
1

HIR 2014:
miniBloq +

RedBot + RedBoard
Julián U. da Silva Gillig. Rev. 2014.03.10

2

1. Getting the new miniBloq version

Although it has not been officially released yet, the new miniBloq.v0.82 version can be
downloaded from its GitHub repository. Just go to https://github.com/miniBloq/v0.82 and press
the “Download ZIP” button there:

Note: As this is still the development version (with sources), the internal paths are a bit more
complex than in the standard distribution. So every relative path in this document will be inside
the source\Bin\Minibloq folder.

Once you have downloaded it, decompress the zip file and run miniBloq.exe, from the following
relative path in your miniBloq's installation folder:

mbq\v0.82

For example, if you decompress miniBloq in C:\miniBloq, you will found the executable in

C:\miniBloq\mbq\v0.82\miniBloq.exe

The first time you run it, you should see something like this:

https://github.com/miniBloq/v0.82

3

2. Getting started with SparkFun's RedBoard

One of the new features on miniBloq.v0.82 is that now, SparkFun's RedBoard is included in the
boards list. This Arduino-compatible board is also the brain of the SparkFun Inventor's Kit (SIK),
so new miniBloq's SIK examples run on the RedBoard. To start working with this board, just select
it from the miniBloq's boards list:

https://www.sparkfun.com/products/12001
https://www.sparkfun.com/products/10908

4

As the RedBoard is compatible with Arduino Uno, all the included examples should work right out
of the box. So, to start playing with the board, you just need to go to the File->Examples menu
and open any example in the following folders:

Arduino
ArduinoTextCoded
SparkfunInventorsKit

Also, most of the examples under the DuinoBot folder should work.

3. New blocks for the SparkFun Inventor's Kit display

One of the nice devices deployed with the SIK is the 16x2 White on Black LCD. miniBloq now
includes specific blocks to work with this LCD seamlessly. First, you will need to wire it as
described in the SIK Guide (page 77):

Once everything is wired up, you can open the following miniBloq's example (in the File-
>Examples menu):

SparkfunInventorsKit\5.textLCDMillis

where you will see the following blocks:

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Kits/SFE-SIK-RedBoard-Guide-Version3.0-Online.pdf
https://www.sparkfun.com/products/709

5

and the following code:

#include <mbq.h>
#include <PingIRReceiver.h>

void setup()
{

initBoard();
textLCD.print("Milliseconds from");
while(true)
{

textLCD.setCursor((int)0, (int)1);
textLCD.print("reset:");
textLCD.setCursor((int)6, (int)1);

6

textLCD.print(timeStamp());
delay(250);

}
}

void loop()
{
}

As you can see, the new LCD block features two method blocks: one to print (both numbers and
text) and another to set the cursor position:

With just these two blocks, you can do nearly anything with your SIK's LCD display.

SIK's LCD
action block

7

4. Getting started with SparkFun's RedBot

4.1. RedBot + miniBloq

The RedBot is a small, handy and flexible educational robot. It features an Arduino compatible
board but with some nice extra features, such as XBee expansion connector, built-in dual H-
bridges for DC motor control, on/off switch, R/C servo connectors, and a small form factor:

8

This new miniBloq version directly works with the RedBot, and also includes specific blocks and
examples to start using it easily. Just select the RedBot in miniBloq's hardware list and the
environment will automatically load the blocks which work with the robot:

The RedBot Mainboard has two built in H-bridges to control the left and right motors. So, when
you select the RedBot in the Hardware Manager, it loads the motor block, which will let you control
the RedBot's motors without adding any extra initialization code:

This block receives just one parameter: the power that will be sent to the motor. This parameter is
often called just “speed”. Although power is more appropriate, since it represents how much time
the motor is on in relation to the time that the motor is off. This is because the motors in the
RedBot are controlled using a technique called Pulse width modulation, or PWM. In miniBloq, the
power value goes from -100 to +100. This means that when you set the motor's power as 100,
it will rotate at its maximum speed in one direction, while a value of -100 means that the motor
will rotate at its maximum speed in the opposite direction. Of course, a value of 0 stops the
motor.

