
Holiday Image
TBA - To Be Announced? Nope -
Time-Based Art! In this HotSheet you
will learn how to group shapes
together and get them to move over
time and react to your mouse!

ELECTRICAL
PROTOTYPING

ROBOTICS

SOLDERING

PROGRAMMING

DIY

MATERIALS LIST

● Computer ● Processing ● Graph Paper ● Colored Pencils ● Super fine-tip Sharpie

STEP 1: Draw Something!
We highly recommend that you spend some time coming up with an analog (paper and pencil) version of what you plan to
create in Processing. Sometimes it’s hard enough to come up with something when you are just drawing it, let alone
drawing it in code. You can then note origin points of shapes and their colors, widths and heights. This step is not
required, but highly recommended. If you use graph paper it will allow you to transfer coordinates quickly and efficiently,
and will all around make your life easier.

STEP 2: Shapes
The next step from the rectangles we used to create our pixel art is creating other shapes.
Below you can find the basic geometry functions for Processing and their required parameters
(the needed numbers for the function to work). Before you really start digging into your holiday
image, just spend some time playing and drawing different shapes.

rect(x,y,w,h); - Rectangle with an origin at the upper right hand corner (x,y) and a
width and height of W, H
ellipse(x,y,w,h); - Ellipse with a center origin at X,Y and a width and height of W, H
triangle(x1,y1,x2,y2,x3,y3); - A triangle with the three points at the given X,Y
points
quad(x1,y1,x2,y2,x3,y3,x4,y4); - A quad with the four points at the given X,Y points
arc(x,y,w,h,Start, Stop); - An arc with a center X,Y with a width and height radius of W,H and a start and
stop point

Once you have played around with the different geometry functions, break your analog image down into basic shapes to be
translated into Processing. See the code and given sketch for an example of each shape.

STEP 3: Lines, Weight and Color
You know from project 0 that you can draw lines in Processing.
You can also modify those lines using a number of functions that
precede the line function. Here are a few “modifiers” for lines and
strokes
stroke(R,G,B); - Sets a line or stroke color in RGB
strokeWeight(#); - Changes the thickness of a line in pixels
noStroke(); - Removes all lines and outlines

STEP 4: Layers
You have probably noticed by now that shapes overlap in Processing. How do you know which one is going to be on top
and which one is going to be on the bottom? The answer is simple to remember: The shape that is coded first is going to
be on the bottom. Think of Processing as digital collage; if you want something on top of another shape move its place
down in the code. Make sure that you are moving any modifiers that go with it as well!

STEP 5: Changing Color
By now you should have an awesome holiday image! How can you improve it? One way to
make it better would be to have it change color. I think of Christmas lights that twinkle, or a
poor snowman that may turn yellow after a series of unfortunate events.

So far, all of the numbers that you are using are static; they don't change. If you were to
introduce a variable you could make things change. Try using a few of these built-in
variables as position points, RGB values, or in any other place that has numbers.

mouseX - The X coordinate of your mouse
mouseY - The Y coordinate of your mouse
second()- The number of seconds since you hit play
minute() - The minutes on your computer’s clock

STEP 8: Share your work!
If you would like to share your work (which you do), you can sign up at
openprocessing.org. Open Processing allows you to share your code and view the
drawing online, and allows others to fork or borrow your code to manipulate and change it
while still keeping your sketch intact for others to check out.

TAKING IT FURTHER

● Try using math and variables to make interaction more intricate.
● Make a snowman wave!
● Play around with text(“text”,x,y);

http://www.google.com/url?q=http%3A%2F%2Fwww.openprocessing.org%2F&sa=D&sntz=1&usg=AFQjCNHHiGwE7rLfDyB1OYwMVPBdlUXnFg

