

2D/3D Dual CygLiDAR CygLiDAR D1 User Manual

Table of Contents

1	Introduction	3	;
-	ToF (Time of Flight)	3	}
-	Solid State	3	}
-	2D / 3D Dual	3	}
2	Specification		ŀ
3	Component	5	;
4	Hardware Design	5	;
5	How to Use	6	;
6	Serial Communication	7	,
-	<u>UART</u>	7	7
-	<u>PINMAP</u>		7
-	Packet Structure	7	,
-	<u>Checksum</u>	7	7
-	Packet	8	}
7	Verification & Install	1	13
8	CygLiDAR Viewer	1	4
9	CygLiDAR ROS Driver	1	8
10	Revision history	1	9

1. Introduction

ToF (Time of Flight)

CygLiDAR measures distance by light round trip time (ToF). ToF emits a pulse signal at the light emitter and measures the phase change of the signal reflected by the object. This is the Phase shift method that measures time and calculates distance.

Solid State

Solid State CygLiDAR has no vibration, heat or noise that is directly linked to the life of the device.

Unlike the 360 ° Scanning LiDAR, which uses a motor, a wide viewing angle is secured with a wide-angle lens, so the light emitting part (laser, LED) does not have to operate for a long time. This can reduce the heat generated by the light emitting part.

Solid State does not use a motor, so it can set smaller in size. CygLiDAR that use this method are highly compatible.

2D / 3D Dual

CygLiDAR can measure 2D and 3D distance data at the same time. A delicate external environment is possible with 3D data, enabling long-distance measurements with 2D data. CygLiDAR allows for flexible system configurations.

2. Specification

Detection range	Range affected by reflectivity 2D : 200mm ~ 8,000mm 3D : 50mm ~ 2,000mm (*DRM)
Distance accuracy	±1%
Resolution (Measure in mm)	2D : 1° (Angle) 3D : 160 x 60 (Pixel)
FOV : Field of View	2D/3D Horizontal : 120° 3D Vertical : 65°
Wavelength	*Laser Diode : NIR 808nm LED : NIR 808nm
Measuring speed	2D : 15Hz 3D : 15Hz
Size (W * H * D)	37.4 * 37.4 * 24.5 (mm³)
Weight	28g
Interface	UART TTL 3.3V 3,000,000 bps
Input power source	5V, 500mA
Operating Temperature	-10°C ~ 50°C
Use environment	Indoor

*DRM : Dynamic Range Mode

*Laser Diode : Be Careful

Do not inject the Laser directly into your eyes. The act of looking at the laser with an optical measuring instrument (magnifying glass, microscope, telescope, etc.) can cause poor vision.

3. Component

CygLiDAR D1	Connector	USB to UART Converter	5pin USB Cable

* Components other than CygLiDAR D1 are provided separately and may differ from the image above.

4. Hardware Design

BOTTOM

5. How to Use

- This is the tool you need to get your Lidar working.

	2		4	5
CygLiDAR D1	Connector	USB to UART Converter	5pin USB Cable	PC or Rasberry Pi

Connect 1, 2, 3, 4 in order as shown below.

- Finally, connect 4 and 5 (PC or Raspberry Pi).

UART

Data Bit	: 8 bit
Parity	: none
Stop Bit	: 1 bit
Baud Rate	: 3,000,000 bps

PINMAP

VCC	:	+5V
Rx	:	UART TTL Rx
Тх	:	UART TTL Tx
GND	:	GND
GPIO	:	Reserved

Packet structure

		Packet					Packet			
Header1	Header2	Header3	Payload Length LSB	Payload Length MSB	Payload Header	Payload Data 0	Payload Data 1		Payload Data n	Checksum
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte		n b	yte		1 byte

Header : Three fixed values assigned to every valid dataset, consisting of 0x5A, 0x77 and 0xFF. Payload Length : Payload size in byte.

Payload Header : A unique value for a clarification of the device version.

Payload Data : A set of the significant bits of the pixel component data.

Checksum : The result of XOR of all values only except Headers from 1 to 3.

