
Introduction

This document provides information on the use and configuration of the embedded finite state machine in ST’s LSM6DSV16X.
The LSM6DSV16X can be configured to generate interrupt signals activated by user-defined motion patterns. For this purpose,
up to eight embedded finite state machines can be programmed independently for motion detection.

LSM6DSV16X: finite state machine

AN5882

Application note

AN5882 - Rev 2 - January 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/lsm6dsv16x?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5882

1 Finite state machine (FSM)

1.1 Finite state machine definition
A finite state machine (FSM) is a mathematical abstraction used to design logic connections. It is a behavioral
model composed of a finite number of states and transitions between states, similar to a flowchart in which it is
possible to inspect the way logic runs when certain conditions are met. The state machine begins with a start
state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state
(called stop state). The current state is determined by the past states of the system. The following figure depicts
the flow of a generic state machine.

Figure 1. Generic state machine

START STATE

STATE #1
Condition 1 satisfied?

STATE #2
Condition 2 satisfied?

STATE #3
Condition 3 satisfied?

STOP STATE

Yes

Yes

Yes

Yes

No

No

No

AN5882
Finite state machine (FSM)

AN5882 - Rev 2 page 2/68

1.2 Finite state machine in the LSM6DSV16X
The LSM6DSV16X works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate
output data. It is also possible to connect an external sensor like a magnetometer or pressure sensor by using the
sensor hub feature (mode 2). These data can be used as input of up to eight programs in the embedded finite
state machine (refer to the following figure).

Figure 2. State machine in the LSM6DSV16X

ACC [LSB]
GYR [LSB]

EXT. SENSOR (MAG or P) [LSB]
(optional)

DEVICE
FSM FSM output

QVAR [LSB]
SIGNAL

CONDITIONING

The FSM structure is highly modular: it is possible to easily write up to eight programs, each one able to
recognize a specific gesture.
All eight finite state machines are independent: each one has its dedicated memory area and it is independently
executed. An interrupt is generated when the end state is reached or when some specific command is performed.
Typically, the interrupt is generated when a specific gesture is recognized.

AN5882
Finite state machine in the LSM6DSV16X

AN5882 - Rev 2 page 3/68

2 Signal conditioning block

The signal conditioning block is shown in the following figure and it is used as the interface between incoming
sensor data and the FSM block. This block is needed to convert the output sensor data (represented in [LSB])
with the following unit conventions:
• Accelerometer data in [g]
• Gyroscope data in [rad/sec]
• Qvar data in [LSB]
• External sensor: if it is a magnetometer, data have to be converted to [G]. If it is a pressure sensor, data

have to be converted to [hPa].

Figure 3. Signal conditioning block

ACC [LSB]
GYR [LSB]

QVAR [LSB] or EXT. SENSOR (MAG or P) [LSB]

SENSITIVITIES NORM

SIGNAL CONDITIONING

ACCv [g]
GYRv [rad/sec]

QVAR [LSB] or EXT. SENSOR (MAG or P) [G or hPa]vv

This block is intended to apply the sensitivity to [LSB] input data, and then convert these data in half-precision
floating point (HFP) format before passing them to the FSM block. In greater detail:
• Accelerometer data conversion factor of the LSM6DSV16X is automatically handled by the device.
• Gyroscope data conversion factor of the LSM6DSV16X is automatically handled by the device.
• Qvar data and external sensor data conversion factor is not automatically handled by the device. The

LSM6DSV16X FSM supports processing external sensor data in two different formats as listed below:
– 3-axis sensors with 16-bit data like magnetometer sensors, which are enabled by setting the

EXT_FORMAT_SEL bit of the EXT_FORMAT (00h) embedded advanced features register to 0
(default value). In this case, the external sensor data are internally processed as follows.

 1. Raw external sensor data are converted in HFP format (no sensitivity is applied).

 2. Hard-iron offset is applied. The FSM_EXT_OFFX_L (C0h), FSM_EXT_OFFX_H (C1h), FSM_EXT_OFFY_L
(C2h), FSM_EXT_OFFY_H (C3h), FSM_EXT_OFFZ_L (C4h), and FSM_EXT_OFFZ_H (C5h) embedded
advanced features registers must contain the raw hard-iron offset in HFP format.

 3. Soft-iron compensation is applied. The FSM_EXT_MATRIX_XX_L (C6h), FSM_EXT_MATRIX_XX_H (C7h),
FSM_EXT_MATRIX_XY_L (C8h), FSM_EXT_MATRIX_XY_H (C9h), FSM_EXT_MATRIX_XZ_L (CAh),
FSM_EXT_MATRIX_XZ_H (CBh), FSM_EXT_MATRIX_YY_L (CCh), FSM_EXT_MATRIX_YY_H (CDh),
FSM_EXT_MATRIX_YZ_L (CEh), FSM_EXT_MATRIX_YZ_H (CFh), FSM_EXT_MATRIX_ZZ_L (D0h),
and FSM_EXT_MATRIX_ZZ_H (D1h) embedded advanced features registers must contain the soft-iron
coefficients in HFP format.

 4. Sensitivity is applied. The FSM_EXT_SENSITIVITY_L (BAh) and FSM_EXT_SENSITIVITY_L (BBh)
embedded advanced features registers must contain the sensitivity value in HFP format.

 5. Data are rotated. The EXT_CFG_A (D4h) and EXT_CFG_B (D5h) embedded advanced features registers
must contain the external sensor orientation configuration.

– 1-axis sensors with 24-bit data like pressure sensors, which are enabled by setting the
EXT_FORMAT_SEL bit of the EXT_FORMAT (00h) embedded advanced features register to 1. In
this case, the external sensor data are internally processed as follows.

 1. Raw external sensor data is kept in LSB format (no sensitivity is applied).

2. Offset is applied. The EXT_3BYTE_OFFSET_XL (06h), EXT_3BYTE_OFFSET_L (07h), and
EXT_3BYTE_OFFSET_H (08h) embedded advanced features registers must contain the offset in LSB
format.

3. Sensitivity is applied. The EXT_3BYTE_SENSITIVITY_L (02h) and EXT_3BYTE_SENSITIVITY_H (03h)
embedded advanced features registers must contain the sensitivity value in HFP format.

The Qvar sensor is managed as a 3-axis sensor that provides only one value as X-axis data.

AN5882
Signal conditioning block

AN5882 - Rev 2 page 4/68

Note: Qvar data have to be converted to [LSB] (hence configuring the sensitivity to 1), magnetometer data have to be
converted to [G], while pressure data have to be converted to [hPa].
Example: LSM6DSV16X Qvar sensitivity equal to 1 → 3C00h HFP.
Example: LIS2MDL magnetometer sensitivity is 1.5 mG/LSB → 0.0015 G/LSB → 1624h HFP; this is the default
external sensor sensitivity value for the LSM6DSV16X.
Procedure to apply the correct conversion factor for the LSM6DSV16X Qvar data:

1. Write 80h to register 01h // Enable embedded function registers access

2. Write 40h to register 17h // PAGE_RW (17h) = 40h: enable write operation

3. Write 01h to register 02h // PAGE_SEL (02h) = 01h: select embedded advanced features registers page 0

4. Write BAh to register 08h // PAGE_ADDRESS (08h) = BAh (FSM_EXT_SENSITIVITY_L address)

5. Write [LSB] conversion factor
(Qvar example, 00h) to register 09h

// Write [LSB] conversion factor value to register FSM_EXT_SENSITIVITY_L (BAh)

6. Write [MSB] conversion factor
(Qvar example, 3Ch) to register 09h

// Write [MSB] conversion factor value to register FSM_EXT_SENSITIVITY_H (BBh)

7. Write 01h to register 02h // PAGE_SEL (02h) = 01h: select embedded advanced features registers page 0

8. Write 00h to register 17h // PAGE_RW (17h) = 00h: disable read / write operation

9. Write 00h to register 01h // Disable embedded function registers access

In addition to the conversion to HFP format, the signal conditioning block computes the norm of the input data,
defined as follows: V = x2 + y2 + z2
The norm of the input data can be used in the state machine programs, in order to guarantee a high level of
program customization for the user.

AN5882
Signal conditioning block

AN5882 - Rev 2 page 5/68

3 FSM block

Output data signals coming from the signal conditioning block are sent to the FSM block that is detailed in the
following figure. The FSM block is mainly composed of:
• A general FSM configuration block: it affects all programs and includes some registers that have to be

properly initialized in order to configure and customize the entire FSM block.
• A maximum of eight configurable programs: each program processes input data and generates an output.

Figure 4. FSM block

ACCv [g]

GYRv [rad/sec]

 EXT. SENSOR (MAG or P) [G or hPa]v

CONFIGURATION

FSM

PROGRAM8 output

PROGRAM1
PROGRAM2 output

PROGRAM1 output

PROGRAM2

PROGRAM8

vQVAR [LSB]
or

FSM configuration and program blocks are described in the following sections.

AN5882
FSM block

AN5882 - Rev 2 page 6/68

3.1 Configuration block
The configuration block is composed of a set of registers involved in the FSM configuration (FSM ODR, interrupts,
programs configuration, and so forth).
The embedded function registers can be used to properly configure the FSM: these registers are accessible when
the FUNC_CFG_EN bit is set to 1 and the SHUB_REG_ACCESS bit is set to 0 in the FUNC_CFG_ACCESS
(01h) register.
The LSM6DSV16X device is provided with an extended number of registers inside the embedded function
register set, called embedded advanced features registers, that are divided in pages. A specific read / write
procedure must be followed to access the embedded features registers. Registers involved in this specific
procedure are the following:
• PAGE_SEL (02h): it selects the desired page.
• PAGE_ADDRESS (08h): it selects the desired register address in the selected page.
• PAGE_VALUE (09h): it sets the value to be written in the selected register (only in write operation).
• PAGE_RW (17h): it is used to select the read / write operation.
The script below shows the generic procedure to write a YYh value in the register having address XXh inside the
page number Z of the embedded features registers set:

1. Write 80h to register 01h // Enable embedded function registers access

2. Write 40h to register 17h // PAGE_RW (17h) = 40h: enable write operation

3. Write Z1h to register 02h // PAGE_SEL (02h) = Z1h: select embedded advanced features registers page Z

4. Write XXh to register 08h // PAGE_ADDRESS (08h) = XXh: XXh is the address of the register to be configured

5. Write YYh to register 09h // PAGE_VALUE (09h) = YYh: YYh is the value to be written

6. Write 01h to register 02h // PAGE_SEL (02h) = 01h: select embedded advanced features registers page 0. This is
needed for the correct operation of the device.

7. Write 00h to register 17h // PAGE_RW (17h) = 00h: disable read / write operation

8. Write 00h to register 01h // Disable embedded function registers access

Note: After a write transaction, the PAGE_ADDRESS (08h) register is automatically incremented.
Program configurations must be written in the embedded advanced features registers, starting from the register
address indicated by the FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh) registers. All programs
have to be written in consecutive registers, including two important aspects:
• Both the PAGE_SEL (02h) register and PAGE_ADDRESS (08h) register have to be properly updated when

moving from one page to another (that is, when passing from page 03h, address FFh to page 04h, address
00h). The LSM6DSV16X device provides six pages that can be addressed through the PAGE_SEL (02h)
register. To address the last page, PAGE_SEL (02h) has to be set to 51h.

• Program SIZE byte must be an even number. If it is odd, an additional STOP state has to be added at the
end of the instruction section.

For a detailed example of how to configure the entire FSM, refer to Section 9 FSM configuration example.

AN5882
Configuration block

AN5882 - Rev 2 page 7/68

3.1.1 Registers
All the FSM-related registers given in the following table are accessible from the primary SPI/I²C/MIPI I3C® interface only.

