only) 

• The sleep timer is not maintained at all (counter value is lost) 
• Lowest current usage of the three modes 

 
Negative durations for sleep values are valid for the following three enumerations. The sleep durations 
listed here represent the time the node spends sleeping, and do not include the node’s recovery time. 
  

Ticks enumeration Sleep duration
-1 250 ms 
-2 500 ms 
-3 750 ms 
Any other negative 
value 

Ignored 
(no sleep at all)

 
Note that these tick values only apply in sleep mode 0, the other two modes do not support “timed” 
sleep at all. 
 

Page 196 of 202 SNAP Reference Manual Document Number 600-0007K 



Current savings in sleep 
 
The following measurements were taken with a DiZiC MB851 evaluation board, and so some of the 
current draw was from the board, not just the chip. However, the delta in current readings should be 
meaningful. 
 
Mode Measured current draw 
Awake with radio on (rx(True)) 29.1 mA 
Awake with radio off (rx(False)) 10.3 mA 
sleep(0,  0) 1.4 uA 
sleep(1,  0) 0.6 uA 
sleep(2, 0) 0.3 uA 
 

Built-in function txPwr(): 
 
The SNAPpy txPwr() function takes a parameter between 0 and 17, providing access to 18 total power 
settings. The following table shows how those 18 settings were mapped to the 25 distinct power 
settings supported by the STM32W108. Refer to the pokeRadio() built-in for a way to access the other 
7 settings. 
 
txPwr(value) ST_RadioSetPower(value) 
17 8 
16 7 
15 6 
14 5 
13 4 
12 2 
11 0 
10 -2 
9 -4 
8 -6 
7 -8 
6 -11 
5 -12 
4 -14 
3 -17 
2 -20 
1 -26 
0 -43 
 

