UM0401
RTL872xD Datasheet
COPYRIGHT
©2021 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Please Read Carefully:
Realtek Semiconductor Corp., (Realtek) reserves the right to make corrections, enhancements, improvements and other changes to its products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions in Realtek data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Realtek is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions.

Buyers and others who are developing systems that incorporate Realtek products (collectively, “Customers”) understand and agree that Customers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Customers have full and exclusive responsibility to assure the safety of Customers’ applications and compliance of their applications (and of all Realtek products used in or for Customers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Customer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Customer agrees that prior to using or distributing any applications that include Realtek products, Customer will thoroughly test such applications and the functionality of such Realtek products as used in such applications.

Realtek’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation kits, (collectively, “Resources”) are intended to assist designers who are developing applications that incorporate Realtek products; by downloading, accessing or using Realtek’s Resources in any way, Customer (individually or, if Customer is acting on behalf of a company, Customer’s company) agrees to use any particular Realtek Resources solely for this purpose and subject to the terms of this Notice.

Realtek’s provision of Realtek Resources does not expand or otherwise alter Realtek’s applicable published warranties or warranty disclaimers for Realtek’s products, and no additional obligations or liabilities arise from Realtek providing such Realtek Resources. Realtek reserves the right to make corrections, enhancements, improvements and other changes to its Realtek Resources. Realtek has not conducted any testing other than that specifically described in the published documentation for a particular Realtek Resource.

Customer is authorized to use, copy and modify any individual Realtek Resource only in connection with the development of applications that include the Realtek product(s) identified in such Realtek Resource. No other license, express or implied, by estoppel or otherwise to any other Realtek intellectual property right, and no license to any technology or intellectual property right of Realtek or any third party is granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which Realtek products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of Realtek Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from Realtek under the patents or other Realtek’s intellectual property.

Realtek’s Resources are provided “as is” and with all faults. Realtek disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any epidemic failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights.

Realtek shall not be liable for and shall not defend or indemnify Customer against any claim, including but not limited to any infringement claim that related to or is based on any combination of products even if described in Realtek Resources or otherwise. In no event shall Realtek be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of Realtek’s Resources or use thereof, and regardless of whether Realtek has been advised of the possibility of such damages. Realtek is not responsible for any failure to meet such industry standard requirements.

Where Realtek specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Customers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any Realtek products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death. Such equipment includes, without limitation, all medical devices identified by the U.S. FDA as Class III devices and equivalent classifications outside the U.S.
Customers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Customers’ own risk. Customers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Customer will fully indemnify Realtek and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT
This document is intended for the software engineer’s reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTL8720DN-VA1-CG</td>
<td>QFN48</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8720DN-VA1-CGT</td>
<td>QFN48</td>
<td>tape-and-reel, MP</td>
</tr>
<tr>
<td>RTL8720DN-VT1-CG</td>
<td>QFN48</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8720DM-VA1-CG</td>
<td>QFN48</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8720DF-VA1-CG</td>
<td>QFN48</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8720DF-VT1-CG</td>
<td>QFN48</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8721DM-VA1-CG</td>
<td>QFN68</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8721DM-VA1-CGT</td>
<td>QFN68</td>
<td>tape-and-reel, MP</td>
</tr>
<tr>
<td>RTL8722DM-VA1-CG</td>
<td>QFN88</td>
<td>MP</td>
</tr>
<tr>
<td>RTL8722DM-VA1-CGT</td>
<td>QFN88</td>
<td>tape-and-reel, MP</td>
</tr>
</tbody>
</table>

IoT Device
Realtek 32-bit microcontroller

Wireless
1 = Wi-Fi only
2 = Combo (Wi-Fi + BT)

Function
0 = Basic function
1 = With Codec
2 = With SD/LCD

Band type
CS = Single band
D = Dual band

MCM type
N = Single die
M = MCM PSRAM
F = MCM Flash

Temperature range
T = −40°C ~ 105°C
Others = −20°C ~ 85°C

Flash memory size (if stacked Flash)
1 = 4M bytes

IC packaging standard
CG = Compound green
CGT = Tape & Reel
Contents

Ordering Information .. 4
Contents .. 5
1 Product Overview ... 8
 1.1 General Description .. 8
 1.2 System Architecture .. 8
 1.3 Features .. 9
 1.3.1 System and Memory .. 9
 1.3.2 Wireless .. 10
 1.3.3 Security .. 10
 1.3.4 Communication Interface ... 10
 1.3.5 Audio .. 11
 1.3.6 Timer .. 13
 1.3.7 Human-Machine Interaction .. 13
 1.3.8 Analog .. 14
 1.4 Package Comparison .. 14
 1.4.1 Peripherals ... 14
 1.4.2 Memory ... 15
2 Package .. 17
 2.1 Package Types .. 17
 2.1.1 QFN48 ... 19
 2.1.2 QFN68 .. 21
 2.1.3 QFN88 .. 22
 2.2 Low Power Pins ... 23
 2.3 Pin Default Configuration ... 23
 2.4 Trap Pins ... 23
3 Analog Pin Descriptions .. 25
 3.1 Power on Trap Pin ... 25
 3.2 RF Pins .. 25
 3.3 Chip Enable Pin ... 25
 3.4 Power Pins .. 25
 3.5 XTAL Pins ... 26
 3.6 ADC and Cap-Touch Pins ... 26
 3.7 USB Pins .. 27
 3.8 Audio Codec Pins ... 27
4 Memory Organization .. 28
 4.1 Introduction ... 28
 4.2 KM4 Memory ... 28
 4.2.1 Memory Map and Register Boundary Addresses ... 28
 4.2.2 Embedded SRAM .. 29
4.2.3 Extension SRAM .. 30
4.3 KMO Memory .. 30
4.3.1 Memory Map and Register Boundary Addresses ... 30
4.3.2 Embedded SRAM .. 30
4.4 Retention SRAM ... 30
4.5 SPI Flash Memory .. 31
4.6 PSRAM ... 31

5 Nested Vectored Interrupt Controller (NVIC) ... 32
5.1 Features .. 32
5.2 NVIC Diagram ... 32
5.3 NVIC Table ... 32

6 Radio Characteristics .. 35
6.1 RF Block Diagram .. 35
6.2 Wi-Fi Radio Characteristics .. 35
6.2.1 Wi-Fi 2.4GHz Band RF Receiver Specifications ... 35
6.2.2 Wi-Fi 2.4GHz Band RF Transmitter Specifications ... 36
6.2.3 Wi-Fi 5GHz Band RF Receiver Specifications ... 37
6.2.4 Wi-Fi 5GHz Band RF Transmitter Specifications .. 37
6.3 BT Radio Characteristics ... 38
6.3.1 BT RF Transmitter Specifications .. 38
6.3.2 BT RF Receiver Specifications .. 38

7 Electrical Characteristics ... 39
7.1 Temperature Limit Ratings ... 39
7.2 ESD Characteristics ... 39
7.3 DC Characteristics ... 39
7.3.1 Power Supply .. 39
7.3.2 Digital I/O Pin .. 40
7.4 ADC Characteristics .. 40
7.5 XTL Oscillator ... 41
7.6 Power Consumption .. 42
7.7 Power State and Power Sequence ... 42
7.7.1 Power on or Resuming from Deepsleep Sequence .. 42
7.7.2 Shutdown Sequence .. 42
7.8 I/O Port Characteristics ... 43
7.8.1 GPIO Sink and Source Current .. 43
7.8.2 GPIO Pull Low Restriction ... 44

8 Package Specifications .. 45
8.1 QFN48 ... 45
8.2 QFN68 .. 46
8.3 QFN88 .. 47

List of Tables ... 49
List of Figures ... 50

Datasheet ..
Revision History... 51
1 Product Overview

1.1 General Description

RTL872xD is a highly integrated single-chip low power dual bands (2.4GHz and 5GHz) Wireless LAN (WLAN) and Bluetooth Low Energy (BLE 5.0) communication controller. It consists of a high performance MCU (Armv8-M, Cortex-M33 instruction set compatible) called Real-M300 (or KM4 thereafter) and a low power MCU (Armv8-M, Cortex-M23 instruction set compatible) called Real-M200 (or KM0 thereafter), WLAN (802.11 a/b/g/n) MAC, an 1T1R capable WLAN baseband, RF, Bluetooth and peripherals.

High speed connectivity interfaces, SDIO and USB are provided. There are also audio codec, Key-Scan and touch keys integrated into this IC. Besides, flexible design configures GPIO to different functions according to applications.

RTL872xD also integrates memories (ROM/SRAM/PSRAM) for IoT (Internet of Things) Wi-Fi protocol functions and applications. The user-friendly development kits (SDK and HDK) are supported to customers for developing IoT applications.

The KM4 MCU is a 32-bit core that offers system enhancements such as low power consumption, enhanced debug features, floating point computation, DSP instructions and a high level of support block integration. The KM4 MCU incorporates a 3-stage pipeline.

The KM0 coprocessor is an energy-efficient and easy-to-use 32-bit core which is code- and tool-compatible with the KM4 core. The KM0 coprocessor offers up to 20MHz performance with a simple instruction set and reduced code size.

1.2 System Architecture

The system architecture of RTL872xD is shown in Figure 1-1.

![Figure 1-1 System architecture](image-url)
In RTL872xD, the main system consists of 32-bit multilayer AXI bus matrix that interconnects all the masters and the slaves. The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously.

A multilayer AXI bus matrix connects the CPU buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing peripherals on different slave ports of the matrix to be accessed simultaneously by different bus masters.

APB peripherals are connected to the AXI bus matrix via APB buses using separate slave ports from the multilayer AXI bus matrix. This allows for better performance by reducing collisions between the CPU and the DMA controller, and also for peripherals on the asynchronous bridge to have a fixed clock that does not track the system clock.

1.3 Features

1.3.1 System and Memory

The system and memory features of RTL872xD are listed in Table 1-1.

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>• Dual processor core
• KM4: Armv8-M architecture with Cortex-M33 instruction set compatible
• KM0: Armv8-M architecture with Cortex-M23 instruction set compatible
• Equal access to address space including SRAM, peripherals and registers</td>
</tr>
<tr>
<td>KM4 CPU</td>
<td>• Cortex-M33 instruction set compatible
 ■ Floating Point Unit (FPU)
 ■ DSP
 ■ TrustZone-M
 ● Running at a frequency of up to 200MHz (configurable)
 ● Memory Protection Unit (MPU)
 ● Built-in Nested Vectored interrupt Controller (NVIC)
 ● Non-maskable Interrupt (NMI) with a selection of sources
 ● Serial Wire Debug (SWD) with 8 break points and 4 watch points (without Serial Wire Output (SWO) for enhanced debug capabilities)
 ● System tick timer
 ● 32KB I-Cache and 4KB D-Cache</td>
</tr>
<tr>
<td>KM0 CPU</td>
<td>• Cortex-M23 instruction set compatible
 ● Running at a frequency of up to 20MHz
 ● Built-in Nested Vectored Interrupt Controller (NVIC)
 ● Non-maskable Interrupt (NMI) with a selection of sources
 ● SWD with 4 break points and 2 watch points
 ● System tick timer
 ● 16KB I-Cache and 4KB D-Cache</td>
</tr>
<tr>
<td>KM4 CPU On-Chip memory</td>
<td>• Up to 512KB contiguous main SRAM @200MHz
 • Optional 4MB PSRAM @ 50MHz, 8-bit DDR, refer to 1.4.2</td>
</tr>
<tr>
<td>KM0 CPU On-Chip memory</td>
<td>• Up to 64KB contiguous main SRAM
 • Up to 1KB retention SRAM for keeping data in power saving modes</td>
</tr>
<tr>
<td>GDMA</td>
<td>• KM4 and KM0 both have a GDMA controller
 • HS-GDMA0 supports six channels with TrustZone-M
 • LP-GDMA0 supports six channels without TrustZone-M</td>
</tr>
<tr>
<td>Flash</td>
<td>• Optional internal 4M bytes (32M bits) Flash, refer to 1.4.2
 • SPI/DSPI/QSPI Flash controller with cache
 • Flash in-Circuit Programming (ICP) supported</td>
</tr>
<tr>
<td>General-Purpose I/O (GPIO)</td>
<td>• Up to 64 General-Purpose I/O (GPIO) pins. All GPIOs have configurable pull-up/pull-down resistors.
 • GPIO interrupt trigger could be configured with rising, falling or both input edges.</td>
</tr>
<tr>
<td>IPC</td>
<td>• Inter-Processor communication</td>
</tr>
</tbody>
</table>

1. Only QFN88 supports QSPI, while QFN48 and QFN68 just support SPI/DSPI.

Datasheet: All information provided in this document is subject to legal disclaimers. © REALTEK 2021. All rights reserved.
1.3.2 Wireless

The wireless features of RTL872xD are listed in Table 1-2.