Table 1. Registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FUNC_CFG_ACCESS 01h EMB_FUNC_
REG_ACCESS

SHUB_
REG_ACCESS 0 0 FSM_WR_

CTRL_EN - - -

FIFO_CTRL2 08h - - 0 - 0 - - XL_DualC_BATCH
_FROM_FSM

CTRL7 16h AH_QVAR_EN INT2_DRDY_
AH_QVAR

AH_QVAR_
C_ZIN_1

AH_QVAR_
C_ZIN_0 0 0 0 -

CTRL_STATUS 1Ah 0 0 0 0 0 FSM_WR_CTRL_
STATUS - 0

EMB_FUNC_STATUS_
MAINPAGE 49h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS_
MAINPAGE 4Ah IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

MD1_CFG 5Eh - - - - - - INT1_EMB_FUNC -

MD2_CFG 5Fh - - - - - - INT2_EMB_FUNC -

A
N

5882 - R
ev 2

page 8/68

A
N

5882

3.1.2 Embedded functions registers
The table given below provides a list of the FSM-related registers for the embedded functions available in the device and the corresponding
addresses. Embedded functions registers are accessible when the EMB_FUNC_REG_ACCESS bit is set to 1 in the FUNC_CFG_ACCESS (01h)
register.

Table 2. Embedded functions registers

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PAGE_SEL 02h PAGE_SEL3 PAGE_SEL2 PAGE_SEL1 PAGE_SEL0 0 0 0 1

EMB_FUNC_EN_B 05h 0 0 0 - - 0 0 FSM_EN

PAGE_ADDRESS 08h PAGE_ADDR7 PAGE_ADDR6 PAGE_ADDR5 PAGE_ADDR4 PAGE_ADDR3 PAGE_ADDR2 PAGE_ADDR1 PAGE_ADDR0

PAGE_VALUE 09h PAGE_VALUE7 PAGE_VALUE6 PAGE_VALUE5 PAGE_VALUE4 PAGE_VALUE3 PAGE_VALUE2 PAGE_VALUE1 PAGE_VALUE0

EMB_FUNC_INT1 0Ah INT1_FSM_LC 0 - - - 0 0 0

FSM_INT1 0Bh INT1_FSM8 INT1_FSM7 INT1_FSM6 INT1_FSM5 INT1_FSM4 INT1_FSM3 INT1_FSM2 INT1_FSM1

EMB_FUNC_INT2 0Eh INT2_FSM_LC 0 - - - 0 0 0

FSM_INT2 0Fh INT2_FSM8 INT2_FSM7 INT2_FSM6 INT2_FSM5 INT2_FSM4 INT2_FSM3 INT2_FSM2 INT2_FSM1

EMB_FUNC_STATUS 12h IS_FSM_LC 0 - - - 0 0 0

FSM_STATUS 13h IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_FSM3 IS_FSM2 IS_FSM1

PAGE_RW 17h EMB_FUNC_
LIR PAGE_WRITE PAGE_READ 0 0 0 0 0

FSM_ENABLE 46h FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM3_EN FSM2_EN FSM1_EN

FSM_LONG_

COUNTER_L
48h FSM_LC_7 FSM_LC_6 FSM_LC_5 FSM_LC_4 FSM_LC_3 FSM_LC_2 FSM_LC_1 FSM_LC_0

FSM_LONG_

COUNTER_H
49h FSM_LC_15 FSM_LC_14 FSM_LC_13 FSM_LC_12 FSM_LC_11 FSM_LC_10 FSM_LC_9 FSM_LC_8

FSM_OUTS1 4Ch P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS2 4Dh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS3 4Eh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS4 4Fh P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS5 50h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS6 51h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS7 52h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_OUTS8 53h P_X N_X P_Y N_Y P_Z N_Z P_V N_V

FSM_ODR 5Fh 0 1 FSM_ODR_2 FSM_ODR_1 FSM_ODR_0 0 1 1

EMB_FUNC_INIT_B 67h 0 0 0 - - 0 0 FSM_INIT

A
N

5882 - R
ev 2

page 9/68

A
N

5882

3.1.3 Embedded advanced features pages
The table given below provides a list of the FSM-related registers for the embedded advanced features page 0. These registers are accessible when
PAGE_SEL[3:0] are set to 0000 in the PAGE_SEL (02h) register.

Table 3. Embedded advanced features registers - page 0

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_EXT_SENSITIVITY_L BAh FSM_EXT_S_7 FSM_EXT_S_6 FSM_EXT_S_5 FSM_EXT_S_4 FSM_EXT_S_3 FSM_EXT_S_2 FSM_EXT_S_1 FSM_EXT_S_0

FSM_EXT_SENSITIVITY_H BBh FSM_EXT_S_15 FSM_EXT_S_14 FSM_EXT_S_13 FSM_EXT_S_12 FSM_EXT_S_11 FSM_EXT_S_10 FSM_EXT_S_9 FSM_EXT_S_8

FSM_EXT_OFFX_L C0h FSM_EXT_OFFX_7 FSM_EXT_OFFX_6 FSM_EXT_OFFX_5 FSM_EXT_OFFX_4 FSM_EXT_OFFX_3 FSM_EXT_OFFX_2 FSM_EXT_OFFX_1 FSM_EXT_OFFX_0

FSM_EXT_OFFX_H C1h FSM_EXT_
OFFX_15

FSM_EXT_
OFFX_14

FSM_EXT_
OFFX_13

FSM_EXT_
OFFX_12

FSM_EXT_
OFFX_11

FSM_EXT_
OFFX_10

FSM_EXT_
OFFX_9

FSM_EXT_
OFFX_8

FSM_EXT_OFFY_L C2h FSM_EXT_OFFY_7 FSM_EXT_OFFY_6 FSM_EXT_OFFY_5 FSM_EXT_OFFY_4 FSM_EXT_OFFY_3 FSM_EXT_OFFY_2 FSM_EXT_OFFY_1 FSM_EXT_OFFY_0

FSM_EXT_OFFY_H C3h FSM_EXT_
OFFY_15

FSM_EXT_
OFFY_14

FSM_EXT_
OFFY_13

FSM_EXT_
OFFY_12

FSM_EXT_
OFFY_11

FSM_EXT_
OFFY_10

FSM_EXT_
OFFY_9

FSM_EXT_
OFFY_8

FSM_EXT_OFFZ_L C4h FSM_EXT_OFFZ_7 FSM_EXT_OFFZ_6 FSM_EXT_OFFZ_5 FSM_EXT_OFFZ_4 FSM_EXT_OFFZ_3 FSM_EXT_OFFZ_2 FSM_EXT_OFFZ_1 FSM_EXT_OFFZ_0

FSM_EXT_OFFZ_H C5h FSM_EXT_
OFFZ_15

FSM_EXT_
OFFZ_14

FSM_EXT_
OFFZ_13

FSM_EXT_
OFFZ_12

FSM_EXT_
OFFZ_11

FSM_EXT_
OFFZ_10

FSM_EXT_
OFFZ_9

FSM_EXT_
OFFZ_8

FSM_EXT_MATRIX_XX_L C6h FSM_EXT_
MAT_XX_7

FSM_EXT_
MAT_XX_6

FSM_EXT_
MAT_XX_5

FSM_EXT_
MAT_XX_4

FSM_EXT_
MAT_XX_3

FSM_EXT_
MAT_XX_2

FSM_EXT_
MAT_XX_1

FSM_EXT_
MAT_XX_0

FSM_EXT_MATRIX_XX_H C7h FSM_EXT_
MAT_XX_15

FSM_EXT_
MAT_XX_14

FSM_EXT_
MAT_XX_13

FSM_EXT_
MAT_XX_12

FSM_EXT_
MAT_XX_11

FSM_EXT_
MAT_XX_10

FSM_EXT_
MAT_XX_9

FSM_EXT_
MAT_XX_8

FSM_EXT_MATRIX_XY_L C8h FSM_EXT_
MAT_XY_7

FSM_EXT_
MAT_XY_6

FSM_EXT_
MAT_XY_5

FSM_EXT_
MAT_XY_4

FSM_EXT_
MAT_XY_3

FSM_EXT_
MAT_XY_2

FSM_EXT_
MAT_XY_1

FSM_EXT_
MATXY_0

FSM_EXT_MATRIX_XY_H C9h FSM_EXT_
MAT_XY_15

FSM_EXT_
MAT_XY_14

FSM_EXT_
MAT_XY_13

FSM_EXT_
MAT_XY_12

FSM_EXT_
MAT_XY_11

FSM_EXT_
MAT_XY_10

FSM_EXT_
MAT_XY_9

FSM_EXT_
MAT_XY_8

FSM_EXT_MATRIX_XZ_L CAh FSM_EXT_
MAT_XZ_7

FSM_EXT_
MAT_XZ_6

FSM_EXT_
MAT_XZ_5

FSM_EXT_
MAT_XZ_4

FSM_EXT_
MAT_XZ_3

FSM_EXT_
MAG_SI_XZ_2

FSM_EXT_
MAT_XZ_1

FSM_EXT_
MAT_XZ_0

FSM_EXT_MATRIX_XZ_H CBh FSM_EXT_
MAT_XZ_15

FSM_EXT_
MAT_XZ_14

FSM_EXT_
MAT_XZ_13

FSM_EXT_
MAT_XZ_12

FSM_EXT_
MAT_XZ_11

FSM_EXT_
MAT_XZ_10

FSM_EXT_
MAT_XZ_9

FSM_EXT_
MAT_XZ_8

FSM_EXT_MATRIX_YY_L CCh FSM_EXT_
MAT_YY_7

FSM_EXT_
MAT_YY_6

FSM_EXT_
MAT_YY_5

FSM_EXT_
MAT_YY_4

FSM_EXT_
MAT_YY_3

FSM_EXT_
MAT_YY_2

FSM_EXT_
MAT_YY_1

FSM_EXT_
MAT_YY_0

FSM_EXT_MATRIX_YY_H CDh FSM_EXT_
MAT_YY_15

FSM_EXT_
MAT_YY_14

FSM_EXT_
MAT_YY_13

FSM_EXT_
MAT_YY_12

FSM_EXT_
MAT_YY_11

FSM_EXT_
MAT_YY_10

FSM_EXT_
MAT_YY_9

FSM_EXT_
MAT_YY_8

FSM_EXT_MATRIX_YZ_L CEh FSM_EXT_
MAT_YZ_7

FSM_EXT_
MAT_YZ_6

FSM_EXT_
MAT_YZ_5

FSM_EXT_
MAT_YZ_4

FSM_EXT_
MAT_YZ_3

FSM_EXT_
MAT_YZ_2

FSM_EXT_
MAT_YZ_1

FSM_EXT_
MAT_YZ_0

FSM_EXT_MATRIX_YZ_H CFh FSM_EXT_
MAT_YZ_15

FSM_EXT_
MAT_YZ_14

FSM_EXT_
MAT_YZ_13

FSM_EXT_
MAT_YZ_12

FSM_EXT_
MAT_YZ_11

FSM_EXT_
MAT_YZ_10

FSM_EXT_
MAT_YZ_9

FSM_EXT_
MAT_YZ_8

FSM_EXT_MATRIX_ZZ_L D0h FSM_EXT_
MAT_ZZ_7

FSM_EXT_
MAT_ZZ_6

FSM_EXT_
MAT_ZZ_5

FSM_EXT_
MAT_ZZ_4

FSM_EXT_
MAT_ZZ_3

FSM_EXT_
MAT_ZZ_2

FSM_EXT_
MAT_ZZ_1

FSM_EXT_
MAT_ZZ_0

FSM_EXT_MATRIX_ZZ_H D1h FSM_EXT_
MAT_ZZ_15

FSM_EXT_
MAT_ZZ_14

FSM_EXT_
MAT_ZZ_13

FSM_EXT_
MAT_ZZ_12

FSM_EXT_
MAT_ZZ_11

FSM_EXT_
MAT_ZZ_10

FSM_EXT_
MAT_ZZ_9

FSM_EXT_
MAT_ZZ_8

EXT_CFG_A D4h 0 EXT_Y_AXIS2 EXT_Y_AXIS1 EXT_Y_AXIS0 0 EXT_Z_AXIS2 EXT_Z_AXIS1 EXT_Z_AXIS0

EXT_CFG_B D5h 0 0 0 0 0 EXT_X_AXIS2 EXT_X_AXIS1 EXT_X_AXIS0

A
N

5882 - R
ev 2

page 10/68

A
N

5882

The table given below provides a list of the FSM-related registers for the embedded advanced features page 1. These registers are accessible when
PAGE_SEL[3:0] are set to 0001 in the PAGE_SEL (02h) register.