SNAP Reference Manual Document Number 600-0007K Page 197 of 202 



STM32W108CB Port Pin mappings 
Chip 
Pin 

Processor Port Pin  SNAPpy IO    Chip 
Pin 

Processor Port Pin  SNAPpy IO 

1  VDD_24MHZ      25  PA3, SC2nSSEL, 
TRACECLK, TIM2_CH2 

3 

2  VDD_VCO      26  PA4, ADC4, PTI_EN, 
TRACEDATA2 

4 

3  RF_P      27  PA5, ADC5, PTI_DATA, 
nBOOTMODE, 
TRACEDATA3 

5 

4  RF_N      28  VDD_PADS   

5  VDD_RF      29  PA6, TIM1_CH3  6 

6  RF_TX_ALT_P      30  PB1, SC1MISO, 
SC1MOSI, SC1SDA, 
SC1TXD, TIM2_CH1 

9 

7  RF_TX_ALT_N      31  PB2, SC1MISO, 
SC1MOSI, SC1SCL, 
SC1RXD, TIM2_CH2 

10 

8  VDD_IF      32  SWCLK, JTCK   

9  BIAS_R      33  PC2, JTDO, SWO  18 
10  VDD_PADSA      34  PC3, JTDI  19 

11  PC5, TXACTIVE  21    35  PC4, JTMS, SWDIO  20 

12  nRESET      36  PB0, VREF, IRQA, 
TRACECLK, TIM1CLK, 

TIM2MSK 

8 

13  PC6, OSC32B, 
nTXACTIVE 

22    37  VDD_PADS   

14  PC7, OSC32A, 
OSC32_EXT 

23    38  PC1, ADC3, SWO, 
TRACEDATA0 

17 

15  VREG_OUT      39  VDD_MEM   

16  VDD_PADS      40  PC0, JRST, IRQD, 
TRACEDATA1 

16 

17  VDD_CORE      41  PB7, ADC2, IRQC, 
TIM1_CH2 

15 

18  PA7, TIM1_CH4, 
REG_EN 

7    42  PB6, ADC1, IRQB, 
TIM1_CH1 

14 

19  PB3, TIM2_CH3, 
UART_CTS, SC1SCLK 

11    43  PB5, ADC0, TIM2CLK, 
TIM1MSK 

13 

20  PB4, TIM2_CH4, 
UART_RTS, SC1nSSEL 

12    44  VDD_CORE   

21  PA0, TIM2_CH1, 
SC2MOSI 

0    45  VDD_PRE   

22  PA1, TIM2_CH3, 
SC2SDA, SC2MISO 

1    46  VDD_SYNTH   

23  VDD_PADS      47  OSCB   

24  PA2, TIM2_CH4, 
SC2SCL, SC2SCLK 

2    48  OSCA   

Page 198 of 202 SNAP Reference Manual Document Number 600-0007K 



STM32W108HB Port Pin mappings 
Chip 
Pin 

Processor Port Pin  SNAPpy IO    Chip 
Pin 

Processor Port Pin  SNAPpy IO 

1  VDD_VCO      21  PA3, SC2nSSEL, 
TRACECLK, TIM2_CH2 

3 

2  RF_P      22  PA4, ADC4, PTI_EN, 
TRACEDATA2 

4 

3  RF_N      23  PA5, ADC5, PTI_DATA, 
nBOOTMODE, 
TRACEDATA3 

5 

4  VDD_RF      24  VDD_PADS   

5  RF_TX_ALT_P      25  PB1, SC1MISO, 
SC1MOSI, SC1SDA, 
SC1TXD, TIM2_CH1 

9 

6  RF_TX_ALT_N      26  PB2, SC1MISO, 
SC1MOSI, SC1SCL, 
SC1RXD, TIM2_CH2 

10 

7  VDD_IF      27  SWCLK, JTCK   

8  BIAS_R      28  PC2, JTDO, SWO  18 

9  VDD_PADSA      29  PC3, JTDI  19 
10  PC5, TXACTIVE  21    30  PC4, JTMS, SWDIO  20 

11  nRESET      31  PC1, ADC3, SWO, 
TRACEDATA0 

17 

12  VREG_OUT      32  VDD_MEM   

13  VDD_PADS      33  PC0, JRST, IRQD, 
TRACEDATA1 

16 

14  VDD_CORE      34  PB7, ADC2, IRQC, 
TIM1_CH2 

15 

15  PB3, TIM2_CH3, 
UART_CTS, SC1SCLK 

11    35  PB6, ADC1, IRQB, 
TIM1_CH1 

14 

16  PB4, TIM2_CH4, 
UART_RTS, SC1nSSEL 

12    36  VDD_CORE   

17  PA0, TIM2_CH1, 
SC2MOSI 

0    37  VDD_PRE   

18  PA1, TIM2_CH3, 
SC2SDA, SC2MISO 

1    38                 OSCB   

19  VDD_PADS      39                 OSCA   

20  PA2, TIM2_CH4, 
SC2SCL, SC2SCLK 

2    40  VDD_24MHZ   

 

SNAP Reference Manual Document Number 600-0007K Page 199 of 202 



Memory Usage 
 
SNAP Protocol Memory Usage: 
Global Buffer Pool:  20 
UART Budget:  6 
Mesh Routing Budget: 6 
RPC Budget:   6 
Radio Budget:  6 
STDOUT Budget:  4 
 
SNAPpy Virtual Machine Memory Usage: 
Number of Tiny Strings:  14 
Tiny String Size:   up to 16 characters 
Number of Medium Strings: 10 
Medium String Size:   up to 128 characters 
Global Variables:   128 
Concurrent Local Variables: 64 
Maximum Call Stack Depth: 8 
 
 
SNAPpy Script Space: 60K 

 
Performance Metrics 
Here are the results of some recent performance measurements, which may help gauge if SNAPpy can 
address your application’s timing requirements. 

Time to awaken from sleep (mode 0): 
< 51 ms 

Time to awaken from sleep (mode 1): 
< 51 ms 

Time to awaken from sleep (mode 2): 
< 51 ms 
 

In other words, the wakeup time is not significantly affected by the sleep mode. 

Time to startup from power-on: 
< 88 ms 

Page 200 of 202 SNAP Reference Manual Document Number 600-0007K 



Maximum rate a SNAPpy script can toggle a GPIO pin: 
11583 Hz 
 
In other words, each True/False cycle took 86.33 µs. 
 
Keep in mind that as a general rule, SNAPpy scripts should not be looping, the above rate is only 
attainable if the node is doing nothing else (for example, no radio or serial port communication).  

Maximum rate for readAdc() calls: 
Maximum 120 samples/second. 
 
NOTE! – This measurement was taken using a script that did not actually do anything with the data. 
You will also have to take into consideration any numeric processing required (data thresholding, etc.), 
as well as the need to actually store the data someplace. 

I2C Byte Transfer Time 
The actual I2C transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 155 µs per byte. 