Table 1-2 Wireless features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>• 802.11 a/b/g/n 1x1, 2.4GHz & 5GHz</td>
</tr>
<tr>
<td></td>
<td>• Supports 20MHz/40MHz up to MCS7</td>
</tr>
<tr>
<td></td>
<td>• Low power architecture</td>
</tr>
<tr>
<td></td>
<td>• Low power Tx/Rx for short range application @1.8V</td>
</tr>
<tr>
<td></td>
<td>• Low power beacon listen mode</td>
</tr>
<tr>
<td></td>
<td>• Low power Rx mode</td>
</tr>
<tr>
<td></td>
<td>• Very low power suspends mode (DLPS)</td>
</tr>
<tr>
<td></td>
<td>• Built-in PA, also supports external PA and LNA</td>
</tr>
<tr>
<td></td>
<td>• Supports Antenna diversity</td>
</tr>
<tr>
<td></td>
<td>• Internal PTA interface for arbitrating data transmission between Wi-Fi and internal Bluetooth or external 2.4G devices</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>• BLE 5.0</td>
</tr>
<tr>
<td></td>
<td>• Both central and peripheral modes</td>
</tr>
<tr>
<td></td>
<td>• High power mode (8dbm, shares the same PA with Wi-Fi)</td>
</tr>
<tr>
<td></td>
<td>• Internal co-existence mechanism between Wi-Fi and BT to share the same antenna</td>
</tr>
</tbody>
</table>

1.3.3 Security

The Security features of RTL872xD are listed in Table 1-3.

Table 1-3 Security features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware engine</td>
<td>AES/DES/SHA hardware engine</td>
</tr>
<tr>
<td>TrustZone</td>
<td>TrustZone-M supported</td>
</tr>
<tr>
<td>Secure boot</td>
<td>Secure boot supported</td>
</tr>
<tr>
<td>SWD protection</td>
<td>Debug port access protection and prohibition modes</td>
</tr>
<tr>
<td>eFuse protection</td>
<td>Secure eFuse</td>
</tr>
<tr>
<td>RSIP</td>
<td>Flash decryption on-the-fly</td>
</tr>
</tbody>
</table>

1.3.4 Communication Interface

The communication interface features of RTL872xD are listed in Table 1-4.

Table 1-4 Communication interface features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD/SDIO</td>
<td>• SD card host supported</td>
</tr>
<tr>
<td></td>
<td>• SDIO 2.0 SDR2S supported</td>
</tr>
<tr>
<td></td>
<td>• Realtek SPI provides high efficiency SPI interface with interrupt and full duplex mode</td>
</tr>
<tr>
<td></td>
<td>• SDIO inc mode (SDIO to Wi-Fi transformation)</td>
</tr>
<tr>
<td></td>
<td>• Clock rate variable up to 50MHz</td>
</tr>
<tr>
<td></td>
<td>• Internal DMA supported</td>
</tr>
<tr>
<td></td>
<td>• SDIO device time consuming from power on to initialization completion: 64.14635ms</td>
</tr>
<tr>
<td>USB</td>
<td>• USB 2.0</td>
</tr>
<tr>
<td></td>
<td>• HS/FS/LS mode</td>
</tr>
<tr>
<td></td>
<td>• Internal DMA support, DMA works based on register settings</td>
</tr>
<tr>
<td></td>
<td>• 1.5KByte bulk-in buffer and 1.5KByte bulk-out buffer</td>
</tr>
<tr>
<td>SPI</td>
<td>• Motorola SPI Serial interface operation supported</td>
</tr>
<tr>
<td></td>
<td>• Master or slave operation mode supported</td>
</tr>
<tr>
<td></td>
<td>• Providing two SPI ports:</td>
</tr>
<tr>
<td></td>
<td>• SPI0 (High speed): configured as master or slave with Max. baud rate: 50MHz</td>
</tr>
</tbody>
</table>
SPI1 (Normal speed): configured as master with Max. baud rate: 25MHz.
- DMA interface for DMA transfer supported
- Independent masking of interrupts
- FIFO depth – The transmit and receive FIFO buffers 64 words deep. The FIFO width is fixed at 16 bits.
- Hardware/software slave-select – Dedicated hardware slave-select lines can be used or software control can be used to target the serial-slave device
- Programmable features:
 - Clock bit-rate – Dynamic control of the serial bit rate of the data transfer; used in only serial-master mode of operation.
 - Data item size (4 to 16 bits) – Item size of each data transfer under the control of the programmer.
 - Configurable clock polarity and phase
 - Programmable delay on the sample time of the received serial data bit (rxd), when configured in Master Mode; enables programmable control of routing delays resulting in higher serial data-bit rates.

UART (HS_UART/LP_UART)
- UART format: 1 start bit, 7/8 data bits, 0/1 parity bit and 1/2 stop bit
- Support up to 6MHz baud rate
- Auto flow control supported
- Interrupt control supported
- IrDA supported
- Loopback mode for test
- Fractional baud rate generator
- Low power mode for Rx path
- Monitor and eliminate Rx baud rate error and own frequency drift automatically for Rx path
- DMA mode supported
 - LP_UART: DMA mode on KM4 platform not supported
- Option for UART Rx to be DMA flow controller

IR (Infra Ray)
- Carrier frequency from 25kHz to 500kHz
- Duty from 1/2 to 1/5
- IR diode input supported
- IR receiver module input supported
- 32*4 bytes Tx FIFO
- 32*4 bytes Rx FIFO
- Tx carrier frequency can be configured
- Tx carrier duty cycle can be configured

One wire (SGPIO)
- One wire communication interface for security element
- Timer Mode:
 - Rx and Multiple Timer are 16-bit timer with a 16-bit prescaler.
 - Rx and Multiple Timer can stop, reset, and interrupt by match events.
 - Rx and multiple timer/counter can stop and reset to each other.
- Capture Mode:
 - Rx timer can be captured by capture events.
 - Capture events can be Rx trigger events or the multiple match events.
 - The capture value can be transferred to ‘0’ or ‘1’ by comparing the value.
- Counter Mode:
 - Multiple Counter can count Rx trigger events.
- External Output Mode:
 - External output can set high, low or toggle on the match event.
- Get the serial input:
 - Shift the input value to a 32-bit FIFO by match events.
- Send the serial output:
 - Send the ‘0’or ‘1’ waveform by shifting the output value of a 32-bit FIFO. This output value decides that the external match uses the match value of group 0 or group 1.
 - Change the output value by using the multiple FIFO data to update the multiple match value.
- Monitor Mode:
 - Monitor the receiving value to make the interrupt in the power saving mode.

PC
- Two wire PC serial interface – consists of a serial data line (SDA) and a serial clock (SCL)
One I²C port supported

Two Speed mode:
- Standard (up to 100Kbps)
- Fast (up to 400Kbps)

Master or Slave I²C operation

7- or 10-bit addressing

Transmit and receive buffers with depth of 16

Tx and Rx DMA support

Multi-master ability including bus arbitration scheme

Slave mode address match wakeup for power save (up to 100Kbps)

Clock stretch in master/slave mode

7- or 10-bit combined format transfers

General Call

Component parameters for configurable software driver support (programmable SDA hold time, slave address, etc.)

Filter to eliminate the glitches on signal of SDA and SCL. Programmable digital noise filter.

Status flags (Bus busy flag, activity flag, FIFO status flag, etc.) and Error flags (arbitration lost, acknowledge failure, etc.)

USI (Universal Serial interface)

- Configured as SPI, UART or I²C
- USI I²C can support High Speed Mode

1.3.5 Audio

The audio features of RTL872xD are listed in Table 1-5.

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio DAC and earphone driver</td>
<td>- Sampling Frequency: 8/16/32/44.1/48/88.2/96kHz</td>
</tr>
<tr>
<td></td>
<td>- Integrates earphone driver</td>
</tr>
<tr>
<td></td>
<td>- 40mW on 16Ω load</td>
</tr>
<tr>
<td></td>
<td>- 20mW on 32Ω load</td>
</tr>
<tr>
<td></td>
<td>- Gain Control in DAC Path</td>
</tr>
<tr>
<td></td>
<td>- Gain Step: 0.375dB/step</td>
</tr>
<tr>
<td></td>
<td>- Gain Range: -64.5dB ~ 0dB</td>
</tr>
<tr>
<td></td>
<td>- Audio output mode</td>
</tr>
<tr>
<td></td>
<td>- Line-Out Cap-less mode (QFN88)</td>
</tr>
<tr>
<td></td>
<td>- Line-Out Differential mode (QFN88)</td>
</tr>
<tr>
<td></td>
<td>- Line-Out Single-ended mode</td>
</tr>
<tr>
<td>Audio ADC</td>
<td>- Sampling Frequency: 8/16/32/44.1/48/88.2/96kHz</td>
</tr>
<tr>
<td></td>
<td>- ADC input gain range</td>
</tr>
<tr>
<td></td>
<td>- Gain Step: 0.375dB/step</td>
</tr>
<tr>
<td></td>
<td>- Gain Range: -17.625dB ~ 30dB (digital)</td>
</tr>
<tr>
<td></td>
<td>- MIC input boost gain stage: 0/20/30/40dB (analog)</td>
</tr>
<tr>
<td></td>
<td>- Audio input mode</td>
</tr>
<tr>
<td></td>
<td>- Line-In</td>
</tr>
<tr>
<td></td>
<td>- Analog MICx2 or Digital MIC x2</td>
</tr>
<tr>
<td>I²S</td>
<td>- Sample rate</td>
</tr>
<tr>
<td></td>
<td>- 8/12/16/24/32/48/64/96/192/384/7.35/11.025/14.7/22.05/29.4/44.1/58.8/88.2/176.4kHz</td>
</tr>
<tr>
<td></td>
<td>- I²S channel number</td>
</tr>
<tr>
<td></td>
<td>- mono</td>
</tr>
<tr>
<td></td>
<td>- stereo</td>
</tr>
<tr>
<td></td>
<td>- 5.1 channel</td>
</tr>
<tr>
<td></td>
<td>- Sample bit for mono</td>
</tr>
<tr>
<td></td>
<td>- 16-bit</td>
</tr>
<tr>
<td></td>
<td>- 32-bit</td>
</tr>
<tr>
<td></td>
<td>- Sample bit for stereo & 5.1 channel</td>
</tr>
<tr>
<td></td>
<td>- 16-bit</td>
</tr>
</tbody>
</table>
1.3.6 Timer

The timer features of RTL872xD are listed in Table 1-6.