Checksum

Checksum is the last byte of a frame that is only used for an integrity check.

```
#define PAYLOAD_LENGTH_LSB_INDEX 3
uint8_t CalcChecksum(uint8_t *buff, int buffSize)
{
    uint8_t CheckSum = 0;
    for(int i = PAYLOAD_LENGTH_LSB_INDEX; i < buffSize - 1; i++)
    {
        CheckSum ^= buff[i];
    }
    return CheckSum;
}</pre>
```

Packet Request Overview

Request Name	Payload Header Value	Payload Length	Response Packet	LiDAR Operation	Supported Firmware Version
Get Device Info	0x10	2	Ο	Get the release versions of the latest update to F/W and H/W	0.0.1
Run 2D Mode	0x01	2	Ο	Start 2D Data measurement.	0.0.1
Run 3D Mode	0x08	2	Ο	Start 3D Data measurement.	0.0.1
Run Dual Mode	0x07	2	Ο	Start Dual Data measurement.	0.0.1
Stop	0x02	2	х	Change status to Idle.	0.0.1
Set 3D Light pulse duration	0x0C	3	Х	Control 3D Light pulse duration.	0.0.1
Set Frequency Channel	0x0F	2	Х	Change frequency channel.	0.0.1
Set Sensitivity	0x11	2	х	Control measurement sensitivity.	0.0.2
Set Baud Rate	0x12	2	х	Change seral baud rate	0.2.4

Get Device Info Request

Both versions of firmware and hardware are provided.

Run 2D Mode Request (0x01)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x01	0x00	0x03				
Response Packet	0x5A	0x77	0xFF	0xF3	0x00	0x01	LSB -60º	MSB -60°		LSB +60°	MSB +60°	Check Sum
FŎ Re: Ra		on	: Lase : 120º : 0.75 ⁰ : 200 - : 16 bi	。 ~ 8,00			16 16 16	5000 : 5001 : 5002 : 5003 :	ode list Limit for val Low Ampli ADC Overf Saturation Bad Pixel	tude	a	

Switch to 2D Mode in order to receive 2D datasets from the device. Sequence of 2D datasets is 0.75° resolution from -60° to $+60^{\circ}$.

Run 3D Mode Request (0x08)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x08	0x00	0x0A			
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x08			3D Data forr	mat	Check Sum
Res Hoi Ver Rai	ht sou solutio rizonta rtical F nge ta Typ	n al FO\ OV	: 160 : 120 : 65°	0 x 60 0° ~ 2,00	00mm		40 40 40	080 : L 081 : L 082 : /	ode list Limit for va Low amplit ADC Overt Saturation	tude flow	

Switch to 3D Mode in order to receive 3D datasets from the device.

3D Data format

R0C0	R0C0 & R0C1	R0C1	R0C2	R0C2 & R0C3	R0C3	R59C159			
0x5D	0xC7	0xD0	0x64	0x07	0x08		0x64		

Run Dual Mode Request (0x07)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x07	0x00	0x05			
Descuere Deskat	0x5A	0x77	0xFF	0xF3	0x00	0x01		2	2D Data format	Check Sum	
Response Packet	0x5A	0x77	0xFF	0x41	0x38	0x08		3	3D Data format	Check Sum	

Switch to Dual Mode in order to receive Dual datasets from the device.

When switching to Dual Mode device is measure 2D Data and 3D Data alternately.

Stop (0x02)

Request Packet	0x5A	0x77	0xFF	0x02	0x00	0x02	0x00	0x00
----------------	------	------	------	------	------	------	------	------

Change the status to Idle.

When the status is in Idle, device does nothing.

Set 3D Pulse Duration Request (0x0C)

3D Data is used in 3D Mode and Dual Mode.

You can adjust the pulse duration with the Set 3D pulse duration packet. Adjustable time is limited to 0-10,000us. Pulse Duration can be Auto that LiDAR adjusts itself, or Fixed that uses a user-specified value.

1 st bit	2 nd bit	Result
0	0	3D, Auto
0	1	3D, Fixed
1	0	Dual, Auto
1	1	Dual, Fixed

If Pulse Duration is fixed, 14 bits after the 2nd bit are Pulse Duration Value.

Frequency Setting Request (0x0F)

Request Packet0x5A0x770xFF0x020x000x0FFreq
ChCheck
Sum

You can change the frequency of light source.

Interference errors can increase if two or more devices measure the same space.

You can avoid interference errors by applying different Frequency Channels to different devices. CygLiDAR D1 has 16 Channels.

evices measure Frequency Channel

Channel 0 \rightarrow 0x00 Channel 1 \rightarrow 0x01 Channel 2 \rightarrow 0x02 . . . Channel 15 \rightarrow 0x0F

Sensitivity Setting Request (0x11)

You can adjust the measurement sensitivity of 2D Data. (Default = 20)

If the measurement sensitivity is low, you can see data over a long distance, but the measurement error increases. The higher the sensitivity of measurement, the more accurate the distance measurement is, but the smaller range of measurement is possible.

	Cygbjot	
Serial Port Baud Rate Serial Port	Uisconnected	
Device		
Release Version		
Firmware Hardware		G Cvobot
Device Model	CvgLiDAR D1	
Angle Step	0 °	
Maximum Angle	120 °	
Maximum Distance	15000 mm	
2D Frame Per Second	0	
3D Frame Per Second	0	
Display Mode	-	
Personalization		
3D Pulse Control	Auto Manual	
Duration	0	Flat Image Object
Restricted from +0 to +10000	Apply	
Frequency Channel	0	
Restricted from +0 to +15	Apply	
Sensitivity Level	20	
Restricted from +10 to +100	Apply	
Color Scheme	Hue Y	
Receive	Stop	© Cygbjot

1) Serial Port

- Select a baud rate and a serial port to use.