SPI Byte Transfer Time 
The actual SPI transfers are done using “bit banging” in software. This was measured using a logic 
analyzer at 76 µs per byte. 

Virtual Machine Speed 
SNAP 2.4 Instructions Per Second (IPS): 51630 
 
 
Reserved Hardware 
The internal 1 KHZ timer (“sysTick”) inside the ARM processor is used to generate the 1 millisecond 
time base for SNAP. Hardware timers TIM1 and TIM2 remain available for use (for example, for 
generating PWM waveforms). 
 
The PA5 pin if held low at power-on reset forces entry into a serial boot loader built into the chip. 
 
This is a hardware feature of the chip, and cannot be overridden. This does not mean you cannot use 
this pin for other purposes, but you definitely should refer to the manufacturer’s data sheets and 
reference designs before doing so. 
 
 
 

SNAP Reference Manual Document Number 600-0007K Page 201 of 202 



Page 202 of 202 SNAP Reference Manual Document Number 600-0007K 

License governing any code samples presented in this Manual 
 
Redistribution of code and use in source and binary forms, with or without modification, are permitted provided that it 
retains the copyright notice, operates only on SNAP® networks, and the paragraphs below in the documentation and/or 
other materials are provided with the distribution: 
 
Copyright 2008-2011, Synapse Wireless Inc., All rights Reserved. 
 
Neither the name of Synapse nor the names of contributors may be used to endorse or promote products derived from this 
software without specific prior written permission.  
 
This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS, 
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SYNAPSE 
AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT 
OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL 
SYNAPSE OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, 
INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND 
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS 
SOFTWARE, EVEN IF SYNAPSE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  
 

Disclaimers 
 
Information contained in this Manual is provided in connection with Synapse products and services and is intended solely 
to assist its customers. Synapse reserves the right to make changes at any time and without notice. Synapse assumes no 
liability whatsoever for the contents of this Manual or the redistribution as permitted by the foregoing Limited License. 
The terms and conditions governing the sale or use of Synapse products is expressly contained in the Synapse’s Terms and 
Condition for the sale of those respective products. 
 
Synapse retains the right to make changes to any product specification at any time without notice or liability to prior users, 
contributors, or recipients of redistributed versions of this Manual. Errata should be checked on any product referenced. 
 
Synapse and the Synapse logo are registered trademarks of Synapse. All other trademarks are the property of their owners. 
 
For further information on any Synapse product or service, contact us at: 
 
 
Synapse Wireless, Inc. 
500 Discovery Drive 
Huntsville, Alabama 35806 
  
256-852-7888 
877-982-7888  
256-852-7862 (fax) 
 
www.synapse-wireless.com 


	Table of Contents
	1. Introduction
	SNAP and SNAPpy
	Portal and SNAPconnect
	The SNAP Wireless Sniffer
	Navigating the SNAP Documentation
	Start with an “Evaluation Kit Users Guide”
	About This Manual
	Other Important Documentation
	When The Manuals Are Not Enough

	2. SNAP Overview
	Key features of SNAP
	RPC
	SNAPpy Scripting 
	SNAPpy Examples
	Portal Scripting 
	Python
	Portal Script Examples

	3. SNAPpy – The Language
	Statements must end in a newline
	The # character marks the beginning of a comment
	Indentation is significant
	Indentation is used after statements that end with a colon (:)
	Branching is supported via “if”/“elif”/“else”
	Looping is supported via “while”
	Identifiers are case sensitive
	Identifiers must start with a non-numeric character
	Identifiers may only contain alphanumeric characters and underscores
	There are several types of variables
	String Variables can contain Binary Data
	You define new functions using “def”
	Functions can take parameters
	Functions can return values
	Functions can do nothing
	Functions cannot be empty
	Variables at the top of your script are global
	Variables within functions are usually local…
	…unless you explicitly say you mean the global one
	Creating globals on the fly
	The usual conditionals are supported
	The usual math operators are supported
	The usual Boolean functions are supported
	Variables do have types, but they can change on the fly
	Functions can change, too
	You can use a special type of comment called a “docstring”

	4. SNAPpy versus Python
	Modules
	Variables
	Functions
	Data Types
	Keywords
	Operators
	Slicing
	Concatenation
	Subscripting
	Expressions
	Python Built-ins
	Print