Table 1-6 Timer features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Timers (HS_TIM0 ~ HS_TIM3)</td>
<td>• Channels: x1</td>
</tr>
<tr>
<td></td>
<td>• Clock source: 32kHz</td>
</tr>
<tr>
<td></td>
<td>• Resolution: 32-bit</td>
</tr>
<tr>
<td></td>
<td>• Counter mode: up</td>
</tr>
<tr>
<td></td>
<td>• Interrupt generation</td>
</tr>
<tr>
<td></td>
<td>• Sleep mode wakeup</td>
</tr>
<tr>
<td>PWM Timers (HS_TIM5 & LP_TIM5)</td>
<td>• Channels: HS_TIM5 x18, LP_TIM5 x6</td>
</tr>
<tr>
<td></td>
<td>• Clock source: XTAL</td>
</tr>
<tr>
<td></td>
<td>• Resolution: 16-bit</td>
</tr>
<tr>
<td></td>
<td>• Prescaler: 8-bit</td>
</tr>
<tr>
<td></td>
<td>• Counter mode: up</td>
</tr>
<tr>
<td></td>
<td>• Statistics pulse width</td>
</tr>
<tr>
<td></td>
<td>• Statistics pulse counter</td>
</tr>
<tr>
<td></td>
<td>• Input capture pin: x2</td>
</tr>
<tr>
<td></td>
<td>• Interrupt generation</td>
</tr>
<tr>
<td></td>
<td>• LP_TIM5 can work at sleep mode</td>
</tr>
<tr>
<td>Pulse Timers (HS_TIM4 & LP_TIM4)</td>
<td>• Channels: HS_TIM5 x18, LP_TIM5 x6</td>
</tr>
<tr>
<td></td>
<td>• Clock source: XTAL</td>
</tr>
<tr>
<td></td>
<td>• Resolution: 16-bit</td>
</tr>
<tr>
<td></td>
<td>• Prescaler: 8-bit</td>
</tr>
<tr>
<td></td>
<td>• Counter mode: up</td>
</tr>
<tr>
<td></td>
<td>• One pulse mode</td>
</tr>
<tr>
<td></td>
<td>• PWM mode with polarity selection</td>
</tr>
<tr>
<td></td>
<td>• Input capture pin: x2</td>
</tr>
<tr>
<td></td>
<td>• interrupt generation</td>
</tr>
<tr>
<td>Real-Time clock (RTC)</td>
<td>• Independent BCD timer/counter</td>
</tr>
<tr>
<td></td>
<td>• Time with seconds, minutes, hours, days (12- or 24-hour format)</td>
</tr>
<tr>
<td></td>
<td>• Daylight saving compensation programmable by software</td>
</tr>
<tr>
<td></td>
<td>• One programmable alarm with interrupt function. The alarm can be triggered by any combination of the time fields.</td>
</tr>
<tr>
<td></td>
<td>• Maskable interrupts/events</td>
</tr>
<tr>
<td></td>
<td>□ Alarm</td>
</tr>
<tr>
<td></td>
<td>• Digital calibration circuit</td>
</tr>
<tr>
<td></td>
<td>• Register write protection</td>
</tr>
</tbody>
</table>

1.3.7 Human-Machine Interaction

The human-machine interaction (HMI) features of RTL872xD are listed in Table 1-7.

Table 1-7 Human-machine interaction features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-matrix</td>
<td>• Up to 8*8 (64) Keypad Array with use of 16 GPIOs</td>
</tr>
<tr>
<td></td>
<td>• Configurable Rows and Columns of Keypad Array</td>
</tr>
</tbody>
</table>
1.3.8 Analog

The analog features of RTL872xD are listed in Table 1-8.

Table 1-8 Analog features

<table>
<thead>
<tr>
<th>Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data capture ADC and voltage comparator</td>
<td>• Resolution: 12-bit SAR</td>
</tr>
<tr>
<td></td>
<td>• Available channel number</td>
</tr>
<tr>
<td></td>
<td>• 7x external 3.3V channel and 1x 5V channel</td>
</tr>
<tr>
<td></td>
<td>• 3x internal channel</td>
</tr>
<tr>
<td></td>
<td>• Configurable input</td>
</tr>
<tr>
<td></td>
<td>• Single-ended</td>
</tr>
<tr>
<td></td>
<td>• Differential with predefined channel pair</td>
</tr>
<tr>
<td></td>
<td>• Contain 64 FIFO entries which is 16-bit width</td>
</tr>
<tr>
<td></td>
<td>• Multi-Channel DMA support</td>
</tr>
<tr>
<td></td>
<td>• Multi sampling trigger sources</td>
</tr>
<tr>
<td></td>
<td>• Software</td>
</tr>
<tr>
<td></td>
<td>• Timer</td>
</tr>
<tr>
<td></td>
<td>• 1 low power voltage comparator for battery voltage measurement</td>
</tr>
<tr>
<td></td>
<td>• Conversion item control or another FIFO level to trigger wakeup circuit</td>
</tr>
</tbody>
</table>

1.4 Package Comparison

1.4.1 Peripherals

The peripherals of RTL872xD under different packages are shown in Table 1-9.
<table>
<thead>
<tr>
<th>Item</th>
<th>Peripheral</th>
<th>Description</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART</td>
<td>HS_UART0</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HS_USI_UART</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LP_UART1</td>
<td>Low power mode wakeup</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LP_UART0</td>
<td>LOGUART/low power mode wakeup</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SPI</td>
<td>HS_SPI0</td>
<td>Maximum 50MHz, Master</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HS_SPI1</td>
<td>Maximum 25MHz, Master</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HS_USI_SPI</td>
<td>Maximum 25MHz, Master</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RTC</td>
<td>RTC_OUT</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>EXT_32K</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LP_TIM4_TRIG</td>
<td>Timer capture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>LP_TIM5_TRIG</td>
<td>Timer capture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IR</td>
<td>IR</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>I²C</td>
<td>LP_I²C</td>
<td>Standard (up to 100Kbps)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast (up to 400Kbps)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HS_USI_I²C</td>
<td>Standard/fast/high speed mode (up to 3.33Mbps)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SDIO</td>
<td>SDIO 2.0 Device</td>
<td>Maximum 50MHz</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SD HOST</td>
<td>Maximum 50MHz</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>PWM</td>
<td>HS_PWM0 ~ 17</td>
<td></td>
<td>8</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>LP_PWM0 ~ 5</td>
<td>Low power mode</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>I²S</td>
<td>I²S</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DMIC</td>
<td>DMIC</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LCD</td>
<td>LCD</td>
<td>8-bit/16-bit/RGB mode</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Q-Decoder</td>
<td>Q-Decoder</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GPIO</td>
<td>GPIO</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Key-Scan</td>
<td>Key-Scan</td>
<td>5x2/4x3</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wake Pin</td>
<td>Wake Scan</td>
<td>Wakeup from deepsleep</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>HS Timer</td>
<td>HS_TIM4_TRIG</td>
<td>Timer capture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HS_TIM5_TRIG</td>
<td>Timer capture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Analog Pin</td>
<td>USB</td>
<td>USB host or device (selectable)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ADC</td>
<td>0 ~ 3.3V</td>
<td>x3</td>
<td>x2</td>
<td>x7</td>
</tr>
<tr>
<td></td>
<td>VBAT_MEAS</td>
<td>0 ~ 5V</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Capacitor</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Audio Output</td>
<td>Analog audio codec output</td>
<td>-</td>
<td>-</td>
<td>x2 (Single-ended)</td>
<td>x2 (Single-ended)</td>
</tr>
<tr>
<td>Audio Input</td>
<td>Analog audio codec input</td>
<td>-</td>
<td>-</td>
<td>x2 (Single-ended)</td>
<td>x2 (Single-ended)</td>
</tr>
</tbody>
</table>

1.4.2 Memory

The memory of RTL872xD under different packages are shown in Table 1-10.
Table 1-10 Memory under different packages

<table>
<thead>
<tr>
<th>Item</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTL8720DN</td>
<td>RTL8720DM</td>
<td>RTL8721DM</td>
</tr>
<tr>
<td>Internal Flash</td>
<td>-</td>
<td>-</td>
<td>4M bytes</td>
</tr>
<tr>
<td>PSRAM</td>
<td>-</td>
<td>4M bytes</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Package

2.1 Package Types

There are three package types named QFN48, QFN68 and QFN88 in RTL872xD, the details are shown in Table 2-1.

<table>
<thead>
<tr>
<th>Port Name</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RTL8720DN</td>
<td>RTL8720DF</td>
<td>RTL8721DM</td>
<td>RTL8722DM</td>
</tr>
<tr>
<td>PA[0]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[1]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[2]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[3]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[4]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[5]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[6]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[7]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[8]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[9]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[10]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[11]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[12]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[13]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[14]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[15]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[16]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[17]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[18]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[19]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[20]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[21]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[22]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[23]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[24]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[25]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[26]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[27]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[28]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[29]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[30]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PA[31]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[0]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[1]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[2]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[3]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[4]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[5]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[6]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[7]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[8]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[9]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>PB[10]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PB[13]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[14]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[15]</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[16]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[17]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[18]</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[19]</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[20]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[21]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[22]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[23]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PB[24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[26]</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[27]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[28]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[29]</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB[31]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. For QFN48, PA[15] & PA[16] are in the High-Z state by default, and they do not affect each other. It is recommended to choose one of PA[15] & PA[16] instead of using them at the same time.
2.1.1 QFN48

The QFN48 pin assignments for RTL8720DN/RTL8720DM are shown in Figure 2-1.

Note: For #23, PA[15] & PA[16] are in the High-Z state by default, and they do not affect each other. It is recommended to choose one of PA[15] & PA[16] instead of using them at the same time.
The QFN48 pin assignments for RTL8720DF is shown in Figure 2-2.

![QFN48 Pin Assignments for RTL8720DF](image)

Note: For #23, PA[15] & PA[16] are in the High-Z state by default, and they do not affect each other. It is recommended to choose one of PA[15] & PA[16] instead of using them at the same time.

Figure 2-2 QFN48 pin assignments for RTL8720DF
2.1.2 QFN68

The QFN68 pin assignments for RTL8721DM are shown in Figure 2-3.

![Figure 2-3 QFN68 pin assignment for RTL8721DM](image-url)
2.1.3 QFN88

The QFN88 pin assignments for RTL8722DM are shown in Figure 2-4.
2.2 Low Power Pins

These pins can work and wakeup MCU under deepsleep mode, as Table 2-2 shows. All these pins are located at Key-Scan pins.

Table 2-2 Low power pins

<table>
<thead>
<tr>
<th>Pin Name/GPIO</th>
<th>Ext32K</th>
<th>Key-Scan Row</th>
<th>Key-Scan Column</th>
<th>Wakeup</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA[12]</td>
<td></td>
<td>KEY_ROW0</td>
<td></td>
<td>GPIO[0]</td>
</tr>
<tr>
<td>PA[13]</td>
<td></td>
<td>KEY_ROW1</td>
<td></td>
<td>GPIO[1]</td>
</tr>
<tr>
<td>PA[14]</td>
<td>RTC_OUT</td>
<td>KEY_ROW2</td>
<td>KEY_COL6</td>
<td>GPIO[3]</td>
</tr>
<tr>
<td>PA[15]</td>
<td>RTC_EXT_32K</td>
<td>KEY_ROW3</td>
<td>KEY_COL5</td>
<td>GPIO[0]</td>
</tr>
<tr>
<td>PA[16]</td>
<td></td>
<td>KEY_ROW4</td>
<td>KEY_COL3</td>
<td>GPIO[1]</td>
</tr>
<tr>
<td>PA[17]</td>
<td></td>
<td>KEY_ROW6</td>
<td>KEY_COL4</td>
<td>GPIO[2]</td>
</tr>
<tr>
<td>PA[18]</td>
<td>RTC_OUT</td>
<td>KEY_ROW5</td>
<td>KEY_COL2</td>
<td>GPIO[3]</td>
</tr>
<tr>
<td>PA[19]</td>
<td></td>
<td>KEY_ROW7</td>
<td>KEY_COL1</td>
<td>GPIO[0]</td>
</tr>
<tr>
<td>PA[20]</td>
<td></td>
<td></td>
<td>KEY_COL0</td>
<td>GPIO[1]</td>
</tr>
<tr>
<td>PA[21]</td>
<td>KEY_ROW7</td>
<td></td>
<td></td>
<td>GPIO[2]</td>
</tr>
<tr>
<td>PA[26]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Pin Default Configuration

All pins are configured as GPIO without pull resistors except some special function like SWD or LOGUART. The pin default configuration is listed in Table 2-3.