Table 4. Embedded advanced features registers - page 1

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

FSM_LC_TIMEOUT_L 7Ah FSM_LC_
TIMEOUT7

FSM_LC_
TIMEOUT6

FSM_LC_
TIMEOUT5

FSM_LC_
TIMEOUT4

FSM_LC_
TIMEOUT3

FSM_LC_
TIMEOUT2

FSM_LC_
TIMEOUT1

FSM_LC_
TIMEOUT0

FSM_LC_TIMEOUT_H 7Bh FSM_LC_
TIMEOUT15

FSM_LC_
TIMEOUT14

FSM_LC_
TIMEOUT13

FSM_LC_
TIMEOUT12

FSM_LC_
TIMEOUT11

FSM_LC_
TIMEOUT10

FSM_LC_
TIMEOUT9

FSM_LC_
TIMEOUT8

FSM_PROGRAMS 7Ch FSM_N_PROG7 FSM_N_PROG6 FSM_N_PROG5 FSM_N_PROG4 FSM_N_PROG3 FSM_N_PROG2 FSM_N_PROG1 FSM_N_PROG0

FSM_START_ADD_L 7Eh FSM_START7 FSM_START6 FSM_START5 FSM_START4 FSM_START3 FSM_START2 FSM_START1 FSM_START0

FSM_START_ADD_H 7Fh FSM_START15 FSM_START714 FSM_START13 FSM_START12 FSM_START11 FSM_START10 FSM_START9 FSM_START8

The table given below provides a list of the FSM related registers for the embedded advanced features page 2. These registers are accessible when
PAGE_SEL[3:0] are set to 0010 in the PAGE_SEL (02h) register.

Table 5. Embedded advanced features registers - page 2

Register name Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

EXT_FORMAT 00h 0 0 0 0 0 EXT_FORMAT_SEL 0 0

EXT_3BYTE_
SENSITIVITY_L 02h EXT_3BYTE_S_7 EXT_3BYTE_S_6 EXT_3BYTE_S_5 EXT_3BYTE_S_4 EXT_3BYTE_S_3 EXT_3BYTE_S_2 EXT_3BYTE_S_1 EXT_3BYTE_S_0

EXT_3BYTE_
SENSITIVITY_H 03h EXT_3BYTE_S_15 EXT_3BYTE_S_14 EXT_3BYTE_S_13 EXT_3BYTE_S_12 EXT_3BYTE_S_11 EXT_3BYTE_S_10 EXT_3BYTE_S_9 EXT_3BYTE_S_8

EXT_3BYTE_
OFFSET_XL 06h EXT_3BYTE_OFF_7 EXT_3BYTE_OFF_6 EXT_3BYTE_OFF_5 EXT_3BYTE_OFF_4 EXT_3BYTE_OFF_3 EXT_3BYTE_OFF_2 EXT_3BYTE_OFF_1 EXT_3BYTE_OFF_0

EXT_3BYTE_
OFFSET_L 07h EXT_3BYTE_

OFF_15
EXT_3BYTE_

OFF_14
EXT_3BYTE_

OFF_13
EXT_3BYTE_

OFF_12
EXT_3BYTE_

OFF_11
EXT_3BYTE_

OFF_10
EXT_3BYTE_

OFF_9
EXT_3BYTE_

OFF_8

EXT_3BYTE_
OFFSET_H 08h EXT_3BYTE_

OFF_23
EXT_3BYTE_

OFF_22
EXT_3BYTE_

OFF_21
EXT_3BYTE_

OFF_20
EXT_3BYTE_

OFF_19
EXT_3BYTE_

OFF_18
EXT_3BYTE_

OFF_17
EXT_3BYTE_

OFF_16

A
N

5882 - R
ev 2

page 11/68

A
N

5882

3.2 Program block
Output data coming from the signal conditioning block are sent to the FSM block, composed of eight program
blocks. Each program block, as shown in the following figure, consists of:
• An input selector block, which selects the desired input data signal that is processed by the program
• A code block, composed of the data and the instructions that are executed

Figure 5. Program block

ACC v [g]
GYR v [rad/sec]

QVAR [LSB] or EXT. SENSOR (MAG or P) [G or hPa]v

INPUT
SELECTOR

PROGRAMx

PROGRAMx input PROGRAMx output

X = 1..8

CODE
SINMUX

MACHINE LEARNING CORE FILTERS/FEATURES

LONG COUNTER

v

3.2.1 Input selector block
The input selector block allows the selection of the input data signal between the following physical sensor data
signals or internally calculated data signals:
• LSM6DSV16X accelerometer data, with precomputed norm (V)
• LSM6DSV16X gyroscope data, with precomputed norm (V)
• LSM6DSV16X Qvar data, which can be processed by the FSM as an external sensor
• External 3-axis sensors with 16-bit data like magnetometer sensors, with precomputed norm (V)
• External 1-axis sensors with 24-bit data like pressure sensors
• Long counter value
• Internally filtered data and computed features, by properly configuring the machine learning core
• Internally calculated angles, with precomputed norm (V)
The norm (V) is internally computed with the following formula:V = x2 + y2 + z2
The machine learning core allows configuring the device to compute features (like average, variance, peak-to-
peak, energy, and so forth) or filters (like high pass, band pass, IIR1 and IIR2) applied to internal / external sensor
data. For more details about the machine learning core capabilities, refer to application note AN5804.
The following figures show the inputs of the finite state machine block in the accelerometer and gyroscope digital
chains. The position of the finite state machine (FSM) block in the two digital chains is the same for all four
connection modes available in the LSM6DSV16X.

AN5882
Program block

AN5882 - Rev 2 page 12/68

Figure 6. FSM inputs (accelerometer)

SLOPE
FILTER

HP_LPF2_XL_BW_[2:0]

000

001
010
…
111

SPI
I2C

MIPI I3C

1

0

HP_SLOPE_XL_EN

LPF2_XL_EN

0

1

Digital
HP filter

HP_LPF2_XL_BW_[2:0]

Digital
LP filter

LPF2

HP_LPF2_XL_BW_[2:0]

FSM /
MLC

FIFO
ADC

Digital
LP filter

Analog
anti-aliasing
LP filter

ODR_XL[3:0]

LPF1

USER
OFFSET

0

1

USR_OFF_ON_OUT

USR_OFF_W
OFS_USR[7:0]

®

Figure 7. FSM inputs (gyroscope)

ADC
LPF1_G_EN

Digital
LP filter

LPF1_G_BW_[2:0]

LPF1

0

1

SPI / I2C /
MIPI I3C

FIFODigital
LP filter

ODR_G_[3:0]

LPF2

FSM /
MLC

®

The signal bandwidth of the accelerometer and gyroscope depends on the device configuration. For additional
information, refer to AN5763 available at www.st.com. The program block executes the configured program
(code block) by processing the selected input signal and generating the corresponding program output signals,
according to the purpose of the program.

Note: The SINMUX command can be used by the user inside the program instructions section to dynamically switch
the desired input signal for the program block. Refer to SINMUX (23h) for additional and detailed information
about the SINMUX command.

AN5882
Program block

AN5882 - Rev 2 page 13/68

http://www.st.com

3.2.2 Code block
The FSM programx code block contains the state machine program. The structure of a single program is shown in
the following figure; it is composed of:
• a data section, composed of a fixed part (same size for all the FSMs), and a variable part (specific size for

each FSM)
• an instructions section, composed of conditions and commands
Each program can generate an interruptx signal and modify the corresponding FSM_OUTSx register value,
according to processed sample sets coming from the inputx signal.

Figure 8. FSM programx code structure

Interruptx

FSM_OUTSx

CODE

X = 1..8

FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAMx input

SINMUX
INSTRUCTIONS SECTION

All FSM programs are stored consecutively in a set of reserved embedded advanced features registers, as shown
in the following figure. The maximum allowed size for each program is 256 bytes.

Note: FSMs (according to all the embedded functions) have to be reconfigured each time the device is powered on.

AN5882
Program block

AN5882 - Rev 2 page 14/68

Figure 9. FSM programx memory area

Interrupt1

FSM_OUTS1

FSM Program1 Code
FIXED DATA SECTION

VARIABLE DATA SECTION
PROGRAM1 input

SINMUX
INSTRUCTIONS SECTION

Interrupt2

FSM_OUTS2

FSM Program2 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

Interrupt8

FSM_OUTS8

FSM Program8 Code
FIXED DATA SECTION

VARIABLE DATA SECTION

PROGRAM2 input

SINMUX
INSTRUCTIONS SECTION

PROGRAM8 input

SINMUX
INSTRUCTIONS SECTION

AN5882
Program block

AN5882 - Rev 2 page 15/68

4 FSM interrupt status and signal

The FSM supports generating two different interrupt signals: the FSM program interrupt signal and the FSM long
counter interrupt signal.
The FSM program interrupt signal is generated when the end state is reached (STOP command) or when some
specific command is performed (OUTC / CONT / CONTREL commands). When an FSM program interrupt is
generated, the corresponding temporary mask value is transmitted to its corresponding FSM_OUTS embedded
function register.
The FSM long counter interrupt signal is generated when the long counter value, stored in the
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) embedded function registers, reaches
the configured long counter timeout value stored in the FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H
(7Bh) embedded advanced features registers (page 1).
The FSM interrupt status can be checked by reading the dedicated register:
• FSM_STATUS_MAINPAGE (4Ah) register or FSM_STATUS (13h) embedded function register for the FSM

interrupt status
• EMB_FUNC_STATUS_MAINPAGE (49h) register or EMB_FUNC_STATUS (12h) embedded function

register for the long counter interrupt status
The FSM interrupt signal can be driven to the INT1/INT2 interrupt pin by setting the dedicated bit:
• INT1_FSM[1:8]/INT2_FSM[1:8] bit of the FSM_INT1/FSM_INT2 embedded function register to 1
• INT1_FSM_LC/INT2_FSM_LC bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 embedded function register

to 1

Note: In both of the above cases it is mandatory to also enable routing the embedded functions events to the INT1/
INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of the MD1_CFG/MD2_CFG register.
The behavior of the interrupt signal is pulsed by default. The duration of the pulse depends on the faster enabled
sensor:
• If the accelerometer ODR is greater than the gyroscope ODR, the pulse duration is equal to 1/ODRXL.
• If the gyroscope ODR is greater than the accelerometer ODR, the pulse duration is equal to 1/ODRG.

Note: Minimum pulse duration is 1/960 Hz (~1 ms).
Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW (17h) embedded functions
register to 1. In this case, the interrupt signal and the status bit are reset when reading:
• FSM_STATUS_MAINPAGE (4Ah) register or FSM_STATUS (13h) embedded function register for the FSM

interrupt
• EMB_FUNC_STATUS_MAINPAGE (49h) register or EMB_FUNC_STATUS (12h) embedded function

register for the long counter interrupt

AN5882
FSM interrupt status and signal

AN5882 - Rev 2 page 16/68

5 Long counter

The long counter is a 15-bit temporary counter resource available to the user. It is possible to increment,
decrement, or reset its value, stored in the FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H
(49h) registers, by using the INCR, DECR, or RESET command, respectively. The minimum (and default)
long counter value is 0, while the maximum long counter value is the configured timeout value stored in the
FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh) embedded advanced features registers.
When the long counter value is equal to the configured long counter timeout value, the IS_FSM_LC status
bit of the EMB_FUNC_STATUS_MAINPAGE (49h) register and EMB_FUNC_STATUS (12h) embedded function
register is set to 1.
Details about the FSM long counter interrupt are available in Section 4 FSM interrupt status and signal.
This resource is common to all programs and does not need additional allocated resources in the [Variable Data
Section].