A final comment about the motor block: it's important to note that, to keep compatibility with the

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/motors-and-selecting-the-right-one
http://en.wikipedia.org/wiki/H_bridge
https://www.sparkfun.com/products/11954

9

existing miniBloq's robotics examples, the block motor names for the motors are motor0 for the
left motor, and motor1 for the right one. This way, you can make use of nearly all of the
examples included in the _examples/DuinoBot folder (remember that you can always open the
_examples folder using the File->Examples menu) without modifying them. There are more
than 30 examples in that folder, so what are you waiting to start playing with the robot?

4.2. Let's start with some music

To make music with the RedBot, you will need to add the buzzer, and connect it as is explained in
this page in the RedBot's Assembly guide (also, here are 2 pictures showing the RedBot from the
top, with a few of its accessories already connected). Now, you can open any of the buzzer
examples in the _examples\DuinoBot folder and play with them. For instance, the following
code (from the 230.RandomNumberBuzzer example) will play 20 random notes in the
RedBot's buzzer:

https://learn.sparkfun.com/tutorials/redbot-assembly-guide/redbot-mainboard-hook-up
https://learn.sparkfun.com/tutorials/redbot-assembly-guide
https://learn.sparkfun.com/tutorials/redbot-assembly-guide/redbot-buzzer
https://learn.sparkfun.com/tutorials/redbot-assembly-guide/redbot-buzzer
https://www.sparkfun.com/products/12567

10

5. Basic movements with the RedBot

Driving the RedBot is easy: just set the speed of each wheel in your program, and the robot will
start moving. Here are some examples (you can go to File->Examples and open the
RedBot\10.BasicMovements example there):

5.1. Make the robot turn with an external rotation center:

= Roation center

Turning radius

11

5.2. Make the robot rotate around its center:

Also, if you set a speed of zero to one of the wheels, that wheel will become the rotation center:

Please note that once you set the speed of one of the robot's motors, it will remain moving with
that speed value until another motor block changes it. The following example shows this.

= Roation center

 = Rotation center

12

5.3. ZigZag path:

13

As you can see in the previous example, after setting the motor's speeds, a delay block keeps
those speeds until a change is needed again. Also, as you may already have noted, each motor's
speed is set with an individual block, so in theory, one motor starts moving before the other:

But in fact, the time between the first motor block and the second one is so small (specially when
compared with the time that it takes to a motor to start moving), that for practical purposes, it's
nearly zero.

5.4. Accessing the H-bridge

Finally, if you want to access the H-bridge bits directly, without the motor block, you can try the
following example:

 _examples\RedBot\40.LowLevelMotorControl

It basically drives each direction pin in the H-bridge with a digital output block, and each enable
(or PWM input) pin with an analog output block:

14

To better understand it, our advice is to take a look to the RedBot Mainboard schematic. And
perhaps you may also find useful the H-bridge's datasheet.

6. Using the RedBot with standard IR remote
controllers

6.1. The IR Receiver block

Another standard block that can be useful (and funny) when used with the RedBot is the IR
receiver block. It works with standard RC5 remote controllers, which are pretty common and
cheap. The library behind this block has been integrated with RedBot, so you don't need to do
nothing but opening the included examples and start modifying them. The IR Receiver (or sensor)
block is in the numerical picker:

http://en.wikipedia.org/wiki/RC-5
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/TB6612FNG.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/RedBot_v01.pdf

15

The block does not receive parameters, and it returns a number from 0 to 10, in response to the
numerical keys being pressed in the remote controller. For example, if no key is pressed, it returns
0 each time it's read. If you press the 2 key, it will return 2. If you press 0, it will return 10.
Nothing is returned for other keys (such as volume, channel, power, etc.). This works the same
way as the standard IR receiver block for all the other supported boards in miniBloq. You can also
learn more about IR communications in this SparkFun's tutorial, or in SparkFun's IR Control Kit
Hookup Guide.