Table 2-3 Pin default configuration

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Default Function</th>
<th>Default PU/PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA[7]</td>
<td>LOGUART</td>
<td>Internal UP</td>
</tr>
<tr>
<td>PA[8]</td>
<td>LOGUART</td>
<td>Internal UP</td>
</tr>
<tr>
<td>PA[27]</td>
<td>SWD_DATA when eFuse enable</td>
<td>Internal UP</td>
</tr>
<tr>
<td>PA[28]</td>
<td>PA[28]</td>
<td>eFuse Pull Control 3</td>
</tr>
<tr>
<td>PB[3]</td>
<td>SWD_CLK when eFuse enable</td>
<td>No pull</td>
</tr>
<tr>
<td>PB[18]</td>
<td>SWD_CLK when eFuse enable, or SD_D2 when eFuse enable SDIO</td>
<td>No pull</td>
</tr>
<tr>
<td>PB[19]</td>
<td>SWD_DATA when eFuse enable, or SD_D3 when eFuse enable SDIO</td>
<td>eFuse Pull Control 6</td>
</tr>
<tr>
<td>PB[20]</td>
<td>SD_CMD when eFuse enable SDIO</td>
<td>No pull</td>
</tr>
<tr>
<td>PB[21]</td>
<td>SD_CLK when eFuse enable SDIO</td>
<td>No pull</td>
</tr>
<tr>
<td>PB[22]</td>
<td>SD_D0 when eFuse enable SDIO</td>
<td>eFuse Pull Control 7</td>
</tr>
<tr>
<td>PB[23]</td>
<td>SD_D1 when eFuse enable SDIO</td>
<td>No pull</td>
</tr>
</tbody>
</table>

NOTE
1. When bit[0] of logical eFuse 0x0e is ‘1’ by default, PA[27] and PB[3] are used for SWD function, and PA[27] is internal pull up.
2. When bit[0] of logical eFuse 0x0e is programmed to ‘0’, PB[18] and PB[19] are used for SWD function, and PB[19] is internal pull up.

2.4 Trap Pins

The trap pins are listed in Table 2-4.
<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Trap Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA[12]</td>
<td>ICFG0</td>
<td>Realtek test mode</td>
</tr>
<tr>
<td>PA[13]</td>
<td>ICFG1</td>
<td>Realtek test mode</td>
</tr>
<tr>
<td>PA[14]</td>
<td>ICFG2</td>
<td>Realtek test mode</td>
</tr>
<tr>
<td>PA[15]</td>
<td>ICFG3</td>
<td>Realtek test mode</td>
</tr>
<tr>
<td>PA[27]</td>
<td>NORMAL_MODE_SEL</td>
<td>It is not allowed to pull down when power on, otherwise:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Realtek test mode will be selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Boot will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When this pin is not pull-down, the state of PA[12] ~ PA[15] can be ignored.</td>
</tr>
<tr>
<td>PA[30]</td>
<td>SPS_SEL</td>
<td>● 1: Internal 1.1V regulator works at SPS mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● 0: Internal 1.1V regulator works at LDO mode</td>
</tr>
</tbody>
</table>
3 Analog Pin Descriptions

The signal type used in RTL872xD are shown in Table 3-1.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Symbol</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Input pin</td>
<td>O</td>
<td>Output pin</td>
</tr>
<tr>
<td>P</td>
<td>Power pin</td>
<td>AH</td>
<td>Analog and digital hybrid programmable pin</td>
</tr>
<tr>
<td>PI</td>
<td>Power input pin</td>
<td>PO</td>
<td>Power Output pin</td>
</tr>
</tbody>
</table>

3.1 Power on Trap Pin

The power on trap pins in RTL872xD are shown in Table 3-2.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL_MODE_SEL</td>
<td>I</td>
<td>26</td>
<td>33</td>
<td>48</td>
<td>Shared with PA[27]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 1: Normal operation mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 0: Enter into test/debug mode</td>
</tr>
<tr>
<td>UART_DOWNLOAD</td>
<td>I</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>Shared with PA[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 1: Boot from Flash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 0: Download image from UART</td>
</tr>
<tr>
<td>SPS_SEL</td>
<td>I</td>
<td>27</td>
<td>36</td>
<td>51</td>
<td>Shared with PA[30]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 1: Internal 1.1V regulator works at SPS mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 0: Internal 1.1V regulator works at LDO mode</td>
</tr>
</tbody>
</table>

3.2 RF Pins

The RF pins in RTL872xD are shown in Table 3-3.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFGND</td>
<td>P</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>RF ground</td>
</tr>
<tr>
<td>RFIO_A</td>
<td>I/O</td>
<td>13</td>
<td>18</td>
<td>23</td>
<td>WL 5GHz RF signal</td>
</tr>
<tr>
<td>RXIN_A/GND</td>
<td>I</td>
<td>14</td>
<td>19</td>
<td>24</td>
<td>WL 5GHz RF input signal or RF ground</td>
</tr>
<tr>
<td>RFIN_G</td>
<td>I</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>WL/BT 2.4GHz RF input signal</td>
</tr>
<tr>
<td>RFOUT_G</td>
<td>O</td>
<td>17</td>
<td>22</td>
<td>27</td>
<td>WL/BT 2.4GHz RF output signal</td>
</tr>
</tbody>
</table>

3.3 Chip Enable Pin

The chip enable pin in RTL872xD is shown in Table 3-4.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIP_EN</td>
<td>I</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>Enable chip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 1: Enable chip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● 0: Shut down chip</td>
</tr>
</tbody>
</table>

3.4 Power Pins

The power pins in RTL872xD are shown in Table 3-5.
3.5 XTAL Pins

The XTAL pins in RTL872xD are shown in Table 3-6.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>I</td>
<td>7</td>
<td>12</td>
<td>17</td>
<td>Input of 40MHz Crystal Clock Reference</td>
</tr>
<tr>
<td>XO</td>
<td>O</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>Output of 40MHz Crystal Clock Reference</td>
</tr>
</tbody>
</table>

3.6 ADC and Cap-Touch Pins

The ADC and Cap-Touch pins in RTL872xD are shown in Table 3-7.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC_0/TOUCH_KEY0</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>59</td>
</tr>
<tr>
<td>ADC_1/TOUCH_KEY1</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>ADC_2/TOUCH_KEY2</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td>61</td>
</tr>
<tr>
<td>ADC_3/TOUCH_KEY3</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>62</td>
</tr>
<tr>
<td>ADC_4</td>
<td>I</td>
<td>33</td>
<td>33</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td>ADC_5</td>
<td>I</td>
<td>32</td>
<td>-</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>ADC_6</td>
<td>I</td>
<td>34</td>
<td>34</td>
<td>43</td>
<td>58</td>
</tr>
</tbody>
</table>
3.7 USB Pins

The USB pins in RTL872xD are shown in Table 3-8.

Table 3-8 USB pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSDP</td>
<td>I/O</td>
<td>29</td>
<td>39</td>
<td>54</td>
<td>USB differential bus</td>
</tr>
<tr>
<td>HSDM</td>
<td>I/O</td>
<td>30</td>
<td>40</td>
<td>55</td>
<td>USB differential bus</td>
</tr>
<tr>
<td>RREF</td>
<td>I</td>
<td>28</td>
<td>38</td>
<td>53</td>
<td>External reference resistor for USB analog, 1% accuracy</td>
</tr>
</tbody>
</table>

3.8 Audio Codec Pins

The audio codec pins in RTL872xD are shown in Table 3-9.

Table 3-9 Audio codec pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>QFN48</th>
<th>QFN68</th>
<th>QFN88</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC1_P</td>
<td>AH</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>MIC1 input positive pad. Used as main MIC in dual MIC application. Programmable digital I/O, refer to pinmux table (UM0402 RTL872xD pinmux table).</td>
</tr>
<tr>
<td>MIC2_N</td>
<td>AH</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>MIC2 input negative pad. Used as 2nd MIC in dual MIC application. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>MIC2_P</td>
<td>AH</td>
<td>-</td>
<td>4</td>
<td>6</td>
<td>MIC2 input positive pad. Used as 2nd MIC in dual MIC application. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AOUTN_R</td>
<td>AH</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>Right channel analog output negative pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AOUTP_R</td>
<td>AH</td>
<td>-</td>
<td>64</td>
<td>84</td>
<td>Right channel analog output positive pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AOUTN_L</td>
<td>AH</td>
<td>-</td>
<td>-</td>
<td>86</td>
<td>Left channel analog output negative pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AOUTP_L</td>
<td>AH</td>
<td>-</td>
<td>65</td>
<td>87</td>
<td>Left channel analog output positive pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AUXIN_R</td>
<td>AH</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>AUX input right channel pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AUXIN_L</td>
<td>AH</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>AUX input left channel pad. Programmable digital I/O, refer to pinmux table.</td>
</tr>
<tr>
<td>AVCC_DRV</td>
<td>PI</td>
<td>-</td>
<td>66</td>
<td>88</td>
<td>1.8V/3.3V power supply for internal audio codec LDO.</td>
</tr>
<tr>
<td>MIC_BIAS</td>
<td>PO</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>Microphone bias output</td>
</tr>
<tr>
<td>AUDIO_VREF</td>
<td>PO</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>Codec bandgap reference output, add a 4.7nF cap as close as possible.</td>
</tr>
<tr>
<td>AVCC</td>
<td>PO</td>
<td>-</td>
<td>67</td>
<td>2</td>
<td>AVCC output from internal audio codec LDO, add a 1uF cap as close as possible.</td>
</tr>
<tr>
<td>AUDIO_GND</td>
<td>PO</td>
<td>-</td>
<td>68</td>
<td>1</td>
<td>Audio ground</td>
</tr>
</tbody>
</table>
4 Memory Organization

4.1 Introduction

The RTL872xD incorporates several distinct memory regions. Program memory, data memory, registers and I/O ports are organized within the same linear 4Gbyte address space. The bytes are coded in memory in Little-Endian format.

The addressable memory space is divided into multiple main blocks, as shown in Table 4-1. All the memory areas that are not allocated to on-chip memories and peripherals are considered “RSVD” (reserved).

Table 4-1 Address space main blocks

<table>
<thead>
<tr>
<th>Base Address</th>
<th>Top Address</th>
<th>Size</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000_0000</td>
<td>0x0000_1_FFF</td>
<td>128KB</td>
<td>KM0 ITCM ROM (actually 96KB)</td>
<td>32MB: KM0 Memory Address</td>
</tr>
<tr>
<td>0x0002_0000</td>
<td>0x0002_7_FFF</td>
<td>32KB</td>
<td>KM0 DTCM ROM (actually 16KB)</td>
<td></td>
</tr>
<tr>
<td>0x0002_8_0000</td>
<td>0x0007_FFF</td>
<td>352KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x0008_0000</td>
<td>0x0008_7_FFF</td>
<td>64KB</td>
<td>KM0 SRAM</td>
<td></td>
</tr>
<tr>
<td>0x0009_0000</td>
<td>0x000B_7_FFF</td>
<td>192KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x000C_0000</td>
<td>0x000C_3_FFF</td>
<td>16KB</td>
<td>Retention SRAM (actually 1KB) (the same port with KM0 SRAM)</td>
<td>224MB: External Memory Address</td>
</tr>
<tr>
<td>0x000C_4_0000</td>
<td>0x000F_7_FFF</td>
<td>240KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x0010_0000</td>
<td>0x0010_3_FFF</td>
<td>31MB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x0020_0000</td>
<td>0x0020_7_FFF</td>
<td>96MB</td>
<td>External PSRAM</td>
<td></td>
</tr>
<tr>
<td>0x0080_0000</td>
<td>0x0080_7_FFF</td>
<td>128MB</td>
<td>External Flash</td>
<td></td>
</tr>
<tr>
<td>0x1000_0000</td>
<td>0x1007_7_FFF</td>
<td>512KB</td>
<td>KM4 SRAM</td>
<td>256MB: KM4 Memory Address</td>
</tr>
<tr>
<td>0x1008_0000</td>
<td>0x100D_7_FFF</td>
<td>384KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x1010_0000</td>
<td>0x1011_7_FFF</td>
<td>768KB</td>
<td>KM4 ITCM ROM [actually 256KB]</td>
<td></td>
</tr>
<tr>
<td>0x101C_0000</td>
<td>0x101D_7_FFF</td>
<td>96KB</td>
<td>KM4 DTCM ROM</td>
<td></td>
</tr>
<tr>
<td>0x101D_8_0000</td>
<td>0x101F_7_FFF</td>
<td>160KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x1020_0000</td>
<td>0x1020_7_FFF</td>
<td>254KB</td>
<td>RVD</td>
<td></td>
</tr>
<tr>
<td>0x2000_0000</td>
<td>0x33F_7_FFF</td>
<td>512MB</td>
<td>RVD</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x4000_0000</td>
<td>0x47F_7_FFF</td>
<td>128MB</td>
<td>KM4 Peripherals</td>
<td>KM4 Peripherals Address</td>
</tr>
<tr>
<td>0x4800_0000</td>
<td>0x4FF_7_FFF</td>
<td>128MB</td>
<td>KM4 Peripherals</td>
<td>KM4 Peripherals Secure Address</td>
</tr>
<tr>
<td>0x5000_0000</td>
<td>0x57F_7_FFF</td>
<td>128MB</td>
<td>KM4 Peripherals Secure</td>
<td>KM4 Peripherals Address</td>
</tr>
<tr>
<td>0x5800_0000</td>
<td>0x5FF_7_FFF</td>
<td>2176MB</td>
<td>RVD</td>
<td>Reserved</td>
</tr>
<tr>
<td>0xE000_0000</td>
<td>0xE00_7_FFF</td>
<td>16MB</td>
<td>System PPB Device</td>
<td>RAM predefined</td>
</tr>
<tr>
<td>0xE100_0000</td>
<td>0xE0F_7_FFF</td>
<td>456MB</td>
<td>RVD</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

For the detailed mapping of available memory and register areas, refer to the following sections.