Note: When FSM_LC_TIMEOUT is equal to 0, the long counter feature is disabled.

Note: The FSM_LC_TIMEOUT value must be set lower than 215 in 15-bit unsigned format.

AN5882
Long counter

AN5882 - Rev 2 page 17/68

6 Fixed Data Section

The [Fixed Data Section] stores information about the [Variable Data Section] and the [Instructions Section].
It is composed of six bytes and it is located at the beginning of each program. The following figure shows the
structure of the [Fixed Data Section].

Figure 10. [Fixed Data Section]

NAME 7 6 5 4 3 2 1 0
0 CONFIG A NR_THRESH(1:0) NR_MASK(1:0) NR_LTIMER(1:0) NR_TIMER(1:0)

1 CONFIG B DES EXT_SINMUX ANGLE PAS DECTREE STOPDONE - JMP
2 SIZE PROGRAM SIZE(7:0)
3 SETTINGS MASKSEL(1:0) SIGNED R_TAM THRS3SEL IN_SEL(2:0)
4 RESET POINTER RESET POINTER(7:0)
5 PROGRAM POINTER PROGRAM POINTER(7:0)

Note: Green colored bits have to be set according to program purposes, while red bits have to be set to 0 when the
program is loaded into the embedded advanced features registers page (they are automatically configured by
the FSM logic).
The first two bytes store the amount of resources used by the program, while other bytes are used by the device
to store the program status.
• With CONFIG_A it is possible to declare:

– up to three thresholds (NR_THRESH bits)
– up to three masks (NR_MASK bits)
– up to two long (16 bits) timers (NR_LTIMER bits)
– up to two short (8 bits) timers (NR_TIMER bits)

• With CONFIG_B it is possible to declare:
– a decimation factor for incoming ODR (DES bit)
– an extended sinmux capability, used to select as FSM input, the long counter value or the value of a

filter/feature computed by the machine learning core (EXT_SINMUX bit)
– usage of gyroscope angles that have to be computed and stored (ANGLE bit)
– usage of previous axis signs that have to be computed and stored (PAS bit)
– usage of a decision tree interface (DECTREE bit)

• The SIZE parameter stores the length in bytes of the whole program (sum of [Fixed Data Section] size,
[Variable Data Section] size and Instruction section size). The SIZE byte must always be an even number.
If the size of the program is odd, an additional STOP state has to be added at the bottom of the Instruction
section.

• The SETTINGS parameter stores the current program status (selected mask, selected threshold, input
signal, and so forth).

• The RESET POINTER (RP) and PROGRAM POINTER (PP) store respectively the reset pointer relative
address (jump address when a RESET condition is true) and the program pointer relative address (address
of the instruction under execution during the current sample time). Address 00h is referred to CONFIG_A
byte.

Note: When PP is equal to 0, the device automatically runs the start routine (refer to Section 10 Start routine for
additional information) in order to properly initialize the internal variables and parameters of the state machine.
This is mandatory for a correct operation of the device.

AN5882
Fixed Data Section

AN5882 - Rev 2 page 18/68

7 Variable Data Section

The [Variable Data Section] is located below the corresponding [Fixed Data Section] of a program, and its size
depends on the amount of resources defined in the [Fixed Data Section].
Each resource enumerated in the [Fixed Data Section] is then allocated in the [Variable Data Section], with
proper size and at the proper position. The following figure shows the structure of the [Variable Data Section].

Figure 11. [Variable Data Section]

NAME 7 6 5 4 3 2 1 0
6

THRESH1 THRESH1(15:0)
7
8

THRESH2 THRESH2(15:0)
9
10

THRESH3 THRESH3(15:0)
11
12

EXT_SINMUX
13
14 MASKA MASKA(7:0)
15 TMASKA TMASKA(7:0)
16 MASKB MASKB(7:0)
17 TMASKB TMASKB(7:0)
18 MASKC MASKC(7:0)
19 TMASKC TMASKC(7:0)
20

DELTAT DELTAT(15:0)
21
22

DX DX(15:0)
23
24

DY DY(15:0)
25
26

DZ DZ(15:0)
27
28

DV DV(15:0)
29
30

TC TC(15:0) or TC(7:0)
31
32

TIMER1 TIMER1(15:0)
33
34

TIMER2 TIMER2(15:0)
35
36 TIMER3 TIMER3(7:0)
37 TIMER4 TIMER4(7:0)
38 DEST DEST(7:0)
39 DESC DESC(7:0)
40 PAS SCTC CANGLE MSKIT MSKITEQ SIGN_X SIGN_Y SIGN_Z SIGN_V
41 DECTREE - DTSEL(1:0) DTRES(3:0)

SINMUX_ADDR_B
IN_SEL(3) THRXYZ1 NEXT_ODR -

SINMUX_ADDR_A
SINMUX_ADDR_C

-

As shown in the table above, the maximum size of the [Variable Data Section] is 36 bytes. If the program
requires fewer resources, the size allocated for the [Variable Data Section] is lower. Bytes from 0 to 5, not shown
in the table above, are allocated for the CONFIG A, CONFIG B, SIZE, SETTINGS, RP and PP bytes of the [Fixed
Data Section].

Note: The usage of the resources declared in the [Fixed Data Section] starts always from the lowest resource
number. For example if the user defines NR_THRESH = 10 in the [Fixed Data Section] (two thresholds
defined), available thresholds that can be used in the program are THRESH1 and THRESH2, while THRESH3 is
not available and the bytes corresponding to THRESH3 are not allocated (all the resources below THRESH2 are
shifted up).

AN5882
Variable Data Section

AN5882 - Rev 2 page 19/68

7.1 Thresholds
Threshold resources are used to check and validate values assumed by the selected input signal (through the
SINMUX command) and axis (through MASKS) in comparison conditions.
The unit of measurement of the threshold is that of the selected signal:
• If the LSM6DSV16X accelerometer signal is selected, the unit of the threshold is [g].
• If the LSM6DSV16X gyroscope signal is selected, the unit of the threshold is [rad/sec].
• If the LSM6DSV16X integrated gyroscope signal is selected, the unit of the threshold is [rad].
• If the external sensor signal is selected, the unit is the same used after applying the sensitivity.
• If the long counter value is selected, the threshold is expressed in 15-bit unsigned format.
• If the MLC filtered signal or computed feature is selected, the unit of the threshold is the same as that of

the selected filtered signal or the selected computed feature.
Thresholds can be signed or unsigned. It is possible to move from signed to unsigned mode by using the
SSIGN0 / SSIGN1 commands. In signed mode, signal and threshold keep their original sign in the comparison. In
unsigned mode, the comparison is performed between the absolute values of both signal and threshold.
By setting the NR_THRESH[1:0] bits of CONFIG_A byte, the corresponding number of thresholds can be
configured in the [Variable Data Section], as described below:
• NR_THRESH[1:0] = 00: no thresholds are allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 01: only THRESH1[15:0] is allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 10: THRESH1[15:0] and THRESH2[15:0] are allocated in the [Variable Data Section].
• NR_THRESH[1:0] = 11: THRESH1[15:0], THRESH2[15:0] and THRESH3[15:0] are allocated in the

[Variable Data Section].
Involved commands:
• STHR1 / STHR2
• SELTHR1 / SELTHR3
• SSIGN0 / SSIGN1
Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1
• LNTH1 / LNTH2 / LLTH1 / LRTH1

7.2 Extended sinmux
The extended sinmux resource is mainly used to select as FSM inputs the long counter value (SINMUX with
argument 8) or a feature / filter computed by the machine learning core (SINMUX with first argument 9). In
addition, this resource is also required when there is the need for executing multiple conditions in one ODR
(THRXYZ1).
By setting the EXT_SINMUX bit of CONFIG_B byte to 1, the EXT_SINMUX bytes are allocated in the [Variable
Data Section] (the EXT_SINMUX bytes values are automatically managed by the device). This is mandatory if at
least one of the commands listed below is expected to be used in the program.
Involved commands:
• SINMUX with first argument equal to 8 (long counter selection) or 9 (MLC feature or filter selection)
• THRXYZ0, THRXYZ1
Involved conditions:
• N/A

AN5882
Thresholds

AN5882 - Rev 2 page 20/68

7.3 Masks / temporary masks
Mask resources are used to enable or disable mask action on the input data (X, Y, Z, V) when a condition is
performed. If a mask bit is set to 1, then the corresponding axis and sign is enabled, otherwise it is disabled. In
case the input data is generated by an external sensor with 1-axis in 3-byte data format, its data is available in the
X channel of the masks. Masks are used in threshold comparison conditions or zero-crossing detection. Masks
allow inverting the sign of the input signal by enabling the corresponding axis bit with a minus sign. Masks are
composed of 8 bits (2 bits for each axis), as shown below:

+X -X +Y -Y +Z -Z +V -V

For each axis, it is possible to configure four different mask settings:
1. Positive axis bit = 0 / negative axis bit = 0, axis is disabled.
2. Positive axis bit = 0 / negative axis bit = 1, axis with opposite sign is enabled.
3. Positive axis bit = 1 / negative axis bit = 0, axis with current sign is enabled.
4. Positive axis bit = 1 / negative axis bit = 1, axis with current sign and axis with opposite sign are enabled.
When a program is enabled, the value of each mask is copied inside the related temporary mask (TM), which is
used during execution of conditions. Each time a condition is issued, the result of the condition is stored again in
the temporary mask (it affects also consecutive conditions).
Example:
• GNTH1 condition
• THRESH1 = 0.50 g
• MASKA = 12h (00010010b) → -Y and +V are enabled
• Current input accelerometer sample = [0.72 -0.45 0.77 1.15]

TM before the condition 0 0 0 1 0 0 1 0

Accelerometer sample 0.72 -0.72 -0.45 0.45 0.77 -0.77 1.15 -1.15
TM after the condition 0 0 0 0 0 0 1 0

It is possible to reset the temporary mask value to the mask value in the following conditions:
• anytime there is a reset condition
• when executing a CONTREL command
• when executing a REL command
• after each true next condition, if an SRTAM1 command has been previously issued
By setting the NR_MASK[1:0] bits of CONFIG_A byte, the corresponding number of masks can be configured in
the [Variable Data Section], as described below:
• NR_ MASK[1:0] = 00: no masks are allocated in the [Variable Data Section].
• NR_ MASK[1:0] = 01: only MASKA[7:0]/TMASKA[7:0] are allocated in the [Variable Data Section].
• NR_ MASK[1:0] = 10: MASKA[7:0]/TMASKA[7:0] and MASKB[7:0]/TMASKB[7:0] are allocated in the

[Variable Data Section].
• NR_ MASK[1:0] = 11: MASKA[7:0]/TMASKA[7:0], MASKB[7:0]/TMASKB[7:0] and MASKC[7:0]/

TMASKC[7:0] are allocated in the [Variable Data Section].
Involved commands:
• SELMA / SELMB / SELMC
• SMA / SMB / SMC
• REL
• SRTAM0 / SRTAM1
Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1
• LNTH1 / LNTH2 / LLTH1 / LRTH1
• PZC / NZC