2) Device

- Check on the release version of the latest update to CygLiDAR firmware and hardware.
- Set up a device model and a display mode.

3) 3D Pulse Duration Control

- Choose Auto and press Apply for a completion of Auto mode.
- Choose **Manual**, put a preferable value for the duration to send and press **Apply**. (The duration is +0 to the minimum and +10000 to the maximum available to apply.)
- 4) Frequency Channel
 - Assign a channel restricted from +0 to +15 for light sources.

5) Sensitivity Level

- Provide a specific level of the detection sensitivity, ranging from +10 to +100.
- 6) Color Scheme
 - Set a color scheme of the following scales: Hue, RGB or Grey (Image samples on page 17).

Example

- 1) Baud Rate : 3,000,000 bps
- 2) Serial Port : Choose an available port for CygLiDAR.
- 3) Device Model : CygLiDAR D1
- Display Mode : Select one of the following modes: Hue, RGB and Grey.

Serial Port	
Baud Rate	3,000,000 ~
Serial Port	COM6 ~
	Connected

Display Mode	~
Developer	2D
Personalization	3D
3D Pulse Duration Control	2D/3D
Duration	0

After all sets up, press Receive button to turn on CygLiDAR.

2D Data

- Mouse cursor: each distance at the particular angle prints out on the preview.
- Mouse wheel: the canvas image zooms in and out as above.

3D Data

Each of the measured distances per pixel determines a color to be visualized on both 2D and 3D plans, and the color range is dependent on the selected Color Scheme.

Flat Image
 Moving a mouse cursor updates a distance at the coordinate.

2) Object (Point Cloud)

- Mouse Left button and mouse cursor changes the view from the viewpoint.

9. CygLiDAR ROS Driver

1) Copy ROS Package URL from the following Git repository page:

https://github.com/CygLiDAR-ROS/cyglidar_d1

양 main → 양 2 branches ⊙ 0 tags		Go to file Add file ▼
© cygbot Update package.xml		Clone
include	Update cyglidar_pcl.h	https://github.com/CygLiDAR-ROS/cyglid
aunch	Update cyglidar.launch	Use Git or checkout with SVN using the web URL.
rviz	Update cyglidar_config.rviz	
screenshots	Add files via upload	Open with GitHub Desktop
scripts	Update create_udev_rules.sh	Download ZIP
src src	Update cyglidar_pcl_publisher.cpp	3 days ago
CMakeLists.txt	Update CMakeLists.txt	28 minutes ago
LICENSE	Initial commit	18 days ago
🗅 README.md	Update README.md	34 minutes ago
🗅 package.xml	Update package.xml	28 minutes ago

2) Clone the remote repository to your local computer as below:

\$ git clone https://github.com/CygLiDAR-ROS/cyglidar_d1.git

```
cygbot@cygbot- -DeskTop-System:~/catkin_test/src$ git clone https://github.com/CygLiDAR-ROS/cyglidar_d1.git
Cloning into 'cyglidar_d1'...
remote: Enumerating objects: 33, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 224 (delta 11), reused 0 (delta 0), pack-reused 191
Receiving objects: 100% (224/224), 444.40 KiB | 675.00 KiB/s, done.
Resolving deltas: 100% (107/107), done.
```

10. Revision history

Document Revision History

29-Sep-20	0.1.0	Initial release.
20-Nov-20	0.1.1	Added: - Packet - ROS Package Minor text edits across the whole document.
26-Jan-21	0.1.8	Added: - Set Amplitude Updated: - Packet - ROS Package - Serial Communication design and description - Hardw are Design - Softw are user interface and description on new functions Minor text edits across the whole document.
25-May-21	0.1.9	Added: - Usb Driver for Linux - Set Serial Baud Rate Updated: - CygLiDAR View er Dow nLoad URL
09-Aug-21	0.2.2	Added: - baud rate update function in software

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Cygbot reserves the right to make changes, corrections, enhancements, modifications and improvements to Cygbot products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Cygbot products before placing orders. Cygbot products are sold pursuant to Cygbot's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Cygbot products and Cygbot assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Cygbot herein. Resale of Cygbot products with provisions different from the information set forth herein shall void any warranty granted by Cygbot for such product. Cygbot and the Cygbot logo are trademarks of Cygbot. For additional information about Cygbot, please refer to <u>www.cygbot.com</u>. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 Cygbot – All rights reserved