6.2. Connecting an IR receiver to the RedBot

To enable the RedBot to receive IR RC5 commands, you need to connect an IR receiver, like this
one, also from SparkFun. All the included examples in miniBloq work assuming it's connected with
its output pin to the pin 11 in the RedBot main board (which is also the data pin in the Servo 3
connector in miniBloq's map on the Hardware Manager view of the board). The following picture
shows it with a yellow circle:

It may be handy to add a small breadboard to the RedBot, like in the following picture, moving
the battery holder to a side:

https://www.sparkfun.com/products/12044
https://www.sparkfun.com/products/10266
https://www.sparkfun.com/products/10266
https://learn.sparkfun.com/tutorials/ir-control-kit-hookup-guide
https://learn.sparkfun.com/tutorials/ir-control-kit-hookup-guide
https://learn.sparkfun.com/tutorials/ir-communication

16

By adding that breadboard, you will be able not just to connect the IR receiver, but also to make a
bunch of experiments with other standard electronic components.

6.3. Playing music with a remote control keyboard

If you still have the buzzer connected to the robot's board (please see section 4.2 on this tutorial),
you can try the program in the _examples\DuinoBot\130.IRBuzzer folder to use the IR
remote controller's numerical keyboard to play notes:

17

This small program reads an IR code (remember: it returns a number from 0 to 10, using the
numerical keys only), multiplies it by 440 (the A note!) and sends the result to the frequency
parameter (in buzzer block). This is done every 100 milliseconds (using the duration parameter in
buzzer block).

6.4. Controlling robot's movements

As you can see, using the IR receiver block is easy. So, why not control the robot's movements
with it? It can be done using a decision (or if) block. This way, the program can ask for the
number returned by the IR block, and then execute different actions. A complete example can be
found in the _examples\RedBot\60.IRRemoteRC5Robot folder, but we can start doing
something really simple to just make the robot move forward and backward when pressing the 2
and the 8 keys in the controller:

18

7. The new accelerometer block

There is a new accelerometer sensor for the RedBot, and thus, there is also a new accelerometer
block in miniBloq:

Since it's a block which returns a number, you will find it in the numerical picker:

The returned number (which can be huge), represents the acceleration in one of the 3 robot's
axes: X, Y and Z (You can learn more about how a 3D accelerometer works, with the
Accelerometer Basics tutorial). And of course, to work properly in the following examples, the

Accelerometer block

https://learn.sparkfun.com/tutorials/accelerometer-basics
https://www.sparkfun.com/products/12589

19

accelerometer has to be connected as shown here. So, let's do something with the accelerometer.

7.1. Making sounds with the accelerometers

If you open the example in the _examples\RedBot\90.ZAxisAndBuzzer folder, you will see
the following blocks:

This simple program will generate notes with the RedBot's buzzer, just by rotating the robot
around its Z axis (if you don't know which is the Z axis, try rotating the robot with this program
loaded, until you figure it out).

The accelerometer block has 3 methods, to read the acceleration in the X, Y or in the Z axis. In
this example, we read the acceleration belonging to the Z axis only. As this value can be negative,
which makes no sense for generating frequencies for the buzzer (or notes), we use the ABS
(absolute value) block to convert negative values into positive numbers. After that, the (now
positive) value from the Z axis is multiplied by a factor of less than 1, just to reduce the number,
in order to generate an audible frequency. If you want to see what kind of huge numbers the
accelerometer block is returning, try replacing the buzzer block in this example by a terminal
block (and a delay block after it).

https://learn.sparkfun.com/tutorials/redbot-assembly-guide/redbot-accelerometer

20

7.2. Detecting gravity

Here is another example using the accelerometer:

_examples\RedBot\87.DetectingGravityInX

and here is the code:

To run it, you need to keep the RedBot connected with the the USB cable to the PC, and use
miniBloq's terminal (you can go to the menu View->Terminal). Now, if you rotate the robot
around its axes, it will detect when the gravity force is applied in the X axis direction, sending a
string to the terminal window.