AN5882
Masks / temporary masks

AN5882 - Rev 2 page 21/68

7.4 Angle calculation
Angle resources can be used instead of angular velocity data when a condition is issued. The angle computation
is performed internally: gyroscope data are automatically multiplied by the DELTAT value, and the results are
added to corresponding angle axis bytes (DX, DY, DZ and DV). This feature is enabled when the ANGLE bit of the
CONFIG B byte of the [Fixed Data Section] is set to 1. The integration is performed each time a new sample is
processed by the FSM, independently of the selected signal.
There are two reset-angle modalities:
• By default, angular velocity integration is cleared each time a reset or next condition is true. In this case,

computed angles (DX, DY, DZ and DV bytes) restart from zero when a new sample arrives.
• If the program contains a CANGLE command, a different reset-angle modality is used. In this case,

integrated angles are cleared:
– If a CANGLE command is performed (when a new sample arrives)
– Only if a reset condition is true

By setting the ANGLE bit of the CONFIG_B byte to 1, 10 bytes (DELTAT, DX, DY, DZ and DV) are allocated in the
[Variable Data Section]: DELTAT resource has to be set equal to current FSM_ODR cycle time in seconds (half
floating point (16 bits) format). If a CANGLE command is expected to be used, also the PAS bit of the CONFIG_B
byte has to be set to 1.
Involved commands:
• CANGLE
Involved conditions:
• GNTH1 / GNTH2 / GLTH1 / GRTH1
• LNTH1 / LNTH2 / LLTH1 / LRTH1
• PZC / NZC

7.5 TC and timers
Timer resources are used to manage event durations. It is possible to declare two kinds of timer resources: long
timers (16 bits) and short timers (8 bits). The time base is set by the FSM_ODR[2:0] bits of the FSM_ODR (5Fh)
register, including the decimation factor if used. Long timer resources are called TI1 and TI2, while short timer
resources are called TI3 and TI4. An additional internal timer counter (TC) is used as temporary counter to check
if a timer has elapsed. The TC value can be preloaded with two different modalities, selectable by using the
SCTC0 / SCTC1 commands:
• SCTC0 mode (default): when the program pointer moves to a state with a timeout condition, the TC value

is always preloaded to the corresponding timer value. In this modality, the timer duration affects one state
only.

• SCTC1 mode: when the program pointer moves to a state with a timeout condition, there are two different
scenarios depending on which timer is used in the new state:
– If the timer used in the new state is different from the timer used in the previous state, the TC value is

preloaded to the corresponding timer value. In this modality, the timer duration affects one state only
(same as SCTC0 mode).

– If the timer used in the new state is the same used in the previous state, the TC value is not
preloaded. The TC value continues to be decreased starting from its previous value. In this modality,
the timer duration could affect more states.

The TC value is decreased by 1 each time a new sample occurs. If TC reaches 0, the condition is true.
Example:
• Timer TI3 is set equal to 10 samples. Consider the following states:

– S0 - SCTC0 or SCTC1
– S1 - TI3 | GNTH1
– S2 - TI3 | LNTH2
– S3 - TI3 | GNTH1

• TI3 = 0Ah (10 samples)

AN5882
Angle calculation

AN5882 - Rev 2 page 22/68

Depending on S0, there are two different state machine behaviors:
• SCTC0 case: the TC byte is always preloaded (when the program pointer moves to states S1, S2, and S3)

and each condition is checked for a maximum of 10 samples. This means that all conditions can be verified
in a maximum of 30 samples.

• SCTC1 case: the TC byte is preloaded only when the program pointer moves to S1 (and is not preloaded
when it moves to S2 and S3), and all conditions have to be verified in a maximum of 10 samples.

SCTC1 modality is typically used when different conditions have to be verified in the same time window.
By setting the NR_LTIMER[1:0] bits of the CONFIG_A byte, the corresponding number of long timers can be
configured in the [Variable Data Section], as described below:
• NR_LTIMER[1:0] = 00: no long timers are allocated in the [Variable Data Section].
• NR_LTIMER[1:0] = 01: TIMER1[15:0] is allocated in the [Variable Data Section]
• NR_LTIMER(1:0) = 10: TIMER1[15:0] and TIMER2[15:0] are allocated in the [Variable Data Section].
By setting the NR_TIMER[1:0] bits of the CONFIG_A byte, the corresponding number of short timers can be
configured in the [Variable Data Section], as described below:
• NR_TIMER[1:0] = 00: no short timers are allocated in the [Variable Data Section].
• NR_TIMER[1:0] = 01: TIMER3[7:0] is allocated in the [Variable Data Section].
• NR_TIMER[1:0] = 10: TIMER3[7:0] and TIMER4[7:0] are allocated in the [Variable Data Section].
Below the size of the TC resource:
• If NR_LTIMER[1:0] = 00 and NR_TIMER[1:0] = 00, the TC resource is not allocated.
• If NR_LTIMER[1:0] = 00 and NR_TIMER[1:0] ≠ 00, the TC resource occupies one byte.
• If NR_LTIMER[1:0] ≠ 00 and NR_TIMER[1:0] = 00, the TC resource occupies two bytes.
• If NR_LTIMER[1:0] ≠ 00 and NR_TIMER[1:0] ≠ 00, theTC resource occupies two bytes.
Involved commands:
• STIMER3 / STIMER4
• SCTC0 / SCTC1
Involved conditions:
• TI1 / TI2 / TI3 / TI4

7.6 Decimator
The decimator resource is used to reduce the sample rate of the data going to the finite state machine.
By setting the DES bit of the CONFIG_B byte to 1, the DEST and DESC bytes can be properly configured in the
[Variable Data Section]. The DEST value is the desired decimation factor, while the DESC value is the internal
counter (automatically managed by the device). The decimation factor is related to the FSM_ODR[2:0] bits of the
FSM_ODR (5Fh) register, according to the following formula:
PROGRAM_ODR = FSM_ODR / DEST
At startup:
DESC = DEST (initial decimation value)
When the sample clock occurs:
DESC = DESC - 1
When DESC is equal to 0, the current sample is used as the new input for the state machine, and the DESC
value is set to the initial decimation value again.
Involved commands:
• N/A
Involved conditions:
• N/A

Note: The minimum meaningful value for DEST is ‘2’.

AN5882
Decimator

AN5882 - Rev 2 page 23/68

7.7 Previous axis sign
The previous axis sign resource is mainly used to store the sign of the previous sample: this information is used
in zero-crossing conditions. In addition, it is also used to store other information such as the selected timer reset
method (SCTC0 or SCTC1), the clear angle flag (CANGLE) used to reset the integrated gyroscope data (DX, DY,
DZ and DV bytes inside the [Variable Data Section]) and the selected interrupt mask type (MSKIT, MSKITEQ or
UMSKIT).
By setting the PAS bit of the CONFIG_B byte to 1, the PAS byte is allocated in the [Variable Data Section] (the
PAS byte value is automatically managed by the device). This is mandatory if at least one of the commands or
conditions listed below is expected to be used in the program.
Involved commands:
• SCTC0 / SCTC1 / CANGLE / MSKIT / MSKITEQ / UMSKIT.
Involved conditions:
• PZC / NZC

Note: If the SSIGN0 command is performed, NZC and PZC are used as a generic ZC condition.

7.8 MLC interface
The MLC interface of the FSM includes the possibility of implementing conditions on the output of a decision tree
or on the value of a computed filter / feature. This can be very useful when a machine learning logic or a custom
filter is expected to be combined with an FSM program.
The output of a decision tree is accessible by using the CHKDT condition, which can be used to evaluate the
result of one of the four decision trees available inside the machine learning core algorithms.
By setting the DECTREE bit of CONFIG_B byte to 1, the DECTREE byte can be properly configured in the
[Variable Data Section]. The DECTREE byte contains information about the progressive number of the decision
trees to be triggered (DTSEL[1:0] bits, from 0 to 3) and the corresponding expected value (DTRES[3:0] bits, from
0 to 15).
The value of a filter / feature computed by the MLC can be selected using the extended sinmux feature.
By setting the EXT_SINMUX bit of the CONFIG_B byte to 1, the EXT_SINMUX bytes are allocated in
the [Variable Data Section] (the EXT_SINMUX bytes are automatically managed by the device). Refer to
Section 7.2 Extended sinmux and Section 8.2.21 SINMUX (23h) for more details about how to select a filter /
feature computed by the MLC.

Note: Using the SETP command allows reconfiguring dynamically the DECTREE byte inside the program flow in order
to trigger a different decision tree and its expected value. Details about the SETP command are provided in its
dedicated paragraph.

Note: Refer to AN5804 for more details about how to configure the MLC.
Involved commands:
- SINMUX
Involved conditions:
- CHKDT

AN5882
Previous axis sign

AN5882 - Rev 2 page 24/68

8 Instructions Section

The [Instructions Section] is defined below the [Variable Data Section] and is composed of a series of states
that implement the algorithm logic. Each state is characterized by one 8-bit operation code (opcode), and each
opcode can implement a command or a RESET/NEXT condition:
• Commands are used to perform special tasks for flow control, output, and synchronization. Some

commands may have parameters, executed as one single-step command.
• RESET/NEXT conditions are a combination of two conditions (4 bits for RESET condition and 4 bits for

NEXT condition) that are used to reset or continue the program flow.
The opcodes have a direct effect on registers and internal state machine memories. For some opcodes, additional
side effects can occur (such as update of status information).
A RESET/NEXT condition or a command, eventually followed by parameters, represents an instruction, also
called program state. They are the building blocks of the instructions section of a program.

8.1 RESET/NEXT conditions
The RESET/NEXT conditions are used to reset or continue the program flow, and are composed of one single
state.
The RESET condition is defined in the opcode MSB part while the NEXT condition is defined in the opcode LSB
part.
The RESET/NEXT conditions affect the program flow as indicated below:
• A transition to the reset pointer occurs whenever the RESET condition is true (PP = RP).
• A transition to the next state occurs whenever the RESET condition is false and the NEXT condition is true

(PP = PP + 1).
• No transitions occur when both the RESET and NEXT conditions are false.
As shown in the following figure, the RESET condition is always performed before the NEXT condition that is
evaluated only when the RESET condition is not satisfied.

Figure 12. Single state description

State n

RESET
CONDITION
SATISFIED

go to Reset Pointer

NEXT
CONDITION
SATISFIED

from State n-1

go to State n+1

YES

YES

NO

NO

By default, a single RESET/NEXT condition is executed when a new data sample is processed by the FSM,
but it is possible to execute multiple conditions on the same data sample by using the THRXYZ1/THRXYZ0
commands. Details about how to enable this mode can be found in Section 8.2.27 THRXYZ1 (F7h) and
Section 8.2.28 THRXYZ0 (F8h).

Note: The RESET condition is always evaluated before the NEXT condition. By default, the reset pointer (RP) is set to
the first state, but it is possible to dynamically change the reset pointer (RP) by using SRP/CRP commands.

AN5882
Instructions Section

AN5882 - Rev 2 page 25/68

Since a condition is coded over four bits, a maximum of 16 different conditions can be coded: the list of available
conditions is shown in the following table. There are three types of conditions:
• Timeouts: these conditions are true when the TC counter, preloaded with a timer value, reaches zero.
• Threshold comparisons: these conditions are true when enabled inputs such as the accelerometer X, Y, Z

axis or norm are higher (or lower) than a programmed threshold.V = x2 + y2 + z2
• Zero-crossing detection: these conditions are true when an enabled input crosses the zero level.