	5. SNAPpy Application Development
	Event-Driven Programming
	SNAP Hooks
	Transparent Data (Wireless Serial Port)
	Scripted Serial I/O (SNAPpy STDIO)
	The Switchboard
	Loopback
	Crossover
	Wireless Serial
	Local Terminal
	Remote Terminal
	Packet Serial

	Debugging
	Sample Application – Wireless UART
	Option 1 – Two Scripts, Hardcoded Addressing
	Option 2 – One Script, Manually Configurable Addressing

	Code Density

	6. Advanced SNAPpy Topics
	Interfacing to external CBUS slave devices
	Interfacing to external SPI slave devices
	Interfacing to external I2C slave devices
	Interfacing to multi-drop RS-485 devices
	Encryption between SNAP nodes
	Recovering an Unresponsive Node

	7. SNAPpy – The API
	Alphabetical SNAP API
	bist() – Synapse internal use only
	call(rawOpcodes, functionArgs…) – Call embedded C code
	callback(callback, remoteFunction, remoteFunctionArgs…)
	callout(nodeAddress, callback, remoteFunction, remoteFunctionArgs…)
	cbusRd(numToRead) – Read bytes in from the CBUS
	cbusWr(str) – Write bytes out to the CBUS
	chr(number) – Generate a single-character-string
	crossConnect(endpoint1, endpoint2) – Tie two endpoints together
	eraseImage() – Erase any SNAPpy image from the node
	errno() – Read and reset latest error code
	flowControl(uart, isEnabled, isTxEnable) – Enable/disable flow control
	getChannel() – Get which channel the node is on
	getEnergy() – Get energy reading from current channel
	getI2cResult() – Get status code from most recent I2C operation
	getInfo(whichInfo) – Get specified system info
	getInfo(0) – Vendor
	getInfo(1) – Primary Communications Interface
	getInfo(2) – CPU
	getInfo(3) – Platform/Broad Firmware Category
	getInfo(4) – Build
	getInfo(5), getInfo(6), getInfo(7) – Version
	getInfo(8) – Encryption
	getInfo(9) – RPC Packet Buffer
	getInfo(10) – Is Multicast
	getInfo(11) – Remaining TTL
	getInfo(12) – Remaining Tiny Strings
	getInfo(13) – Remaining Medium Strings
	getInfo(14) – Route Table Size
	getInfo(15) – Routes in Route Table

	getLq() – Get the most recent Link Quality
	getMs() – Get system millisecond tick
	getNetId() – Get the node’s Network ID
	getStat() – Get Node Traffic Status
	getStat(0) – Null Transmit Buffers
	getStat(1) – UART0 Receive Buffers
	getStat(2) – UART0 Transmit Buffers
	getStat(3) – UART1 Receive Buffers
	getStat(4) – UART1 Transmit Buffers
	getStat(5) – Transparent Receive Buffers
	getStat(6) – Transparent Transmit Buffers
	getStat(7) – Packet Serial Receive Buffers
	getStat(8) – Packet Serial Transmit Buffers
	getStat(9) – Radio Receive Buffers
	getStat(10) – Radio Transmit Buffers
	getStat(11) – Radio Forwarded Unicasts
	getStat(12) – Packet Serial Forwarded Unicasts
	getStat(13) – Radio Forwarded Multicasts
	getStat(14) – Packet Serial Forwarded Multicasts