4.2 KM4 Memory

4.2.1 Memory Map and Register Boundary Addresses

Table 4-2 gives the boundary addresses of the peripherals available in the KM4 devices.

Table 4-2 KM4 register boundary addresses

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Security</th>
<th>Base Address</th>
<th>Top Address</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM4_SRAM1</td>
<td>IDAU</td>
<td>0x1000_0000</td>
<td>0x1003_7_FFF</td>
<td>256KB</td>
</tr>
<tr>
<td>KM4_SRAM2</td>
<td>IDAU</td>
<td>0x1004_0000</td>
<td>0x1007_7_FFF</td>
<td>256KB</td>
</tr>
<tr>
<td>Extension SRAM</td>
<td>IDAU</td>
<td>0x100E_0000</td>
<td>0x100F_7_FFF</td>
<td>128KB</td>
</tr>
<tr>
<td>PSRAM Memory</td>
<td>IDAU</td>
<td>0x0200_0000</td>
<td>0x07F_7_FFF</td>
<td>96MB</td>
</tr>
</tbody>
</table>
4.2.2 Embedded SRAM

The KM4 contains up to a total 512KB of contiguous, on-chip static RAM memory. This embedded SRAM can be accessed as bytes (8 bits), half-words (16 bits) or full words (32 bits). It is divided into the following two blocks which can be accessed by both KM4 and KM0.

- KM4 SRAM1 (up to 256KB)
- KM4 SRAM2 (up to 256KB)

Dividing SRAM into two slave ports allows user’s program to potentially obtain better performance. For example, simultaneous access to SRAM1 by the CPU and by the system DMA controller does not result in any bus stalls for either master.

Generally speaking, the CPU reads or writes all peripheral data at some point, even when all such data is read from or sent to a peripheral by DMA. So, minimizing stalls is likely to involve putting data to/from different peripherals in RAM on each port.

Alternatively, sequences of data from the same peripheral can be alternated between RAM on each port. This could be helpful if DMA fills or empties a RAM buffer, and signals the CPU before proceeding on to a second buffer. The CPU then tends to access the data while the DMA is using the other RAM.

In power domains, the entire SRAM is also divided into three blocks:

- SRAM_PD1 (up to 256KB)
- SRAM_PD2 (up to 128KB)
- SRAM_PD3 (up to 128KB)

Each block can be disabled or enabled individually in the Power Management Unit (PMU) block to save power, and the entire SRAM can also keep power for quickly resuming from sleep mode when system enters sleep mode.
4.2.3 Extension SRAM

When Bluetooth is disabled, more 64KB SRAM will be extended. This SRAM can also be accessed by both KM4 and KM0, up to 50MHz*32 bits.

4.3 KM0 Memory

4.3.1 Memory Map and Register Boundary Addresses

Table 4-3 gives the boundary addresses of the peripherals available in the KM0 devices.

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Base Address</th>
<th>Top Address</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM0_SRAM</td>
<td>0x0008_0000</td>
<td>0x0008_FFFF</td>
<td>64KB</td>
</tr>
<tr>
<td>1KB Retention SRAM</td>
<td>0x000C_0000</td>
<td>0x000C_3FFF</td>
<td>1KB</td>
</tr>
<tr>
<td>KM4 BRG</td>
<td>0x1000_0000</td>
<td>0x1007_FFFF</td>
<td>512KB</td>
</tr>
<tr>
<td></td>
<td>0x4000_0000</td>
<td>0x4007_FFFF</td>
<td>512KB</td>
</tr>
<tr>
<td>Wi-Fi FW</td>
<td>0x4008_0000</td>
<td>0x400A_FFFF</td>
<td>192KB</td>
</tr>
<tr>
<td>LP_SYSON</td>
<td>0x4800_0000</td>
<td>0x4800_OFFF</td>
<td>4KB</td>
</tr>
<tr>
<td>LP_TIM0 = 3/4/5</td>
<td>0x4800_2000</td>
<td>0x4800_2FFF</td>
<td>4KB</td>
</tr>
<tr>
<td>LP_RTC</td>
<td>0x4800_4000</td>
<td>0x4800_43FF</td>
<td>1KB</td>
</tr>
<tr>
<td>LP_IPC</td>
<td>0x4800_6000</td>
<td>0x4800_63FF</td>
<td>1KB</td>
</tr>
<tr>
<td>Key-Scan</td>
<td>0x4800_A000</td>
<td>0x4800_A3FF</td>
<td>1KB</td>
</tr>
<tr>
<td>LPC0</td>
<td>0x4800_C000</td>
<td>0x4800_C3FF</td>
<td>1KB</td>
</tr>
<tr>
<td>UART3</td>
<td>0x4800_E000</td>
<td>0x4800_E3FF</td>
<td>1KB</td>
</tr>
<tr>
<td>LP_GDMA0</td>
<td>0x4801_0000</td>
<td>0x4801_07FF</td>
<td>2KB</td>
</tr>
<tr>
<td>UART2 (LOGUART)</td>
<td>0x4801_2000</td>
<td>0x4801_23FF</td>
<td>1KB</td>
</tr>
<tr>
<td>GPIOA/B</td>
<td>0x4801_4000</td>
<td>0x4801_47FF</td>
<td>2KB</td>
</tr>
<tr>
<td>RXI300_KM0</td>
<td>0x4801_8000</td>
<td>0x4801_8FFF</td>
<td>4KB</td>
</tr>
<tr>
<td>SGPIO</td>
<td>0x4801_A000</td>
<td>0x4801_AFFF</td>
<td>4KB</td>
</tr>
<tr>
<td>Cap-Touch</td>
<td>0x4801_C000</td>
<td>0x4801_C7FF</td>
<td>2KB</td>
</tr>
<tr>
<td>ADC</td>
<td>0x4801_C800</td>
<td>0x4801_CBFF</td>
<td>1KB</td>
</tr>
<tr>
<td>Comparator</td>
<td>0x4801_CC00</td>
<td>0x4801_CFFF</td>
<td>1KB</td>
</tr>
<tr>
<td>Q-Decoder</td>
<td>0x4801_E000</td>
<td>0x4801_EFFF</td>
<td>4KB</td>
</tr>
<tr>
<td>Flash Controller</td>
<td>0x4808_0000</td>
<td>0x4808_OFFF</td>
<td>4KB</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>0x0800_0000</td>
<td>0x0FFF_FFFF</td>
<td>128MB</td>
</tr>
</tbody>
</table>

4.3.2 Embedded SRAM

The KM0 features 64KB of system SRAM, the embedded SRAM can be accessed as bytes (8 bits), half-words (16 bits) or full words (32 bits).

This SRAM can be accessed by both KM4 and KM0.

4.4 Retention SRAM

The RTL872xD features 1KB of retention SRAM in order to allow saving data with minimal power usage during deepsleep mode.

This SRAM can be accessed by both KM4 and KM0.
4.5 SPI Flash Memory

The SPI Flash Controller manages CPU I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations, and the read/write protection mechanisms. It accelerates code execution with a system of instruction prefetch and cache lines.

4.6 PSRAM

4MB 8IO DDR PSRAM is included in RTL872xD, up to 50MHz DDR.
5 Nested Vectored Interrupt Controller (NVIC)

5.1 Features

All interrupts including the core exceptions are managed by the NVIC. The nested vector interrupt controller NVIC includes the following features:

- Nested Vectored Interrupt Controller that is an integral part of each CPU.
- Tightly coupled interrupt controller provides low interrupt latency.
- Controls system exceptions and peripheral interrupts.
- The NVIC of the KM4 supports:
 - 58 vectored interrupts.
 - 8 programmable interrupt priority levels with hardware priority level masking.
 - Vector table offset register VTOR.
- The NVIC of the KM0 supports:
 - 32 vectored interrupts.
 - 4 programmable interrupt priority levels with hardware priority level masking.
 - Vector table offset register VTOR.
- Support for NMI from any interrupt.

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

5.2 NVIC Diagram

The diagram of NVIC is shown in Figure 5-1.

![Figure 5-1 NVIC diagram](image)

Most of KM0 interrupt signals are linked to KM4 NVIC at the same interrupt number like LOGUART, and other KM0 interrupt signals are not linked to KM4 NVIC like WDG/RX1300/IPC.

This mechanism let KM4 use KM0’s peripheral like it is KM4’s peripheral. But if an interrupt signal is shared by KM0 and KM4, just only one CPU can open this interrupt, if not, software will hang.

5.3 NVIC Table

Table 5-1 lists the interrupt sources for each peripheral function. Each peripheral device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent more than one interrupt source. The interrupt number does not imply any interrupt priority.

NOTE

The macro “configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY”, which is used to define the highest interrupt priority controlled by FreeRTOS, is very important to interrupt. If the interrupt safe FreeRTOS API functions are called by the interrupt service routine, the priority of it must not be higher than this macro. Do not call RTOS_ISR functions from any interrupt that has a higher priority than this macro.
Nested Vectored Interrupt Controller (NVIC)