Table 6. Conditions

OP code Mnemonic Description Note Resources needed

0h NOP No operation Execution moves to another condition N/A

1h TI1 Timer 1 (16-bit value) valid

No evaluation of data samples

TC, TIMER1

2h TI2 Timer 2 (16-bit value) valid TC, TIMER1, TIMER2

3h TI3 Timer 3 (8-bit value) valid TC, TIMER3

4h TI4 Timer 4 (8-bit value) valid TC, TIMER3, TIMER4

5h GNTH1 Any triggered axis ≥ THRESH1

Input signal, triggered with mask,
compared to threshold

THRESH1, one MASK

6h GNTH2 Any triggered axis ≥ THRESH2 THRESH1,
THRESH2, one MASK

7h LNTH1 Any triggered axis < THRESH1 THRESH1, one MASK

8h LNTH2 Any triggered axis < THRESH2 THRESH1,
THRESH2, one MASK

9h GLTH1 All triggered axes ≥ THRESH1 THRESH1, one MASK

Ah LLTH1 All triggered axes < THRESH1 THRESH1, one MASK

Bh GRTH1 Any triggered axis ≥ -THRESH1 THRESH1, one MASK

Ch LRTH1 Any triggered axis < -THRESH1 THRESH1, one MASK

Dh PZC Any triggered axis crossed zero
value, with positive slope Input signal, triggered with mask,

crossing zero value

PAS

Eh NZC Any triggered axis crossed zero
value, with negative slope PAS

Fh CHKDT Check result from a decision tree vs.
expected

Requires machine learning core
configuration DECTREE

The last column of the table above indicates the resource needed by the conditions. These resources are
allocated inside the [Variable Data Section] and can be different between one FSM and another. For correct FSM
behavior, it is mandatory to set the amount of resources needed by each program in the [Fixed Data Section].

Note: Having the same condition in the NEXT and RESET positions does not make sense. Consequently, opcodes
such as 11h do not implement the TI1 | TI1 condition, but implement some commands: for example, the opcode
11h implements the CONT command.
Moreover, it is not possible to perform the following conditions because they are recognized as commands:
• PZC | CHKDT opcode (0xDF) is equal to SMB opcode.
• NZC | CHKDT opcode (0xEF) is equal to MSKITEQ opcode.
• CHKDT | GNTH1 opcode (0xF5) is equal to MSKIT opcode.
• CHKDT | LNTH1 opcode (0xF7) is equal to THRXYZ1 opcode.
• CHKDT | GNTH2 opcode (0xF6) is equal to RSTLC opcode.
• CHKDT | LNTH2 opcode (0xF8) is equal to THRXYZ0 opcode.
• CHKDT | PZC opcode (0xFD) is equal to DECR opcode.
• CHKDT | NZC opcode (0xFE) is equal to SMC opcode.

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 26/68

8.1.1 NOP (0h)
Description: NOP (no operation) is used as filler for the RESET/NEXT pair for some particular conditions, which
do not need an active opposite condition.
Actions:
• If NOP is in the RESET condition, the FSM evaluates only the NEXT condition.
• If NOP is in the NEXT condition, the FSM evaluates only the RESET condition.

8.1.2 TI1 (1h)
Description: TI1 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI1 condition, TC = TIMER1.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI1 is in the RESET position, PP = RP.
◦ If TI1 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27 THRXYZ1 (F7h) and Section 8.2.28 THRXYZ0 (F8h).

8.1.3 TI2 (2h)
Description: TI2 condition counts and evaluates the counter value of the TC bytes.
Action:
• When the program pointer moves to a state with a TI2 condition, TC = TIMER2.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI2 is in the RESET position, PP = RP.
◦ If TI2 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27 THRXYZ1 (F7h) and Section 8.2.28 THRXYZ0 (F8h).

8.1.4 TI3 (3h)
Description: TI3 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI3 condition, TC = TIMER3.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI3 is in the RESET position, PP = RP.
◦ If TI3 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27 THRXYZ1 (F7h) and Section 8.2.28 THRXYZ0 (F8h).

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 27/68

8.1.5 TI4 (4h)
Description: TI4 condition counts and evaluates the counter value of the TC byte.
Action:
• When the program pointer moves to a state with a TI4 condition, TC = TIMER4.
• When a new data sample (X, Y, Z, V) is processed by the FSM, then TC = TC – 1:

– If TC > 0, continue comparisons in the current state.
– If TC = 0, the condition is valid:

◦ If TI4 is in the RESET position, PP = RP.
◦ If TI4 is in the NEXT position, PP = PP + 1.

Note: Details about how to use timers inside the THRXYZ1 / THRXYZ0 commands can be found in
Section 8.2.27 THRXYZ1 (F7h) and Section 8.2.28 THRXYZ0 (F8h).

8.1.6 GNTH1 (5h)
Description: GNTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V)
is greater than or equal to the threshold 1 level. The threshold used during the comparison depends on the
THRS3SEL bit in the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH1 is valid and it is in the RESET position, PP = RP.
– If GNTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.7 GNTH2 (6h)
Description: GNTH2 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
greater than or equal to the threshold 2 level. The threshold used during the comparison is THRESH2.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GNTH2 is valid and it is in the RESET position, PP = RP.
– If GNTH2 is valid and it is in the NEXT position, PP = PP + 1.

8.1.8 LNTH1 (7h)
Description: LNTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
lower than the threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the
SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH1 is valid and it is in the RESET position, PP = RP.
– If LNTH1 is valid and it is in the NEXT position, PP = PP + 1.

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 28/68

8.1.9 LNTH2 (8h)
Description: LNTH2 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is lower
than the threshold 2 level. The threshold used during the comparison is THRESH2.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LNTH2 is valid and it is in the RESET position, PP = RP.
– If LNTH2 is valid and it is in the NEXT position, PP = PP + 1.

8.1.10 GLTH1 (9h)
Description: GLTH1 condition is valid if all axes of the FSM processed data sample (X, Y, Z, V) are greater than
or equal to the threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the
SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GLTH1 is valid and it is in the RESET position, PP = RP.
– If GLTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.11 LLTH1 (Ah)
Description: LLTH1 condition is valid if all axes of the FSM processed data sample (X, Y, Z, V) are lower than the
threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in the SETTINGS
byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LLTH1 is valid and it is in the RESET position, PP = RP.
– If LLTH1 is valid and it is in the NEXT position, PP = PP + 1.

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 29/68

8.1.12 GRTH1 (Bh)
Description: GRTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is
greater than or equal to the reversed threshold 1 level. The threshold used during the comparison depends on the
THRS3SEL bit in the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is -THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

-THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X ≥ threshold || -X ≥ threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If GRTH1 is valid and it is in the RESET position, PP = RP.
– If GRTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.13 LRTH1 (Ch)
Description: LRTH1 condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) is lower
than the reversed threshold 1 level. The threshold used during the comparison depends on the THRS3SEL bit in
the SETTINGS byte of the [Fixed Data Section] as described below:
• THRS3SEL = 0 (default value or value assumed after the SELTHR1 command is performed): the threshold

used is -THRESH1.
• THRS3SEL = 1 (value assumed after the SELTHR3 command is performed): the threshold used is

-THRESH3.

Note: In case the "+" and "–" signs of the same axis are enabled, it is enough that one of them satisfies the condition,
which means applying an OR operator (for example, +X < threshold || -X < threshold).
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If LRTH1 is valid and it is in the RESET position, PP = RP.
– If LRTH1 is valid and it is in the NEXT position, PP = PP + 1.

8.1.14 PZC (Dh)
Description: PZC condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) crossed
the zero level, with a positive slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with positive slope occurs and PZC is in the RESET position, PP = RP.
– If a zero-crossing event with positive slope occurs and PZC is in the NEXT position, PP = PP + 1.

8.1.15 NZC (Eh)
Description: NZC condition is valid if any triggered axis of the FSM processed data sample (X, Y, Z, V) crossed
the zero level, with a negative slope.
Action:
• When a new sample set (X, Y, Z, V) occurs, check the condition:

– If a zero-crossing event with negative slope occurs and NZC is in the RESET position, PP = RP.
– If a zero-crossing event with negative slope occurs and NZC is in the NEXT position, PP = PP + 1.

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 30/68

8.1.16 CHKDT (Fh)
Description: CHKDT condition is valid if the result of the selected decision tree is the expected one. For additional
information about how to properly configure the decision tree Interface refer to Section 7.8 MLC interface.
Action:
• When a new sample set (X, Y, Z, V) occurs, then check the output of the selected decision tree; if the

output is the expected one:
– If CHKDT is in the RESET position, PP = RP.
– If CHKDT is in the NEXT position, PP = PP + 1.

AN5882
RESET/NEXT conditions

AN5882 - Rev 2 page 31/68

8.2 Commands
Commands are used to modify the program behavior in terms of flow control, output, and synchronization.
Commands are immediately executed (no need for a new sample set). When a command is executed, the
program pointer is set to the next line, which is immediately evaluated.
Some commands may need parameters that must be defined (through dedicated opcodes reporting the
parameter value) just below the command opcode. Refer to the example below that shows three consecutive
opcodes used to dynamically change the value of the “THRESH1” resource when the STHR1 command is
executed:
• AAh (STHR1 command)
• CDh (1st parameter)
• 3Ch (2nd parameter)
When the program pointer reaches the AAh (STHR1 command) state, the device recognizes that this is a
command which requires two parameters: these three states are immediately executed without waiting for a new
sample set. After the command execution is completed, the THRESH1 resource value is set to 3CCDh, equal to
1.2.

Table 7. List of commands

Opcode Mnemonic Description Parameter

00h STOP Stop execution, and wait for a new start from reset pointer None

11h CONT Continues execution from reset pointer None

22h CONTREL Continues execution from reset pointer, resetting temporary mask None

33h SRP Set reset pointer to next address/state None

44h CRP Clear reset pointer to first program line None

55h SETP Set parameter in program memory
Byte 1: address

Byte 2: value

B5h SETR Set device register value (ASC) or enable the FSM-triggered batching in FIFO
of accelerometer channel 2

Byte 1: address (ASC) or command (batching in
FIFO)

Byte 2: value (ASC) or status (batching in FIFO)

66h SELMA Select MASKA and TMASKA as current mask None

77h SELMB Select MASKB and TMASKB as current mask None

88h SELMC Select MASKC and TMASKC as current mask None

99h OUTC Write the temporary mask to output registers None

AAh STHR1 Set new value to THRESH1 register
Byte 1: THRESH1 [LSB]

Byte 2: THRESH1 [MSB]

BBh STHR2 Set new value to THRESH2 register
Byte 1: THRESH2 [LSB]

Byte 2: THRESH2 [MSB]

CCh SELTHR1 Selects THRESH1 instead of THRESH3 None

DDh SELTHR3 Selects THRESH3 instead of THRESH1 None

FFh REL Reset temporary mask to default None

12h SSIGN0 Set UNSIGNED comparison mode None

13h SSIGN1 Set SIGNED comparison mode None

14h SRTAM0 Do not reset temporary mask after a next condition true None

21h SRTAM1 Reset temporary mask after a next condition true None

23h SINMUX Set input multiplexer Refer to Section 8.2.21 SINMUX (23h) for details
about the parameters that are needed.

24h STIMER3 Set new value to TIMER3 register Byte 1: TI3 value

31h STIMER4 Set new value to TIMER4 register Byte 1: TI4 value

34h INCR Increase long counter +1 and check long counter timeout None

AN5882
Commands

AN5882 - Rev 2 page 32/68

Opcode Mnemonic Description Parameter

FDh DECR Decrease long counter -1 None

F6h RSTLC Reset long counter None

F7h THRXYZ1 Enable execution of multiple conditions without waiting for a sample set None

F8h THRXYZ0 Disable execution of multiple conditions without waiting for a sample set None

41h JMP Jump address for two Next conditions

Byte 1: conditions

Byte 2: reset jump address

Byte 3: next jump address

42h CANGLE Clear angle

43h SMA Set MASKA and TMASKA Byte 1: MASKA value

DFh SMB Set MASKB and TMASKB Byte 1: MASKB value

FEh SMC Set MASKC and TMASKC Byte 1: MASKC value

5Bh SCTC0 Clear time counter TC on next condition true None

7Ch SCTC1 Do not clear time counter TC on next condition true None

C7h UMSKIT Unmask interrupt generation when setting OUTS None

EFh MSKITEQ Mask interrupt generation when setting OUTS if OUTS does not change None

F5h MSKIT Mask interrupt generation when setting OUTS None

8.2.1 STOP (00h)
Description: STOP command halts execution and waits for host restart. This command is used to control the end
of the program.
Parameters: none
Actions:
• Outputs the resulting mask to OUTSx register
• Generates interrupt (if enabled, according to the use of MSKIT / MSKITEQ / UMSKIT commands)
• Stops itself by setting the STOPDONE bit in the CONFIG_B byte of the [Fixed Data Section] to 1. The

user should disable and enable the corresponding state machine bit in the FSM_ENABLE (46h) register to
restart the program. In this case, the start routine is performed. For additional information about the start
routine refer to Section 10 Start routine.