	imageName() – Return name of currently loaded SNAPpy image
	i2cInit(enablePullups) – Setup for I2C
	i2cRead(byteStr, numToRead, retries, ignoreFirstAck) – I2C Read
	i2cWrite(byteStr, retries, ignoreFirstAck) – I2C Write
	initUart(uart, bps) – Initialize a UART (short form)
	initUart(uart, bps, dataBits, parity, stopBits) – Initialize a UART
	initVm() – Initialize (restart) the SNAPpy Virtual Machine
	int(obj) – Convert an object to numeric form (if possible)
	lcdPlot() – LCD Support (Deprecated)
	len(sequence) – Return the length of a sequence
	loadNvParam(id) – Read a Configuration Parameter from NV
	localAddr() – Get the node’s SNAP address
	mcastRpc(group, ttl, function, args…) – Multicast RPC
	mcastSerial(destGroups, ttl) – Setup TRANSPARENT MODE
	monitorPin(pin, isMonitored) – Enable/disable monitoring of a pin
	ord(str) – Return the integer ASCII ordinal value of a character
	peek(address) or peek(addressHi, addressLow, word) – Read a memory location
	peekRadio(address) – Read an internal register of the radio
	poke(address, value) or poke(addressHi, addressLow, word, data) or poke(addressHi, addressLow, word, dataHi, dataLow) – Write to a memory location
	pokeRadio(address, value) – Write to an internal radio register
	print – Generate output from your script
	pulsePin(pin, msWidth, isPositive) – Generate a timed pulse
	random() – Generate a random number
	readAdc(channel) – Read an Analog Input pin (or reference)
	readPin(pin) – Read the logic level of a pin
	reboot() – Schedule a reboot
	resetVm() – Reset (shut down) the SNAPpy Virtual Machine
	rpc(address, function, args…) – Remote Procedure Call (RPC)
	rpcSourceAddr() – Who made this Remote Procedure Call?
	rx(isEnabled) – Turn radio receiver on/off
	saveNvParam(id, obj) – Save data into NV memory
	scanEnergy() – Get energy readings from all channels
	setChannel(channel) – Specify which channel the node is on
	setNetId(networkId) – Specify which Network ID the node is on
	setPinDir(pin, isOutput) – Set direction (input or output) for a pin
	setPinPullup(pin, isEnabled) – Control internal pull-up resistor
	setPinSlew(pin, isRateControl) – Enable/disable slew rate control
	setRadioRate(rate) – Set raw radio data rate
	setRate(rate) – Set monitorPin() sample rate
	setSegments(segments) – Update seven-segment display
	sleep(mode, ticks) – Go to sleep (enter low-power mode)
	spiInit(cpol, cpha, isMsbFirst, isFourWire) – Setup SPI Bus
	spiRead(byteCount, bitsInLastByte=8) – SPI Bus Read
	spiWrite(byteStr, bitsInLastByte=8) – SPI Bus Write
	spiXfer(byteStr, bitsInLastByte=8) – Bidirectional SPI Transfer
	stdinMode(mode, echo) – Set console input options
	str(object) – Return the string representation of an object
	txPwr(power) – Set Radio TX power level
	ucastSerial(destAddr) – Setup outbound TRANSPARENT MODE
	uniConnect(dest, src) – Make a one-way switchboard connection
	vmStat(statusCode, args…) – Invoke “status” callbacks
	writeChunk(offset, data) – Synapse Use Only
	writePin(pin, isHigh) – Set output pin level

	ADC
	CBUS Master Emulation
	GPIO
	I2C Master Emulation
	Misc
	Network
	Non-Volatile (NV) Parameters
	Radio
	SPI Master Emulation
	Switchboard
	System
	UARTs
	Immediate Functions
	Blocking Functions
	Non-blocking Functions
	Non-blocking Functions and SNAPpy Hooks
	SNAPpy Scripting Hints
	Beware of Case SensitiViTy
	Beware of Accidental Local Variables
	Don’t Cut Yourself Off (Packet Serial)
	Remember Serial Output Takes Time
	Remember nodes do not have a lot of RAM
	Remember SNAPpy Numbers Are Integers
	Remember SNAPpy Integers are Signed
	Remember SNAPpy Integers have a Sign Bit
	Pay Attention to Script Output
	Don’t Define Functions Twice
	There is limited dynamic memory in SNAPpy
	Use the Supported Form of Import
	Remember Portal Speaks Python Too
	Remember you can invoke functions remotely
	Be careful using multicast RPC invocation
	If all nodes hear the question at the same time, they will all answer at the same time
	If you want to call a built-in function by name, the called node needs a script loaded, even if it is empty