Table 5-1 NVIC table

<table>
<thead>
<tr>
<th>IRQ</th>
<th>KM4 Name</th>
<th>KM0 Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>Reset</td>
<td>Reset</td>
<td>Non-maskable interrupts (external NMI input). The WDG is linked to the NMI vector.</td>
</tr>
<tr>
<td>NMI</td>
<td>NMI</td>
<td></td>
<td>All fault conditions if the corresponding fault handler is not enabled</td>
</tr>
<tr>
<td>Hard Fault</td>
<td>Hard Fault</td>
<td></td>
<td>Memory management fault; Memory Protection Unit (MPU) violation or access to illegal locations.</td>
</tr>
<tr>
<td>Bus Fault</td>
<td>Bus Fault</td>
<td></td>
<td>Non-maskable interrupts (external NMI input). The WDG is linked to the NMI vector.</td>
</tr>
<tr>
<td>Usage Fault</td>
<td>Usage Fault</td>
<td></td>
<td>Exceptions resulting from program error or trying to access coprocessor (the Cortex-M4 does not support a coprocessor)</td>
</tr>
<tr>
<td>SVC</td>
<td>SVC</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>Debug Monitor</td>
<td>Debug Monitor</td>
<td></td>
<td>Debug monitor (breakpoints, watch-points, or external debug requests)</td>
</tr>
<tr>
<td>RSVD</td>
<td>RSVD</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>SVC</td>
<td>SVC</td>
<td></td>
<td>Supervisor Call</td>
</tr>
<tr>
<td>SVC</td>
<td>SVC</td>
<td></td>
<td>Supervisor Call</td>
</tr>
<tr>
<td>SYSTICK</td>
<td>SYSTICK</td>
<td></td>
<td>System Tick Timer</td>
</tr>
<tr>
<td>0</td>
<td>KM4_System_ISR</td>
<td>KM0_System_ISR</td>
<td>• KM4: System ISR include wakeup event, like HS BT/USB-dev/SDIO-dev/UART0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• KM0: LS peripheral wakeup event, like GPIO/LUART/I2C0, etc.</td>
</tr>
<tr>
<td>1</td>
<td>WDG_ISR_H</td>
<td>WDG_ISR_L</td>
<td>KM4 & KM0 watchdog warning interrupt</td>
</tr>
<tr>
<td>2</td>
<td>RXI300_IRQ_H</td>
<td>RXI300_IRQ_L</td>
<td>KM4 & KM0 RXI300 platform interrupt</td>
</tr>
<tr>
<td>3</td>
<td>UART log</td>
<td>UART log</td>
<td>KM4 & KM0 LP_UART0 (LOGUART) interrupt</td>
</tr>
<tr>
<td>4</td>
<td>GPIOA</td>
<td>GPIOA</td>
<td>KM4 & KM0 GPIO PortA Interrupt (GPIO IP0 PORTA)</td>
</tr>
<tr>
<td>5</td>
<td>RTC</td>
<td>RTC</td>
<td>KM4 & KM0 RTC interrupt</td>
</tr>
<tr>
<td>6</td>
<td>I2C0</td>
<td>I2C0</td>
<td>KM4 & KM0 I2C0 interrupt</td>
</tr>
<tr>
<td>7</td>
<td>SPI_FLASH</td>
<td>SPI_FLASH</td>
<td>KM4 & KM0 SPI FLASH interrupt</td>
</tr>
<tr>
<td>8</td>
<td>GPIOB</td>
<td>GPIOB</td>
<td>KM4 & KM0 GPIO PortB Interrupt (GPIO IP1 PORTA)</td>
</tr>
<tr>
<td>9</td>
<td>UART</td>
<td>UART</td>
<td>KM4 & KM0 LP_UART1 (LOGUART) interrupt</td>
</tr>
<tr>
<td>10</td>
<td>Key-Scan</td>
<td>Key-Scan</td>
<td>KM4 & KM0 Key-Scan interrupt</td>
</tr>
<tr>
<td>11</td>
<td>Cap-Touch</td>
<td>Cap-Touch</td>
<td>KM4 & KM0 Cap-Touch interrupt</td>
</tr>
<tr>
<td>12</td>
<td>BOR2</td>
<td>BOR2</td>
<td>KM4 & KM0 BOR Interrupt</td>
</tr>
<tr>
<td>13</td>
<td>SGPIO</td>
<td>SGPIO</td>
<td>KM4 & KM0 SGPIO interrupt</td>
</tr>
<tr>
<td>14</td>
<td>IPC_KM0</td>
<td>IPC_KM4</td>
<td>IPC interrupt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• KM0 IPC interrupt KM4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• KM4 IPC interrupt KM0</td>
</tr>
<tr>
<td>15</td>
<td>ADC</td>
<td>ADC</td>
<td>KM4 & KM0 ADC interrupt</td>
</tr>
<tr>
<td>16</td>
<td>Q-Decoder</td>
<td>Q-Decoder</td>
<td>KM4 & KM0 Q-Decoder interrupt</td>
</tr>
<tr>
<td>17</td>
<td>HTimer0</td>
<td>LTimer0</td>
<td>KM4 HTimer0 interrupt</td>
</tr>
<tr>
<td>18</td>
<td>HTimer1</td>
<td>LTimer1</td>
<td>KM4 HTimer1 interrupt</td>
</tr>
<tr>
<td>19</td>
<td>HTimer2</td>
<td>LTimer2</td>
<td>KM4 HTimer2 interrupt</td>
</tr>
<tr>
<td>20</td>
<td>HTimer3</td>
<td>LTimer3</td>
<td>KM4 HTimer3 interrupt</td>
</tr>
<tr>
<td>21</td>
<td>HTimer4</td>
<td>LTimer4</td>
<td>KM4 HTimer4 interrupt</td>
</tr>
<tr>
<td>22</td>
<td>HTimer5</td>
<td>LTimer5</td>
<td>KM4 HTimer5 interrupt</td>
</tr>
<tr>
<td>23</td>
<td>LCDC</td>
<td>LGDMA0_Channel0</td>
<td>KM4 LCDC interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KM0 LGDMA0_Channel0 interrupt</td>
</tr>
<tr>
<td>24</td>
<td>USB</td>
<td>LGDMA0_Channel1</td>
<td>KM4 USB interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>KM0 LGDMA0_Channel1 interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SDIO_DEV</td>
<td>LGDMA0_Channel2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 SDIO_DEV interrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM0 LGDMA0_Channel2 interrupt</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>SD_HOST</td>
<td>Wi-Fi FISR (0x134) + FESR (0x124)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 SD_HOST interrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM0 Wi-Fi FISR + FESR interrupt</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>IPSEC</td>
<td>Wi-Fi FTSR (0x13C) + mailbox</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 SD_HOST interrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM0 Wi-Fi FTSR + mailbox interrupt</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>I2S0</td>
<td>LGDMA0_Channel3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 I2S0 interrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM0 LGDMA0_Channel3 interrupt</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>PWR_DOWN</td>
<td>PWR_DOWN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 & KM0 PWR_DOWN interrupt, this interrupt will be triggered when power down pin push under power down interrupt mode</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ADC_COMP</td>
<td>ADC_COMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 & KM0 ADC comparator interrupt</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>WL_DMA</td>
<td>KM4_WAKE_ISR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 WL_DMA interrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM0: KM4 peripherals wake interrupt, the same as KM4_System_ISR</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>WL_PROTOCOL (0xB4)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 WL_PROTOCOL interrupt</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>PSRAMC</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 PSRAMC interrupt</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>UART0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_UART0 interrupt</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>UART1_BT</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_UART1_BT interrupt</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SPI0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_SPI0 interrupt</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SPI1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_SPI1 interrupt</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>HUSIO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_USIO interrupt</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>IR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 IR interrupt</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>BT_SCORE_BOARD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 BT_SCORE_BOARD interrupt</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>GDMA0_Channel0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel0 interrupt</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>GDMA0_Channel1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel1 interrupt</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>GDMA0_Channel2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel2 interrupt</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>GDMA0_Channel3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel3 interrupt</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>GDMA0_Channel4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel4 interrupt</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>GDMA0_Channel5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel5 interrupt</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>RSVD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>RSVD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RSVD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>IPSEC_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_IPSEC TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>RXI300_IRQ_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_RXI300 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>GDMA0_Channel0_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel0 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>GDMA0_Channel1_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel1 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>GDMA0_Channel2_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel2 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>GDMA0_Channel3_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel3 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>GDMA0_Channel4_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel4 TrustZone interrupt</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>GDMA0_Channel5_S</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KM4 HS_GDMA0_Channel5 TrustZone interrupt</td>
<td></td>
</tr>
</tbody>
</table>
6 Radio Characteristics

6.1 RF Block Diagram

The radio frequency (RF) block diagram of RTL872xD, including Wi-Fi and BLE modem, is given in Figure 6-1.

![RF Block Diagram](Image)

Figure 6-1 RF block diagram

6.2 Wi-Fi Radio Characteristics

The RF specifications of Wi-Fi are described in the tables below. These values are measured on the QFN68 board.

6.2.1 Wi-Fi 2.4GHz Band RF Receiver Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Performance (1.8V)</th>
<th>Performance (3.3V)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Center channel frequency</td>
<td>2412</td>
<td>-</td>
<td>2484</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>1Mbps CCK</td>
<td>-</td>
<td>-98</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2Mbps CCK</td>
<td>-</td>
<td>-96</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5.5Mbps CCK</td>
<td>-</td>
<td>-94</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11Mbps CCK</td>
<td>-</td>
<td>-91</td>
<td>-</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>-96</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BPSK rate 3/4, 9Mbps OFDM</td>
<td>-</td>
<td>-94</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QPSK rate 1/2, 12Mbps OFDM</td>
<td>-</td>
<td>-93</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QPSK rate 3/4, 18Mbps OFDM</td>
<td>-</td>
<td>-90</td>
<td>-</td>
</tr>
</tbody>
</table>
Wi-Fi 2.4GHz Band RF Transmitter Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Performance (1.8V)</th>
<th>Performance (3.3V)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Center channel frequency</td>
<td>2412</td>
<td>-</td>
<td>2484</td>
</tr>
<tr>
<td>Output power with spectral mask and EVM compliance1</td>
<td>1Mbps CCK</td>
<td>-</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>11Mbps CCK</td>
<td>-</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 3/4, 54Mbps OFDM</td>
<td>-</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>HT20-MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>HT20-MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>HT40-MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>HT40-MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Tx EVM</td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>-</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 3/4, 54Mbps OFDM</td>
<td>-</td>
<td>-</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>HT20-MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>-</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>HT20-MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>-</td>
<td>-28</td>
</tr>
<tr>
<td></td>
<td>HT40-MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>-</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>HT40-MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>-</td>
<td>-28</td>
</tr>
<tr>
<td>Output power variation2</td>
<td>After do power trim at FT</td>
<td>-1.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>Carrier suppression</td>
<td>-</td>
<td>-</td>
<td>-30</td>
<td>-</td>
</tr>
</tbody>
</table>
Radio Characteristics

6.2.3 Wi-Fi 5GHz Band RF Receiver Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Performance (1.8V)</th>
<th>Performance (3.3V)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Center channel frequency</td>
<td>S180</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>-94</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BPSK rate 3/4, 9Mbps OFDM</td>
<td>-</td>
<td>-93</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QPSK rate 1/2, 12Mbps OFDM</td>
<td>-</td>
<td>-92</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>QPSK rate 3/4, 18Mbps OFDM</td>
<td>-</td>
<td>-89</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16QAM rate 1/2, 24Mbps OFDM</td>
<td>-</td>
<td>-86</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16QAM rate 3/4, 36Mbps OFDM</td>
<td>-</td>
<td>-83</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 1/2, 48Mbps OFDM</td>
<td>-</td>
<td>-78</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 3/4, 54Mbps OFDM</td>
<td>-</td>
<td>-76</td>
<td>-</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>-94</td>
<td>-</td>
</tr>
<tr>
<td>Mixed Mode</td>
<td>MCS 1, QPSK rate 1/2</td>
<td>-</td>
<td>-91</td>
<td>-</td>
</tr>
<tr>
<td>800ns Guard Interval</td>
<td>MCS 2, QPSK rate 3/4</td>
<td>-</td>
<td>-88</td>
<td>-</td>
</tr>
<tr>
<td>Non-STBC</td>
<td>MCS 3, 16QAM rate 1/2</td>
<td>-</td>
<td>-85</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 4, 16QAM rate 3/4</td>
<td>-</td>
<td>-82</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 5, 64QAM rate 2/3</td>
<td>-</td>
<td>-77</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 6, 64QAM rate 3/4</td>
<td>-</td>
<td>-76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>-74</td>
<td>-</td>
</tr>
<tr>
<td>Rx Sensitivity</td>
<td>MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>-91</td>
<td>-</td>
</tr>
<tr>
<td>Mixed Mode</td>
<td>MCS 1, QPSK rate 1/2</td>
<td>-</td>
<td>-88</td>
<td>-</td>
</tr>
<tr>
<td>800ns Guard Interval</td>
<td>MCS 2, QPSK rate 3/4</td>
<td>-</td>
<td>-85</td>
<td>-</td>
</tr>
<tr>
<td>Non-STBC</td>
<td>MCS 3, 16QAM rate 1/2</td>
<td>-</td>
<td>-82</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 4, 16QAM rate 3/4</td>
<td>-</td>
<td>-79</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 5, 64QAM rate 2/3</td>
<td>-</td>
<td>-74</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 6, 64QAM rate 3/4</td>
<td>-</td>
<td>-73</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>-71</td>
<td>-</td>
</tr>
<tr>
<td>Maximum Receive Level</td>
<td>6Mbps OFDM</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>54Mbps OFDM</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MCS 7</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Receive Adjacent Channel Rejection</td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 3/4, 54Mbps OFDM</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HT20, MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HT20, MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HT40, MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>HT40, MCS 7, 64QAM rate 5/6</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
</tbody>
</table>

6.2.4 Wi-Fi 5GHz Band RF Transmitter Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Performance (1.8V)</th>
<th>Performance (3.3V)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>Center channel frequency</td>
<td>5180</td>
<td>-</td>
<td>5825</td>
</tr>
<tr>
<td>Output power with spectral mask and EVM compliance</td>
<td>BPSK rate 1/2, 6Mbps OFDM</td>
<td>-</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>64QAM rate 3/4, 54Mbps OFDM</td>
<td>-</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>HT20-MCS 0, BPSK rate 1/2</td>
<td>-</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Power level is tested after DPK on.
2. VDD18 voltage is within ±5% of typical value.