8.2.2 CONT (11h)
Description: CONT command loops execution to the reset point. This command is used to control the end of the
program.
Parameters: none
Actions:
• Outputs the resulting mask to the OUTSx registers
• Generates interrupt (if enabled, accordingly with use of MSKIT / MSKITEQ / UMSKIT commands)
• PP = RP

AN5882
Commands

AN5882 - Rev 2 page 33/68

8.2.3 CONTREL (22h)
Description: CONTREL command loops execution to the reset point. This command is used to control the end of
the program. In addition, it resets the temporary mask value to its default value.
Parameters: none
Actions:
• Outputs the resulting mask to the OUTSx registers
• Resets temporary mask to default value
• Generates interrupt (if enabled, according to the use of MSKIT / MSKITEQ / UMSKIT commands)
• PP = RP

8.2.4 SRP (33h)
Description: SRP command sets the reset pointer to the next address/state. This command is used to modify the
starting point of the program.
Parameters: none
Actions:
• RP = PP + 1
• PP = PP + 1

8.2.5 CRP (44h)
Description: CRP command clears the reset pointer to the start position (at the beginning of the program code).
Parameters: none
Actions:
• RP = beginning of program code
• PP = PP + 1

8.2.6 SETP (55h)
Description: SETP command allows the configuration of the state machine currently used to be modified. This
command is used to modify a byte value at a desired address of the current state machine.
Parameters: two bytes

• 1st parameter: address (8 bits) of the byte to be modified. This address is relative to the current state
machine (address 00h refers to CONFIG_A byte).

• 2nd parameter: new value (8 bits) to be written in the 1st parameter address
Actions:

• byte value addressed by 1st parameter = 2nd parameter
• PP = PP + 3

AN5882
Commands

AN5882 - Rev 2 page 34/68

8.2.7 SETR (B5h)

8.2.7.1 ASC feature
Description: The SETR command is used to enable the adaptive self-configuration (ASC) feature, which allows
the device to reconfigure itself without the intervention of the master. The list of registers, which can be written by
the FSM, are listed in the tables below.

Table 8. ASC FSM main page registers

Main page register Register address (master) Register address (FSM)

FIFO_CTRL1 07h 07h

FIFO_CTRL2 08h 08h

FIFO_CTRL3 09h 09h

FIFO_CTRL4 0Ah 0Ah(1)

CTRL1 10h 10h

CTRL2 11h 11h

CTRL6 15h 15h

CTRL7 16h 16h

CTRL8 17h 17h

CTRL9 18h 18h

CTRL10 19h 19h

1. FIFO_MODE change not supported.

Table 9. ASC FSM embedded functions registers

Embedded functions register Register address (master) Register address (FSM)

EMB_FUNC_EN_A 04h 01h(1)

EMB_FUNC_EN_B 05h 02h(1)

FSM_ENABLE 46h 03h(1)

EMB_FUNC_FIFO_EN_A 44h 05h(1)

EMB_FUNC_FIFO_EN_B 45h 06h(1)

1. Access to the embedded function registers is automatically handled by the FSM.

Write access to the above device registers is mutually exclusive: the FSM_WR_CTRL_EN bit of the
FUNC_CFG_ACCESS (01h) register is used to give write capability of the above device registers to either the
master or the FSM. After writing this bit, the controller change is confirmed through the assertion or deassertion of
the FSM_WR_CTRL_STATUS bit of the CTRL_STATUS (1Ah) register as described below:
• FSM_WR_CTRL_STATUS equal to 0: all the device registers are writable from the standard interface only.
• FSM_WR_CTRL_STATUS equal to 1: the above device registers are under FSM control and are in

read-only mode from the standard interface.
Parameters: two bytes

• 1st parameter: address (8 bits) of the register whose value is to be modified, referred to as the “Register
address (FSM)” column of the above tables. If this parameter is equal to 0x00, the 2nd parameter is used
as a write bitmask for the first subsequent SETR command.

• 2nd parameter: new value (8 bits) to be written in the 1st parameter register address. If the 1st parameter is
0x00, this parameter is used as a write bitmask for the first subsequent SETR command.

Actions:

• register value addressed by 1st parameter = 2nd parameter
• PP = PP + 3

AN5882
Commands

AN5882 - Rev 2 page 35/68

Note: The default write bitmask is 0xFF, which means that all bits are written. Setting a bitmask allows changing the
value of specific bits of a register without changing the value of the other bits. For example, if the accelerometer
ODR must be changed without changing the accelerometer power mode, two consecutive SETR commands
must be performed as described below:
1. SETR 0x00 0x0F (bitmask equal to 0x0F)
2. SETR 0x10 0x06 (new accelerometer ODR equal to 120 Hz)

8.2.7.2 FSM-triggered batching in FIFO
Description: The SETR command can be used to enable batching the accelerometer channel 2 in FIFO when a
specific motion pattern is detected by the FSM. This feature requires that the XL_DualC_BATCH_FROM_FSM bit
of the FIFO_CTRL2 (08h) register be set to 1. Once set, batching the accelerometer channel 2 in FIFO can be
enabled/disabled using the SETR command as described below.
Parameters: two bytes

• 1st parameter: 0x32
• 2nd parameter: 0x01 (to enable batching in FIFO) or 0x00 (to disable batching in FIFO)
Actions:
• enable / disable batching the accelerometer channel 2 in FIFO
• PP = PP + 3

8.2.8 SELMA (66h)
Description: SELMA command sets MASKA / TMASKA as current mask.
Parameters: none
Actions:
• MASK_A is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 00.
• PP = PP + 1

8.2.9 SELMB (77h)
Description: SELMB command sets MASKB / TMASKB as current mask.
Parameters: none
Actions:
• MASK_B is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 01.
• PP = PP + 1

8.2.10 SELMC (88h)
Description: SELMC command sets MASKC / TMASKC as current mask.
Parameters: none
Actions:
• MASK_C is selected. It sets the SETTINGS(MASKSEL[1:0]) bits of the [Fixed Data Section] to 10.
• PP = PP + 1

8.2.11 OUTC (99h)
Description: OUTC stands for output command. This command is used to update the OUTS register value to the
current temporary mask value and to generate an interrupt (if enabled).
Parameters: none
Actions:
• Updates the OUTS register of the current state machine to the selected temporary mask value
• Generates interrupt (if enabled, according to the use of the MSKIT / MSKITEQ / UMSKIT commands)
• PP = PP + 1

AN5882
Commands

AN5882 - Rev 2 page 36/68

8.2.12 STHR1 (AAh)
Description: STHR1 command sets the THRESH1 value to a new desired value. THRESH1 is a half floating-point
(16 bits) number.
Parameters: two bytes

• 1st parameter: THRESH1 LSB value (8 bits)
• 2nd parameter: THRESH1 MSB value (8 bits)
Actions:
• Sets new value for THRESH1
• PP = PP + 3

8.2.13 STHR2 (BBh)
Description: STHR2 command sets the THRESH2 value to a new desired value. THRESH2 is a half floating-point
(16 bits) number.
Parameters: two bytes

• 1st parameter: THRESH2 LSB value (8 bits)
• 2nd parameter: THRESH2 MSB value (8 bits)
Actions:
• Sets new value for THRESH2
• PP = PP + 3

8.2.14 SELTHR1 (CCh)
Description: after executing the SELTHR1 command, the THRESH1 value is used instead of the THRESH3 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: none
Actions:
• Selects THRESH1 instead of THRESH3. It sets the SETTINGS(THRS3SEL) bit of the [Fixed Data

Section] to 0.
• PP = PP + 1

8.2.15 SELTHR3 (DDh)
Description: after executing the SELTHR3 command, the THRESH3 value is used instead of the THRESH1 value
when the GNTH1, LNTH1, GLTH1, LLTH1, GRTH1, LRTH1 conditions are performed.
Parameters: none
Actions:
• Selects THRESH3 instead of THRESH1. It sets the SETTINGS(THRS3SEL) bit of the [Fixed Data

Section] to 1.
• PP = PP + 1

8.2.16 REL (FFh)
Description: REL command releases the temporary axis mask information.
Parameters: none
Actions:
• Resets current temporary masks to the default value
• PP = PP + 1

AN5882
Commands

AN5882 - Rev 2 page 37/68

8.2.17 SSIGN0 (12h)
Description: SSIGN0 command sets the comparison mode to “unsigned”.
Parameters: none
Actions:
• Sets comparison mode to “unsigned”. It sets the SETTINGS(SIGNED) bit of the [Fixed Data Section] to 0.
• PP = PP + 1

8.2.18 SSIGN1 (13h)
Description: SSIGN1 command sets the comparison mode to “signed” (default behavior).
Parameters: none
Actions:
• Sets comparison mode to “signed”. It sets the SETTINGS(SIGNED) bit of the [Fixed Data Section] to 1.
• PP = PP + 1

8.2.19 SRTAM0 (14h)
Description: SRTAM0 command is used to preserve the temporary mask value when a NEXT condition is true
(default behavior).
Parameters: none
Actions:
• Temporary axis mask value does not change after valid NEXT condition. It sets the SETTINGS(R_TAM) bit

of the [Fixed Data Section] to 0.
• PP = PP + 1

8.2.20 SRTAM1 (21h)
Description: SRTAM1 command is used to reset the temporary mask when a NEXT condition is true.
Parameters: none
Actions:
• Temporary axis mask value is reset after valid NEXT condition. It sets the SETTINGS(R_TAM) bit of the

[Fixed Data Section] to 1.
• PP = PP + 1

8.2.21 SINMUX (23h)
Description: SINMUX command is used to change the input source for the current state machine. If the SINMUX
command is not performed, the accelerometer signal is automatically selected as the default input source.
The standard SINMUX command can be also used to select the MLC filtered data; for this purpose, the MLC filter
structure has to be configured as below:

• The first MLC filter [Fx Fy Fz Fv(2)] has to be applied to the sensor axes.

• The second MLC filter [0 0 0 Gv(3)] has to be applied to the sensor norm.

• The third MLC filter [Hx Hy Hz Hv(2)] has to be applied to the sensor axes.

• The fourth MLC filter [0 0 0 Jv(3)] has to be applied to the sensor norm.

The above requirement for the order and type (axes or norm) of the MLC filters can be overcome by using the
extended sinmux feature, which allows getting any of the MLC filtered data.

Note: In case the user just needs to apply two filters to the sensor axes (filters on the sensor norm are not needed), it
is necessary to configure also the second MLC filter on the sensor norm even if it is not used. Furthermore, in
case the user just needs to apply two filters to the sensor norm (filters on the sensor axes are not needed), it is
necessary to configure all four MLC filters as described above.
In addition, the extended sinmux feature allows using the SINMUX command to select the long counter value or
any computed MLC filter or feature.

AN5882
Commands

AN5882 - Rev 2 page 38/68

Parameters: three bytes if the 1st parameter is equal to 9, otherwise one byte.