21

7.3 The accelerometer as a bumper

Finally, if you are an advanced user and want to experiment with miniBloq's text programming
capabilities (and the RedBot's accelerometer, of course), try the following example, which can be
found in the _examples\RedBot\100.AccelTextCodedReadBumper folder:

#include <RedBot.h>
#include <mbq.h>

int speed = 50;

void go()
{

serial0.begin(115200);
accel.enableBump();

while(true)
{

robot.motor0(speed);
robot.motor1(speed);
if (accel.checkBump())
{

serial0.println("Ouch!");
robot.motor0(0);
robot.motor1(0);
delay(200);
robot.motor0(-speed);
robot.motor1(-speed);
delay(1000);
robot.motor0(0);
robot.motor1(0);
delay(200);
robot.motor0(speed);
robot.motor1(-speed);
delay(1500);
robot.motor0(0);
robot.motor1(0);
delay(200);

}
}

}

It should make the RedBot to go forward until it hits an obstacle.

22

8. RedBot + XBee

The Redbot can be used both as an autonomous robot (where its own small microcontroller makes
the decisions regarding the robot's behavior), or as a remote controlled robot, using wireless
communications. In this last configuration, an external computer takes control of the whole robot.
This has some advantages, like the extra computing power, or the possibility of using the
computer's camera and other useful peripherals.

8.1. Using XBee modules with the RedBot

Fortunately, the RedBot includes a socket to plug an XBee wireless communication module into it.
There are a lot of XBee modules out there, and you can choose your own, of course. But for this
tutorial we have used XBee 1mW with Wire Antenna, Series 1:

It should be connected here:

https://www.sparkfun.com/products/8665

23

Obviously, we will need two of these modules, since the other needs be connected to the
computer, which will become the external brain of the robot. Perhaps the simplest way of
connecting one of those modules to the USB port of a computer, is using an adaptor like the XBee
Explorer Dongle:

But before starting to enjoy the wireless link between the robot and the computer, it will be
necessary to configure some parameters into the XBee modules. To do that, we need a good
terminal program. So, the first step is getting one. For this tutorial, we selected PuTTY. We need to
configure both the robot and the computer side XBee modules. So, before opening the terminal
program it will be necessary to insert the robot's module into the XBee Explorer Dongle. Then plug
the dongle board to an USB port on the computer. This way, we can configure that module with
some serial commands. Now we can open PuTTY (or the terminal program of your choice). Select
in its main window a serial connection, and introduce “9600” in Speed, plus the serial port id into
the Serial line:

http://www.putty.org/
https://www.sparkfun.com/products/9819
https://www.sparkfun.com/products/9819

24

Now select “Terminal” at the left of the PuTTY's main window, and check the following options:

Once you press the Open button, you should see something like this:

25

That's the terminal itself, where you can now input the AT commands, needed to configure the
robot's XBee module. But prior to start configuring, please press the “+” key 3 times. After that,
you will see an OK returned by the XBee module:

Now, try to input the following commands, pressing ENTER after each one. You will see an OK if
the command was successfully executed (please note that the computer's XBee will need a slightly
different configuration):

ATID1000
ATMY2
ATDH0
ATDL1
ATBD5
ATWR
ATCN

After doing this, this module will be configured as the client (robot), and will feature a baudrate of
38400. So if you need to change something in the future, it will be necessary to input 38400
instead of 9600 in the terminal's speed configuration.