Dataset All information provided in this document is subject to legal disclaimers. © REALTEK 2021. All rights reserved.
6.3 BT Radio Characteristics

The RF specifications of BT are described in the tables below. Both the transmitter specifications and the receiver specifications basically follow the Bluetooth SIG specifications.

6.3.1 BT RF Transmitter Specifications

![Table](image)

1. Power level is tested after DPK on.
2. VDD18 voltage is within ±5% of typical value.

6.3.2 BT RF Receiver Specifications

![Table](image)
Electrical Characteristics

7.1 Temperature Limit Ratings

The temperature limit ratings are the parameter values or ranges which can cause permanent damage if exceeded.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Part Number</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>QFN48/QFN68/QFN88</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient Operating Temperature</td>
<td>QFN48/QFN68/QFN88</td>
<td>-20</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>QFN48/QFN68/QFN88</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>

7.2 ESD Characteristics

The Electro-Static discharge (ESD) characteristics of RTL872xD are listed in Table 7-2.

<table>
<thead>
<tr>
<th>Reliability test</th>
<th>Standards</th>
<th>Test condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body Model (HBM)</td>
<td>JEDEC EIA/JESD22-A114</td>
<td>±2000V</td>
<td>Pass</td>
</tr>
<tr>
<td>Charge Device Model (CDM)</td>
<td>JEDEC EIA/JESD22-C101</td>
<td>±500V</td>
<td>Pass</td>
</tr>
</tbody>
</table>

7.3 DC Characteristics

The direct current (DC) characteristics of power supply and digital I/O pin are illustrated in the following sections.

7.3.1 Power Supply

The power supply DC characteristics of RTL872xD are shown in Table 7-3.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA1833_XTAL, VR1833_SYN, VR1833_PAD_A, VR1833_PA_A, VR1833_PA_G, VA1833_USB, VA1833_PLL, VD1833_SPS/VD1833_FLASH, AVCC_DRV</td>
<td>3.3V Supply Voltage</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>VD1833_GPIO</td>
<td>Digital I/O Supply Voltage</td>
<td>1.76</td>
<td>1.85</td>
<td>2.035</td>
<td>V</td>
</tr>
<tr>
<td>VA11_AFE, VA11_SYN, VA11_RF1, VA11_RF2, VD11_CORE, VA11_PLL</td>
<td>1.1V Core Supply Voltage</td>
<td>1.05</td>
<td>1.1</td>
<td>1.21</td>
<td>V</td>
</tr>
<tr>
<td>IDD33</td>
<td>3.3V Rating Current (with internal regulator and integrated CMOS PA)</td>
<td>-</td>
<td>-</td>
<td>450</td>
<td>mA</td>
</tr>
<tr>
<td>IDD18</td>
<td>1.85V Rating Current (with internal regulator and integrated CMOS PA)</td>
<td>-</td>
<td>-</td>
<td>800</td>
<td>mA</td>
</tr>
<tr>
<td>IDD_IO</td>
<td>I/O Rating Current (including VDD_IO)</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>mA</td>
</tr>
<tr>
<td>IDD_IO_1833</td>
<td>1.85V or 3.3V I/O Rating Current</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. IDD33 is for 3.3V supply voltage, and IDD18 is for 1.85V supply voltage, to supply pins “VA1833_XTAL, VR1833_SYN, VR1833_PAD_A, VR1833_PA_A, VR1833_PA_G, VA1833_USB, VA1833_PLL, VD1833_PNU, VD1833_SPS/VD1833_FLASH, AVCC_DRV”.

There are some restrictions both for the application of 1.85V supply voltage and 3.3V supply voltage.
- On 1.85V supply voltage module, make sure to use wide-range voltage Flash; otherwise, the Flash cannot be accessed.

Datasheet All information provided in this document is subject to legal disclaimers. © REALTEK 2021. All rights reserved.
On 3.3V supply voltage module, make sure your circuit satisfy the following two points; otherwise, you should refer to HDK to add a Reset IC.

- The power-on voltage waveform is consistent with Figure 7-1.
- The power-off voltage can drop to under 0.3V finally.

![Power-on waveform](image)

Figure 7-1 Power-on waveform

7.3.2 Digital I/O Pin

The digital I/O pin DC characteristics of RTL872xD are shown in Table 7-4 and Table 7-5, which illustrate 3.3V and 1.8V respectively.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input-High Voltage</td>
<td>LVTTTL</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input-Low Voltage</td>
<td>LVTTTL</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output-High Voltage</td>
<td>LVTTTL</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output-Low Voltage</td>
<td>LVTTTL</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>(I_{T+})</td>
<td>Schmitt-trigger High Level</td>
<td>-</td>
<td>1.78</td>
<td>1.87</td>
<td>1.97</td>
<td>V</td>
</tr>
<tr>
<td>(I_{T-})</td>
<td>Schmitt-trigger Low Level</td>
<td>-</td>
<td>1.36</td>
<td>1.45</td>
<td>1.56</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input-Leakage Current</td>
<td>(V_{IN} = 3.3V) or 0</td>
<td>-10</td>
<td>±1</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input-High Voltage</td>
<td>CMOS</td>
<td>0.65 * Vcc</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input-Low Voltage</td>
<td>CMOS</td>
<td>-</td>
<td>-</td>
<td>0.35 * Vcc</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output-High Voltage</td>
<td>CMOS</td>
<td>Vcc-0.45</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output-Low Voltage</td>
<td>CMOS</td>
<td>-</td>
<td>-</td>
<td>0.45</td>
<td>V</td>
</tr>
<tr>
<td>(I_{T+})</td>
<td>Schmitt-trigger High Level</td>
<td>-</td>
<td>1.02</td>
<td>1.09</td>
<td>1.14</td>
<td>V</td>
</tr>
<tr>
<td>(I_{T-})</td>
<td>Schmitt-trigger Low Level</td>
<td>-</td>
<td>0.67</td>
<td>0.73</td>
<td>0.87</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input-Leakage Current</td>
<td>(V_{IN} = 1.8V) or 0</td>
<td>-10</td>
<td>±1</td>
<td>10</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

7.4 ADC Characteristics

The ADC characteristics of RTL872xD are shown in Table 7-6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>–40</td>
<td>25</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>Bypass mode</td>
<td>12</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistor divider mode (1/3.3)</td>
<td>12</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Source</td>
<td>From digital</td>
<td>1000</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Offset Error</td>
<td>Cover (V_{BAT} = 1.62 \sim 3.63V)</td>
<td>2</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.5 XTAL Oscillator

The RTL872xD has a built-in 40MHz crystal oscillation circuit to provide a stable, controllable system clock. With the built-in capacitor, the clock offset can be fine-tuned in the mass production process. The maximum internal cap is 32pF typically, and we suggest following the Realtek crystal design specification and QVL.

The external capacitor, C1 and C2, could be replaced by an internal capacitor, to reduce the BOM cost, minimize the PCB dimensions, and provide flexibility for clock fine-tuning.

![RTL872xD](image)

Figure 7-2 40MHz crystal specification suggestion

The specification of XTAL oscillation is listed in Table 7-7.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>40</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Mode of oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency tolerance (25°C ± 3°C)</td>
<td>-10</td>
<td></td>
<td>+10</td>
<td>ppm</td>
</tr>
<tr>
<td>Equivalent Series Resistance (RR)</td>
<td>< 25</td>
<td></td>
<td>40</td>
<td>Ω</td>
</tr>
<tr>
<td>Temperature stability (-30°C ~ +85°C)</td>
<td>-10</td>
<td></td>
<td>+10</td>
<td>ppm</td>
</tr>
<tr>
<td>Load capacitance (CL)</td>
<td>12</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Drive level (DL)</td>
<td>150 ~ 200</td>
<td></td>
<td>300</td>
<td>uW</td>
</tr>
<tr>
<td>Shunt capacitance (C0)</td>
<td>< 0.88</td>
<td></td>
<td>2.0</td>
<td>pF</td>
</tr>
</tbody>
</table>

1. Sampling rate depends on the output impedance of sensor and resistor divider, $8.4 * R_{OUT} * 1.9 \text{ pF} - 0.5 \text{ us} < 1/f_S$.

Table 7-7 Specification of crystal oscillator
7.6 Power Consumption

The specification of power consumption is listed in Table 7-8.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>In sleep mode</td>
<td>38</td>
<td>105</td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td>In deepsleep mode</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

7.7 Power State and Power Sequence

The timing specification of the power sequence is listed in Table 7-9.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPRDY</td>
<td>VDDx ready time</td>
<td>0.6</td>
<td>0.6</td>
<td>1.0</td>
<td>ms</td>
</tr>
<tr>
<td>TCLK</td>
<td>Internal ring clock stable time after VDD1833 ready</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>TCORE</td>
<td>LP core power ready time</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>TBOOT</td>
<td>HS MCU boot time</td>
<td>200</td>
<td>200</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>VRST</td>
<td>Shutdown occurs after CHIP_EN lower than this voltage</td>
<td>0</td>
<td>0</td>
<td>0.5 * VDDx</td>
<td>V</td>
</tr>
<tr>
<td>T_RST</td>
<td>The required time that CHIP_EN lower than VRST</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
<td>ms</td>
</tr>
</tbody>
</table>

* VDDx is the supply power of VD1833.

7.7.1 Power on or Resuming from Deepsleep Sequence

The timing sequence of power on or resuming from deepsleep is given in Figure 7-3.

7.7.2 Shutdown Sequence

The timing sequence of shutdown is illustrated in Figure 7-4.
7.8 I/O Port Characteristics

7.8.1 GPIO Sink and Source Current

Test condition: I/O output mode.
- Sink current: I/O output low
- Source current: I/O output high

<table>
<thead>
<tr>
<th>Pad type</th>
<th>Pin name</th>
<th>Driving strength (3.3V)</th>
<th>Driving strength (1.8V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal²</td>
<td></td>
<td>5.9/10.96/15.1/18.8</td>
<td>6.1/9.6/13.3/16.7</td>
</tr>
</tbody>
</table>

Figure 7.5 GPIO sink and source current test circuit

Table 7-10 GPIO sink and source current with 3.3V and 1.8V power supply
SDIO

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Schematic</th>
<th>Resistor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB[18] - PB[25]</td>
<td></td>
<td>R > 1kΩ</td>
</tr>
</tbody>
</table>

Key-Scan

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Schematic</th>
<th>Resistor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA[12] - PA[25]</td>
<td></td>
<td>R > 1kΩ</td>
</tr>
</tbody>
</table>

Audio

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Schematic</th>
<th>Resistor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA[0] - PA[26]</td>
<td></td>
<td>R > 1kΩ</td>
</tr>
</tbody>
</table>

Cap-Touch

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Schematic</th>
<th>Resistor Value</th>
</tr>
</thead>
</table>

I2C

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Schematic</th>
<th>Resistor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB[0] - PB[3]</td>
<td></td>
<td>R > 1kΩ</td>
</tr>
</tbody>
</table>

1. For this type of GPIO pins with 3.3V power supply, external power supplies are set in 0.33V and 2.97V for testing sink current and source current respectively. For this type of GPIO pins with 1.8V power supply, external power supplies are set in 0.18V and 1.62V for testing sink current and source current respectively.

2. For this type of GPIO pins with 3.3V power supply, external power supplies are set in 0.4V and 2.4V for testing sink current and source current respectively. For this type of GPIO pins with 1.8V power supply, external power supplies are set in 0.22V and 1.31V for testing sink current and source current respectively.

7.8.2 GPIO Pull Low Restriction

When one of the GPIOs listed below needs to be pulled low by a resistor on PCB, the pull low resistor value must > 1k Ohm.
8 Package Specifications

8.1 QFN48

The QFN48 package specification of RTL872xD is shown in Figure 8-1 and Table 8-1.