	8. SNAP Node Configuration Parameters
	ID 0 – Reserved for Synapse Use
	ID 1 – Reserved for Synapse Use
	ID 2 – MAC Address
	ID 3 – Network ID
	ID 4 – Channel
	ID 5 – Multi-cast Processed Groups
	ID 6 – Multi-cast Forwarded Groups
	ID 7 – Manufacturing Date
	ID 8 – Device Name
	ID 9 – Last System Error
	ID 10 – Device Type
	ID 11 – Feature Bits
	ID 12 – Default UART
	ID 13 – Buffering Timeout
	ID 14 – Buffering Threshold
	ID 15 – Inter-character Timeout
	ID 16 – Carrier Sense
	ID 17 – Collision Detect
	ID 18 – Collision Avoidance
	ID 19 – Radio Unicast Retries
	ID 20 – Mesh Routing Maximum Timeout
	ID 21 – Mesh Routing Minimum Timeout
	ID 22 – Mesh Routing New Timeout
	ID 23 – Mesh Routing Used Timeout
	ID 24 – Mesh Routing Delete Timeout
	ID 25 – Mesh Routing RREQ Retries
	ID 26 – Mesh Routing RREQ Wait Time
	ID 27 – Mesh Routing Initial Hop Limit
	ID 28 – Mesh Routing Maximum Hop Limit
	ID 29 – Mesh Sequence Number
	ID 30 – Mesh Override
	ID 31 – Mesh Routing LQ Threshold
	ID 32 – Mesh Rejection LQ Threshold
	ID 33 – Noise Floor
	ID 34 through 38 – Reserved for Future Use
	ID 39 – Radio LQ Threshold
	ID 40 – SNAPpy CRC
	ID 41 – Platform
	ID 42 through 49 – Reserved for Future Use
	ID 50 – Enable Encryption
	ID 51 – Encryption Key
	ID 52 – Lockdown
	ID 53 – Maximum Loyalty
	ID 54 through 59 – Reserved for Future Use
	ID 60 – Last Version Booted (Deprecated)
	ID 61 – Reboots Remaining
	ID 62 – Reserved for Future Use
	ID 63 – Alternate Radio Trim value
	ID 64 – Vendor-Specific Settings
	ID 65 – Clock Regulator
	ID 66 – Radio Calibration Data
	ID 67 through 127 – Reserved for Future Use
	ID 70 – Transmit Power Limit
	ID 128 through 254 – Available for User Definition
	ID 255 – Reserved for Synapse Use

	9. Example SNAPpy Scripts
	General Purpose Scripts
	Scripts Specific to I2C
	Scripts Specific to SPI
	Scripts specific to the EK2100 Kit
	Platform-Specific Scripts
	Scripts specific to the RF100 Platform
	Scripts specific to the RF200 Platform
	Scripts specific to the RF300/RF301 Platform
	Scripts specific to the Panasonic Platforms
	Scripts specific to the California Eastern Labs Platforms
	Scripts specific to the ATMEL ATmega128RFA1 Platforms
	Scripts specific to the SM700/MC13224 Platforms
	Scripts specific to the STM32W108xB Platforms


	10. Supported Platform Details
	Synapse RF100
	Form factor
	GPIO pins
	Wakeup pins
	Analog inputs
	UART0
	UART1
	CBUS
	SPI
	I2C
	PWM
	Seven-segment displays
	Sleep Modes
	Timers
	Synapse RF100 Pin Assignments
	SNAP Protocol Memory Usage
	SNAPpy Virtual Machine Memory Usage
	Platform-Specific SNAPpy Built-In Functionality
	Built-in function lcdPlot():
	Built-in function pulsePin():
	Built-in function random():
	Built-in function readAdc()
	Built-in function setRadioRate():
	Built-in function sleep():
	UART Performance
	Vendor-specific settings:

	Performance Metrics
	Time to awaken from sleep:
	Time to startup from power-on:
	Maximum rate a SNAPpy script can toggle a GPIO pin:
	Maximum rate for readAdc() calls:
	Propagation Delay Tests
	I2C Byte Transfer Time
	SPI Byte Transfer Time
	Virtual Machine Performance


	Freescale MC1321x Chip
	Some other hardware mappings:
	Timers
	MC1321x IO Mapping
	SNAP Protocol Memory Usage
	SNAPpy Virtual Machine Memory Usage
	Platform Specific SNAPpy Built-In Functionality and Performance Metrics

	Panasonic PAN4555 SNAP Module
	Timers
	PAN4555 Module IO Mapping

	Panasonic PAN4555 (SNAP Engine Form Factor)
	Fewer “Wakeup” Pins
	Fewer ADC Input Pins
	You cannot “cheat” and read/write 8 GPIO with a single poke()
	Two Additional PWM Output Pins
	getInfo() Differences
	Sleep() considerations
	For Advanced Users Only
	Pin Configuration of a PAN4555 in SNAP Engine Format
	PAN4555 GPIO Assignments
	Vendor-specific settings:

	Performance Metrics

	Panasonic PAN4561 (SNAP Engine Form Factor)
	Increased Number of GPIO Pins
	Platform Specific Settings
	Platform Specific Hardware Configuration
	Low-Noise Amplifier High-Gain Mode (HGM) => Radio Transceiver GPIO- 3: 
	Power Amplifier Enable/Disable (PA_EN)
	Timers

	ADC Pins
	Low Power Settings (LNA/PA)
	Default UART remains UART1
	I2C Emulation vs. Hardware pins
	Additional PWM Output Pins
	PWM on GPIO 0, 14, 15, 31, and 32

	getInfo() Differences
	 PAN4561 GPIO Assignments
	Pin Functionality for the PAN4561 Module
	Pin Configuration of a PAN4561 in SNAP Engine Format
	Vendor-specific settings:

	Performance Metrics

	California Eastern Labs ZIC2410 Chip and Module
	ZIC2410 IO Mapping
	Separate Analog Input Pins
	I2C Emulation
	Memory Usage
	Memory Usage without AES-128 Support
	SNAP Protocol Memory Usage:
	SNAPpy Virtual Machine Memory Usage:
	Memory Usage with AES-128 Support
	SNAP Protocol Memory Usage:
	SNAPpy Virtual Machine Memory Usage:

	Platform Specific SNAPpy Functionality
	Audio Enable:
	Carrier Sense:
	Built-in functions cbusRd() and cbusWr():
	Built-in function lcdPlot():
	Built-in functions peek() and poke():
	Built-in functions peekRadio() and pokeRadio():
	Built-in function pulsePin():
	Built-in function random():
	Built-in function readAdc()
	Built-in function setRadioRate():
	Built-in function sleep():

	Performance Metrics
	Time to awaken from sleep (mode 0):
	Time to startup from power-on:
	Maximum rate a SNAPpy script can toggle a GPIO pin:
	Maximum rate for readAdc() calls:
	I2C Byte Transfer Time
	SPI Byte Transfer Time
	Virtual Machine Speed


	California Eastern Labs ZIC2410 (SNAP Engine Form Factor)
	Separate Analog Input Pins
	Pin Configuration of a ZICM2410P2 in SNAP Engine Format

	ATMEL ATmega128RFA1
	IO pins
	Wakeup pins
	Analog inputs
	UART0
	UART1
	SPI
	I2C
	PWM
	ATmega128RFA1 Port mappings
	More “Wakeup” Pins
	Analog Input Pins
	Serial port 0
	Serial port 1
	PWM Output Pins
	SPI
	I2C
	Memory Usage
	Platform Specific SNAPpy Built-In Functionality
	Built-in function getInfo():
	Built-in functions cbusRd() and cbusWr():
	Built-in functions peekRadio() and pokeRadio():
	Built-in function lcdPlot():
	Built-in function setPinSlew():
	Built-in function pulsePin():
	Built-in function random():
	Built-in function readAdc()
	Built-in function setRadioRate():
	Built-in function setSegments():
	Built-in function sleep():
	Built-in function getLq():
	Relevant Feature Bits (NV #11):
	Vendor-specific settings:

	Performance Metrics
	Time to awaken from sleep (mode 0):
	Time to startup from power-on:
	Maximum rate a SNAPpy script can toggle a GPIO pin:
	Maximum rate for readAdc() calls:
	I2C Byte Transfer Time
	SPI Byte Transfer Time
	Virtual Machine Speed

	Reserved Hardware

	Synapse RF200
	Form Factor
	IO pins
	Sleep
	Wakeup pins
	Analog inputs
	UART0
	UART1
	SPI
	I2C
	PWM
	Pin Configuration of an ATmega128RFA1 in SNAP Engine Format (RF200)

	Synapse SS200
	Silicon Labs Si100x
	IO pins
	Wakeup pins
	Analog inputs
	UART0
	UART1
	SPI
	I2C
	PWM
	Serial rates
	Si100x Port mappings
	 “Wakeup” Pins
	Analog Input Pins
	Serial port 0
	PWM Output Pins
	SPI
	I2C
	Memory Usage
	Platform-Specific SNAPpy Functionality
	900 MHz Channel usage:
	868 MHz Channel usage:
	Carrier Sense (NV Parameter 16) and Collision Detect (NV Parameter 17):
	Maximum Loyalty (NV Parameter 53):
	Clock Regulator (NV Parameter 65):
	Built-in functions cbusRd() and cbusWr():
	Built-in functions getEnergy() and scanEnergy():
	Built-in function getInfo():
	Built-in function getStat():
	Built-in function lcdPlot():
	Built-in functions peek() and poke():
	Built-in function pulsePin():
	Built-in function readAdc()
	Built-in function setPinPullup():
	Built-in function setPinSlew():
	Built-in function setRadioRate():
	Built-in function setSegments():
	Built-in function sleep():
	Encryption
	Alternate Radio Trim settings:
	Vendor-specific settings:

	Performance Metrics
	Time to awaken from sleep (mode 0):
	Time to awaken from sleep (mode 1):
	Time to startup from power-on:
	Maximum rate a SNAPpy script can toggle a GPIO pin:
	Maximum rate for readAdc() calls:
	I2C Byte Transfer Time
	SPI Byte Transfer Time
	Virtual Machine Speed

	Reserved Hardware
	Timers
	Advanced SNAP Hardware Assumptions


	Synapse RF300/RF301
	Form Factor
	IO pins
	Wakeup pins
	Analog inputs
	UART0
	UART1
	SPI
	I2C
	PWM
	Virtual Machine Speed
	Sleep
	Alternate Radio Trim settings:
	Vendor-specific settings:
	Encryption
	Pin Configuration of an Si1000 in SNAP Engine Format (RF300/RF301)

	Freescale MC13224 chip
	IO pins
	Wakeup pins
	Analog inputs
	UART0 
	UART1 
	SPI
	I2C
	PWM
	Serial rates
	Network IDs
	Platform-Specific SNAPpy Functionality
	Noise Floor (NV Parameter 33):
	Clock Regulator (NV Parameter 65):
	Built-in function getInfo():
	Built-in function peek():
	Built-in function poke():
	Built-in functions peekRadio() and pokeRadio():
	Built-in functions readAdc():
	Built-in functions setPinDir():
	Built-in functions setPinPullup():
	Built-in functions setPinSlew():
	Built-in functions setRadioRate():
	Built-in functions sleep():

	Memory Usage
	Virtual Machine Speed

	Reserved Hardware

	Synapse SM700 Surface-Mount Module
	getInfo() return values
	Sleep
	Feature Bits
	IO pins
	SM700 Port Pin mappings

	STMicroelectronics STM32W108xB chip
	IO pins
	Wakeup pins
	Analog inputs
	UART 
	SPI
	I2C
	PWM
	Serial rates
	Platform-Specific SNAPpy Functionality
	Radio Calibration Info (NV Parameter 66):
	Built-in function getInfo():
	Built-in function i2cInit():
	Built-in function lcdPlot():
	Built-in function peek():
	Built-in functions peekRadio() and pokeRadio():
	pokeRadio(address, value)
	What it really does…
	0
	Invokes ST_RadioSetPowerMode(value)
	1
	Invokes either ST_RadioStartTransmitTone() 
	2
	Invokes either ST_RadioStartTransmitStream()
	3
	Invokes ST_RadioSetPower(value)
	4
	Invokes ST_RadioSetEdCcaThreshold(value)
	5
	Invokes ST_RadioCalibrateCurrentChannel()
	6
	Invokes ST_RadioSetChannelAndForceCalibration(value)
	Built-in function pulsePin():
	Requested Duration
	Measured Pulse Width
	-1
	1.42 uS
	-2
	2.34 uS
	-3
	3.43 uS
	-4
	4.42 uS
	-5
	5.43 uS
	-10
	10.34 uS
	-100
	100.42 uS
	-10000
	10,000.4 mS
	-20000
	19,999.5 mS
	-30000
	29,999 mS
	Built-in function readAdc():
	Built-in function setPinPullup():
	Built-in function setPinSlew():
	Built-in function setRadioRate():
	Built-in function setSegments():
	Built-in function sleep():
	Built-in function txPwr():

	STM32W108CB Port Pin mappings
	STM32W108HB Port Pin mappings
	Memory Usage
	Performance Metrics
	Time to awaken from sleep (mode 0):
	Time to awaken from sleep (mode 1):
	Time to awaken from sleep (mode 2):
	Time to startup from power-on:
	Maximum rate a SNAPpy script can toggle a GPIO pin:
	Maximum rate for readAdc() calls:
	I2C Byte Transfer Time
	SPI Byte Transfer Time
	Virtual Machine Speed

	Reserved Hardware


	License governing any code samples presented in this Manual
	Disclaimers