Now, you need to close the terminal, unplug the dongle from the USB port, and carefully remove
the XBee module from the dongle, to connect it to the robot's XBee socket. After that, connect the
remaining module to the dongle and plug it into the USB port, so we can configure it. Press the +
++ again, and after seeing the OK, type these commands:

ATID1000
ATMY1
ATDH0
ATDL2

26

ATBD5
ATWR
ATCN

This module must remain in the dongle, since is the one that will be used on the computer side.
One more comment: we selected 38400 as the baudrate (ATBD5 command) because that is the
maximum speed that we have found that these XBee modules are really stable. You can find more
information about XBee modules here.

8.2. Small command interpreter for wireless robot control

So, what else do we need to control the robot remotely? A command interpreter. Even with a
small one, it will be enough to make the robot obey to your computer. The command interpreter is
the program that we will upload to the RedBot's flash memory, in order to make the robot work by
reading (real time) commands from a serial port or from its XBee module. Since writing a
command interpreter can be a little difficult at first, there is one already provided with miniBloq.
You can find it in the following examples subfolder:

_examples\RedBot\110.smallProtocol

It's a pure text program, so you will not see blocks there. Once you upnload it to your robot, you
can test if it's working by opening the RedBot's serial port in terminal (PuTTY, for example) at a
38400 baudrate. There, you can enter commands. The interpreter will understand just two
commands (if you take a look to the source code, you can figure out how to add more): motors
and stop.

https://www.sparkfun.com/pages/xbee_guide

27

As you can see in the previous screen capture, the motors command takes two arguments: the
speed for each motor, which can be any number between -100 and 100. While stop does not need
any argument.

8.3. Using the interpreter with the XBee link

Now that you have tested the interpreter with the USB cable and the RedBot's serial port, try the
following: If you have already connected the robot's XBee into the robot's socket, turn the robot
off, unplug the USB cable, and move the switch located near the XBee module to the position
labeled “XBEE HW SERIAL”:

Now turn on the robot and, with the other XBee inserted into the dongle (and with the dongle
connected to the USB port), try to open that port with the terminal program, and try input
motors and stop commands there. The robot must obey.

28

9. Controlling the RedBot with OpenCV and Python

And just to see what can be done with a powerful XBee equipped RedBot, let's control it with the
computer's camera. To do that, we will make use of the Python interpreter also included in the
miniBloq's package. You don't need to know Python to try this example (although it may help, of
course). First, we need the interpreter uploaded to the RedBot's flash and the XBee wireless link
working, as explained in the previous section. Now, go to the following miniBloq's subdirectory:

lang\PPythonWin\v2.7.5.1

There, you will find the file IDLE-Portable.exe. Please run it. Then go to the File->Open menu,
and find the following python program inside miniBloq's examples:

_examples\RedBot\110.smallProtocol\videoJoystick.py

The only change that you will need to do is the serial port number in line 47 (which is the text
'COM76' here, which you have to replace with your own serial port number, for example 'COM9'):

sp = serial.Serial('COM76', 38400) ##SparkFun's XBee module (RedBot)

Now you can run the module, both by going to the menu Run->Run Module or by pressing the
F5 key. You will see the following screen (to stop the program just press the ESC key):

http://www.python.org/

29

There, the Python program is tracking any blue object (you will need to experiment a bit to find
the blue that the program wants) and uses it as a virtual joystick to control the robot. The
program then transforms the coordinates in the screen to valid motor speeds to be sent to the
RedBot. You may note that there is another (text) window there, showing in real time the sent
commands:

By moving the blue control object a bit, you will soon figure out how the “video virtual joystick”
works (tip: the object at the center of the screen means zero speed for each motor).

To do the video capture and processing, we have included the OpenCV library in miniBloq, so it
can be used from any Python program.

There are a lot of possibilities now that you can use your own computer as the RedBot's external
brain. So why not try to add other capabilities to your robot, such as speech recognition, or even
face tracking?

http://opencv.org/