Table 8-1 QFN48 package specification

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimension (mm)</th>
<th>Dimension (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Nominal</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.85</td>
</tr>
<tr>
<td>A₁</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>A₂</td>
<td>0.20</td>
<td>REF</td>
</tr>
<tr>
<td>b</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>6.00BSC</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6.00BSC</td>
<td></td>
</tr>
<tr>
<td>D2/E2</td>
<td>4.50</td>
<td>4.60</td>
</tr>
<tr>
<td>e</td>
<td>0.40BSC</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>K</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>0.075</td>
<td>-</td>
</tr>
<tr>
<td>aaa</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>bbb</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>ccc</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>ddd</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
8.2 QFN68

The QFN68 package specification of RTL872xD is shown in Figure 8-2 and Table 8-2.

Controlling dimension: millimeter (mm).

Reference document: JEDEC MO-220.

![Figure 8-2 QFN68 package specification](image)

Table 8-2 QFN68 package specification

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimension (mm)</th>
<th>Dimension (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Nominal</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>Nominal</td>
</tr>
<tr>
<td>A</td>
<td>0.80</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.031</td>
<td>0.033</td>
</tr>
<tr>
<td>A₁</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>A₃</td>
<td>0.2 REF</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>D</td>
<td>7.90</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>0.311</td>
<td>0.315</td>
</tr>
<tr>
<td>E</td>
<td>7.90</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>0.311</td>
<td>0.315</td>
</tr>
</tbody>
</table>
8.3 QFN88

The QFN88 package specification of RTL872xD is shown in Figure 8-3 and Table 8-3.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimension (mm)</th>
<th>Dimension (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Nominal</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>Nominal</td>
</tr>
</tbody>
</table>

Figure 8-3 QFN88 package specification

Table 8-3 QFN88 package specification

NOTE
- Controlling dimension: millimeter (mm).
- Reference document: JEDEC MO-220.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A_1</th>
<th>A_3</th>
<th>b</th>
<th>D</th>
<th>D_2</th>
<th>E</th>
<th>E_2</th>
<th>e</th>
<th>L</th>
<th>K</th>
<th>R</th>
<th>aaa</th>
<th>bbb</th>
<th>ccc</th>
<th>ddd</th>
<th>eee</th>
<th>fff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.031</td>
<td>0.033</td>
<td>0.035</td>
<td>0.20 REF</td>
<td>0.008 REF</td>
<td>0.002</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.006</td>
<td>0.390</td>
<td>0.008</td>
<td>0.002</td>
<td>0.033</td>
<td>0.035</td>
</tr>
<tr>
<td>A</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.20 REF</td>
<td>0.008 REF</td>
<td>0.002</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.006</td>
<td>0.390</td>
<td>0.008</td>
<td>0.002</td>
<td>0.033</td>
<td>0.035</td>
</tr>
<tr>
<td>A_3</td>
<td>0.20 REF</td>
<td>0.008 REF</td>
<td>0.002</td>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>9.90</td>
<td>10.00</td>
<td>10.10</td>
<td>0.390</td>
<td>0.394</td>
<td>0.398</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>9.90</td>
<td>10.00</td>
<td>10.10</td>
<td>0.390</td>
<td>0.394</td>
<td>0.398</td>
<td>6.10</td>
<td>6.20</td>
<td>6.30</td>
<td>0.240</td>
<td>0.244</td>
<td>0.248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.008</td>
<td>0.010</td>
<td>9.90</td>
<td>10.00</td>
<td>10.10</td>
<td>0.390</td>
<td>0.394</td>
<td>0.398</td>
<td>6.10</td>
<td>6.20</td>
<td>6.30</td>
<td>0.240</td>
<td>0.244</td>
<td>0.248</td>
<td>5.83</td>
<td>5.93</td>
<td>6.03</td>
<td>0.230</td>
</tr>
<tr>
<td>D_2</td>
<td>0.002</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.006</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>E</td>
<td>0.008</td>
<td>0.010</td>
<td>0.003</td>
<td>0.003</td>
<td>0.006</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>e</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>L</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.012</td>
<td>0.016</td>
<td>0.020</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>K</td>
<td>0.075</td>
<td>-</td>
<td>0.125</td>
<td>0.075</td>
<td>-</td>
<td>0.125</td>
<td>-</td>
<td>0.005</td>
<td>-</td>
<td>0.125</td>
<td>-</td>
<td>0.075</td>
<td>-</td>
<td>0.125</td>
<td>-</td>
<td>0.005</td>
<td>-</td>
<td>0.005</td>
</tr>
<tr>
<td>R</td>
<td>0.10</td>
<td>0.004</td>
<td>0.004</td>
<td>0.10</td>
<td>0.004</td>
<td>0.004</td>
<td>0.075</td>
<td>0.005</td>
<td>0.002</td>
<td>0.08</td>
<td>0.003</td>
<td>0.10</td>
<td>0.05</td>
<td>0.08</td>
<td>0.003</td>
<td>0.10</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

NOTE

- Controlling dimension: millimeter (mm).
- Reference document: JEDEC MO-220.
List of Tables

Table 1-1 System and memory features ... 9
Table 1-2 Wireless features .. 10
Table 1-3 Security features .. 10
Table 1-4 Communication interface features ... 10
Table 1-5 Audio features .. 12
Table 1-6 Timer features .. 13
Table 1-7 Human- machine interaction features ... 13
Table 1-8 Analog features ... 14
Table 1-9 Peripherals under different packages .. 15
Table 1-10 Memory under different packages .. 16
Table 2-1 Package types .. 17
Table 2-2 Low power pins ... 23
Table 2-3 Pin default configuration .. 23
Table 2-4 Trap pins .. 23
Table 3-1 Pin type description ... 25
Table 3-2 Power on trap pins .. 25
Table 3-3 RF pins .. 25
Table 3-4 Chip enable pin .. 25
Table 3-5 Power pins ... 26
Table 3-6 XTAL pins ... 26
Table 3-7 ADC and Cap-Touch pins ... 26
Table 3-8 USB pins ... 27
Table 3-9 Audio codec pins ... 27
Table 4-1 Address space main blocks .. 28
Table 4-2 KM4 register boundary addresses ... 28
Table 4-3 KM0 register boundary addresses ... 30
Table 5-1 NVIC table ... 33
Table 7-1 Temperature limit ratings .. 39
Table 7-2 ESD characteristics .. 39
Table 7-3 Power supply DC characteristics ... 39
Table 7-4 Digital I/O pin DC characteristics (3.3V) ... 40
Table 7-5 Digital I/O pin DC characteristics (1.8V) ... 40
Table 7-6 SAR ADC characteristics .. 40
Table 7-7 Specification of crystal oscillator ... 41
Table 7-8 Specification of power consumption .. 42
Table 7-9 Timing specification of power sequence ... 42
Table 7-10 GPIO sink and source current with 3.3V and 1.8V power supply 43
Table 8-1 QFN48 package specification ... 45
Table 8-2 QFN68 package specification ... 46
Table 8-3 QFN88 package specification ... 47
List of Figures

Figure 1-1 System architecture ... 8
Figure 2-1 QFN48 pin assignments for RTL8720DN/RTL8720DM ... 19
Figure 2-2 QFN48 pin assignments for RTL8720DF ... 20
Figure 2-3 QFN68 pin assignment for RTL8721DM ... 21
Figure 2-4 QFN88 pin assignments for RTL8722DM ... 22
Figure 5-1 NVIC diagram ... 32
Figure 6-1 RF block diagram .. 35
Figure 7-1 Power-on waveform .. 40
Figure 7-2 40MHz crystal specification suggestion ... 41
Figure 7-3 Timing sequence of power on or resuming from deepsleep ... 42
Figure 7-4 Timing sequence of shutdown .. 43
Figure 7-5 GPIO sink and source current test circuit .. 43
Figure 8-1 QFN48 package specification ... 45
Figure 8-2 QFN68 package specification ... 46
Figure 8-3 QFN88 package specification ... 47
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-01-20</td>
<td>v2.9</td>
<td>Update the ordering information</td>
</tr>
<tr>
<td>2020-11-4</td>
<td>v2.8</td>
<td>Add the section: GPIO Sink and Source Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the section: ESD Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the information of RTL8720DF (QFN48)</td>
</tr>
<tr>
<td>2020-08-17</td>
<td>v2.7</td>
<td>Add the section: ADC Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the ordering information</td>
</tr>
<tr>
<td>2020-06-24</td>
<td>v2.6</td>
<td>Update the ordering information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the chapter: Memory Organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the RF receiver specification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the figure: System architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the section: XTAL Oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the section: Power Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the feature of UART</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add some restrictions for Power Supply</td>
</tr>
<tr>
<td>2020-02-18</td>
<td>v2.5</td>
<td>Update the feature of USB</td>
</tr>
<tr>
<td>2020-01-13</td>
<td>v2.3</td>
<td>Update the features</td>
</tr>
<tr>
<td>2019-12-25</td>
<td>v2.2</td>
<td>Update the temperature limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the part number and ordering information</td>
</tr>
<tr>
<td>2019-12-09</td>
<td>v2.1</td>
<td>Update the chapter: Memory Organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the section: General Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the specifications of Wi-Fi 2.4GHz/5GHz RF transmitter output power</td>
</tr>
<tr>
<td>2019-09-20</td>
<td>v2.0</td>
<td>Add the section: BT Radio Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the value of Wi-Fi RF transmitter</td>
</tr>
<tr>
<td>2019-07-19</td>
<td>v1.9</td>
<td>Update the section: Package Types</td>
</tr>
<tr>
<td>2019-06-03</td>
<td>v1.8</td>
<td>Update the description of Flash features</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the BLE Tx power to 8dbm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the table: Power supply DC characteristics</td>
</tr>
<tr>
<td>2019-04-10</td>
<td>v1.7</td>
<td>Add the chapter: Radio Characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the table: Timing specification of power sequence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the table: Power supply DC characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the note of interrupt priority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add the section: GPIO Pull Low Restriction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the pin assignments for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QFN88</td>
</tr>
<tr>
<td>2019-02-21</td>
<td>v1.6</td>
<td>Add RFGND pin to RF pins table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Re-organize the section: DC Characteristics</td>
</tr>
<tr>
<td>2019-01-25</td>
<td>v1.5</td>
<td>Modify the pin name (pin49) of QFN88 package</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the memory address</td>
</tr>
<tr>
<td>2018-12-26</td>
<td>v1.4</td>
<td>Update the package specification of QFN68</td>
</tr>
<tr>
<td>2018-12-20</td>
<td>v1.3</td>
<td>Update the peripherals under different packages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revise the incorrect pin number</td>
</tr>
<tr>
<td>2018-12-17</td>
<td>v1.2</td>
<td>Update the description of power pins</td>
</tr>
<tr>
<td>2018-12-13</td>
<td>v1.1</td>
<td>Re-organize the structure of document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update package types of RTL872xD and QFN68/QFN88 pin assignments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update the operating temperature limit</td>
</tr>
<tr>
<td>2018-10-18</td>
<td>v1.0</td>
<td>Add the description about AUDIO_GND</td>
</tr>
<tr>
<td>2018-10-09</td>
<td>v0.9</td>
<td>Add description about SDIO device time consuming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unify and normalize the technical items and expression</td>
</tr>
<tr>
<td>2018-07-04</td>
<td>v0.8</td>
<td>Add pin default configuration when boot</td>
</tr>
</tbody>
</table>

All information provided in this document is subject to legal disclaimers. © REALTEK 2021. All rights reserved.
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-07-04</td>
<td>v0.7</td>
<td>Change audio & Secure</td>
</tr>
<tr>
<td>2018-07-04</td>
<td>v0.6</td>
<td>Change system architecture</td>
</tr>
<tr>
<td>2018-07-03</td>
<td>v0.5</td>
<td>Update system architecture</td>
</tr>
<tr>
<td>2018-06-29</td>
<td>v0.4</td>
<td>Update power architecture</td>
</tr>
<tr>
<td>2018-06-28</td>
<td>v0.3</td>
<td>Add Peripherals</td>
</tr>
<tr>
<td>2018-06-27</td>
<td>v0.2</td>
<td>Add all features</td>
</tr>
<tr>
<td>2018-06-24</td>
<td>v0.1</td>
<td>Draft version</td>
</tr>
</tbody>
</table>