• 1st parameter: value to select input source:
0: accelerometer [ax ay az av]
1: gyroscope [gx gy gz gv]
2: external sensor [mx my mz mv]

3: first filtered signal from the machine learning core(1) [Fx Fy Fz Fv(2)]

4: third filtered signal from the machine learning core(1) [Hx Hy Hz Hv(2)]

5: second filtered signal norm from the machine learning core(1) [0 0 0 Gv(3)]

6: fourth filtered signal norm from the machine learning core(1) [0 0 0 Jv(3)]
7: integrated gyroscope signal [dx dy dz dv]
8: long counter value [LCx 0 0 0]
9: any filter or feature from the machine learning core [Kx Ky Kz Kv]. The filter or the feature is selected
through the 2nd and 3rd parameters

• 2nd parameter (needed only if the 1st parameter is equal to 9): MLC filter or feature IDENTIFIER[7:0]
• 3rd parameter (needed only if the 1st parameter is equal to 9): MLC filter or feature IDENTIFIER[15:8]
Identifiers for filters and features are indicated in the configuration file generated by STMicroelectronics tools
when configuring the MLC as indicated in the figure below.

Figure 13. MLC identifiers for filters and features

Note: The Qvar sensor is processed as an external sensor by using the SINMUX 2 command. In this case, the
mask value to be used during a Qvar data value comparison can be 0x80 (corresponding to +X axis) or 0x40
(corresponding to -X axis).

Note: When a filter on the axes is intended to be selected through the SINMUX 9 command, it is recommended to
configure the IDENTIFIER related to the filtered X-axis. In this case, the mask value during a comparison follows
the normal order of the axes.

Note: The mask value to be used during a long counter value comparison is 0x80 (corresponding to +X axis), and the
threshold is interpreted as an unsigned 15-bit value.

Note: The mask value to be used during a filter on the norm or a feature value comparison is 0x80 (corresponding to
+X axis) or 0x40 (corresponding to -X axis).
Actions:
• Selects input signal accordingly with set parameter. It configures the SETTINGS(IN_SEL[2:0]) bits of the

[Fixed Data Section] and the EXT_SINMUX(IN_SEL[3]) bit of the [Variable Data Section] according to
the selected input source signal.

• If the 1st parameter is equal to 9, PP + 4; otherwise, PP + 2.
(1) Filter type could be HP / LP / IIR1 / IIR2 depending on the machine learning core configuration.
(2) Fv / Hv / Kv is internally computed by the FSM starting from Fx, Fy, Fz / Hx, Hy, Hz / Kx, Ky, Kz filtered data
values provided by the MLC.
(3) Gv / Jv is provided by the MLC.

AN5882
Commands

AN5882 - Rev 2 page 39/68

8.2.22 STIMER3 (24h)
Description: STIMER3 command is used to set a new value for TIMER3.
Parameters: one byte

• 1st parameter: new TIMER3 value
Actions:
• Sets new TIMER3 value
• PP = PP + 2

8.2.23 STIMER4 (31h)
Description: STIMER4 command is used to set a new value for TIMER4.
Parameters: one byte

• 1st parameter: new TIMER4 value
Actions:
• Sets new TIMER4 value
• PP = PP + 2

8.2.24 INCR (34h)
Description: INCR command is used to increase the long counter value by one. The long counter value
is stored in the FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) embedded functions
registers, and is clamped to the long counter timeout value stored into the FSM_LC_TIMEOUT_L (7Ah) and
FSM_LC_TIMEOUT_H (7Bh) embedded advanced features registers. An interrupt is generated when the long
counter value is equal to the long counter timeout value. Details about the FSM long counter interrupt are
available in Section 4 FSM interrupt status and signal.
Parameters: none
Actions:
• Increase the long counter value by one, and generate an interrupt if the long counter value is equal to the

long counter timeout value.
• PP = PP + 1

8.2.25 DECR (FDh)
Description: DECR command is used to decrease the long counter value by one. The long counter value is stored
in the FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) embedded functions registers, and
is clamped to zero.
Parameters: none
Actions:
• Decrease the long counter value by one.
• PP = PP + 1

8.2.26 RSTLC (F6h)
Description: RSTLC command is used to reset the long counter value. The long counter value is stored in the
FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h) embedded functions registers.
Parameters: none
Actions:
• Reset the long counter value.
• PP = PP + 1

AN5882
Commands

AN5882 - Rev 2 page 40/68

8.2.27 THRXYZ1 (F7h)
Description: THRXYZ1 command is used to enable the mode where multiple conditions are executed on the
same data sample. When this mode is enabled, the FSM executes all the conditions using the same data sample
until a THRXYZ0 command is performed. All the instructions between the THRXYZ1 and THRXYZ0 commands
can be considered as a single instruction. In this case, the commands and conditions affect the program flow as
described below:
• If the current state is a command, it is immediately executed.
• If the current state is a condition:

– If the RESET condition is true, the program pointer is set to the RP, and the THRXYZ1 bit of
the EXT_SINMUX byte of the [Variable Data Section] is set to 0 to restore the default condition
execution mode (refer to the THRXYZ0 command). The new state is executed when the next data
sample is processed.

– If the NEXT condition is true, the program pointer is set to the next state, which is immediately
executed.

– If the NEXT condition is false, the program pointer is set to the address of the THRXYZ1 command,
and the FSM evaluates again the instructions between the THRXYZ1 and the THRXYZ0 commands
when the next data sample is processed.

During the enablement of this mode, there are some considerations that must be considered.
• One timer only in SCTC1 mode can be used.
• If more than one OUTC command is issued before reaching the THRXYZ0 command, the OUTS register

will contain only the information related to the result of the last performed condition.
• The JMP and SRP commands are not supported.
• The SINMUX 0 command is not supported and must be replaced with a SINMUX 9 01D4h command,

which means setting the IDENTIFIER[7:0] parameter equal to D4h and the IDENTIFIER[15:8] parameter
equal to 01h.

Parameters: none
Actions:
• Set the THRXYZ1 bit of the EXT_SINMUX byte of the [Variable Data Section] to 1.
• PP = PP + 1

8.2.28 THRXYZ0 (F8h)
Description: THRXYZ0 command is used to restore the default mode where each condition is executed on one
data sample only. In this case, the commands and conditions affect the program flow as described below:
• If the current state is a command, it is immediately executed.
• If the current state is a condition:

– If the RESET condition is true, the program pointer is set to the RP. The new state is executed when
the next data sample is processed.

– If the NEXT condition is true, the program pointer is set to the next state. The new state is executed
when the next data sample is processed.

– If both the RESET and NEXT conditions are false, the PP is not changed. This condition is evaluated
again when the next data sample is processed.

Parameters: none
Actions:
• Set the THRXYZ1 bit of the EXT_SINMUX byte of the [Variable Data Section] to 0.
• PP = PP + 1

AN5882
Commands

AN5882 - Rev 2 page 41/68

8.2.29 JMP (41h)
Description: JMP command is a special command characterized by a NEXT1 | NEXT2 condition, with two
different jump addresses.
Parameters: three bytes

• 1st parameter: NEXT1 | NEXT2 condition
• 2nd parameter: jump address if NEXT1 condition is true
• 3rd parameter: jump address if NEXT2 condition is true
The NEXT1 condition is evaluated before the NEXT2 condition. Jump addresses are relative to the current state
machine (address 00h refers to the CONFIG_A byte).
Actions:
• It sets to 1 the JMP bit in the CONFIG_B byte of the [Fixed Data Section]. Evaluates the NEXT1 | NEXT2

condition:

– If the NEXT1 condition is true, PP = 2nd parameter address.
– Else if the NEXT2 condition is true, PP = 3rd parameter address.
– Else waits for a new sample set and evaluates again the NEXT1 | NEXT2 condition.

8.2.30 CANGLE (42h)
Description: CANGLE command is used to clear integrated gyroscope values. If this command is performed,
integrated angle values are no longer cleared when a next condition is true (default behavior), except in the
following cases:
• every time a CANGLE command is performed (when a new sample arrives)
• if a reset condition is true
Parameters: none
Actions:
• Clear angle values
• PP = PP + 1

8.2.31 SMA (43h)
Description: SMA command is used to set a new value for MASKA and TMASKA.
Parameters: one byte

• 1st parameter: new MASKA and TMASKA value
Actions:
• Set new MASKA and TMASKA value
• PP = PP + 2

8.2.32 SMB (DFh)
Description: SMB command is used to set a new value for MASKB and TMASKB.
Parameters: one byte

• 1st parameter: new MASKB and TMASKB value
Actions:
• Set new MASKB and TMASKB value
• PP = PP + 2

AN5882
Commands

AN5882 - Rev 2 page 42/68

8.2.33 SMC (FEh)
Description: SMC command is used to set a new value for MASKC and TMASKC.
Parameters: one byte

• 1st parameter: new MASKC and TMASKC value
Actions:
• Set new MASKC and TMASKC value
• PP = PP + 2

8.2.34 SCTC0 (5Bh)
Description: SCTC0 command is used to reset the TC byte (time counter) when a NEXT condition is true (default
behavior).
Parameters: none
Actions:
• TC (time counter) byte value is reset after valid NEXT condition.
• PP = PP + 1

8.2.35 SCTC1 (7Ch)
Description: SCTC1 command is used to preserve the TC byte (time counter) when a NEXT condition is true.
Parameters: none
Actions:
• TC (time counter) byte value does not change after valid NEXT condition.
• PP = PP + 1

8.2.36 UMSKIT (C7h)
Description: UMSKIT command is used to unmask interrupt generation when the OUTS register value is updated
(default behavior). Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Unmask interrupt generation when setting the OUTS register.
• PP = PP + 1

8.2.37 MSKITEQ (EFh)
Description: MSKITEQ command is used to mask interrupt generation when the OUTS register value is updated
but its value does not change (temporary mask value is equal to current OUTS register value). Refer to the
OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Mask interrupt generation when setting the OUTS register if OUTS does not change.
• PP = PP + 1

8.2.38 MSKIT (F5h)
Description: MSKIT command is used to mask interrupt generation when the OUTS register value is updated.
Refer to the OUTC / CONT / CONTREL commands for more details about interrupt generation.
Parameters: none
Actions:
• Mask interrupt generation when setting the OUTS register.
• PP = PP + 1

AN5882
Commands

AN5882 - Rev 2 page 43/68

9 FSM configuration example

This section contains an example that explains all write operations that have to be done in order to configure the
LSM6DSV16X FSM. A few steps have to be followed:
• Configure the FSM registers inside the embedded function registers set.
• Configure the FSM registers inside the embedded advanced features registers set.
• Configure the LSM6DSV16X sensor (accelerometer and / or gyroscope).
In this example, two simple programs are configured:
• PROGRAM 1: wrist tilt (around the x-axis) algorithm, routed to the INT1 pin
• PROGRAM 2: wake-up algorithm, routed to the INT2 pin
Both algorithms are intended to use accelerometer data only at a sample rate of 30 Hz.
Refer to the figure below for details about the [Program Data Section] and the [Instructions Section].

Figure 14. FSM configuration example

PAGE - ADDRESS NAME 7 6 5 4 3 2 1 0

PR
OG

RA
M

 1

4 - 00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
4 - 01h CONFIG B 0 0 0 0 0 0 0 0
4 - 02h SIZE 10h (16 bytes)
4 - 03h SETTINGS 00 0 0 0 00
4 - 04h RESET POINTER 00h
4 - 05h PROGRAM POINTER 00h
4 - 06h

THRESH1 B7AEh (-0.480)
4 - 07h
4 - 08h MASKA 80h (+X)
4 - 09h TMASKA 00h
4 - 0Ah TC 00h
4 - 0Bh TIMER3 10h (16 samples)
4 - 0Ch GNTH1 | TI3 53h
4 - 0Dh OUTC 99h
4 - 0Eh GNTH1 | NOP 50h
4 - 0Fh STOP 00h

PR
OG

RA
M

 2

4 - 10h CONFIG A 01 (1 threshold) 01 (1 mask) 00 00
4 - 11h CONFIG B 0 0 0 0 0 0 0 0
4 - 12h SIZE 0Ch (12 bytes)
4 - 13h SETTINGS 00 0 0 0 00
4 - 14h RESET POINTER 00h
4 - 15h PROGRAM POINTER 00h
4 - 16h

THRESH1 3C66h (1.100)
4 - 17h
4 - 18h MASKA 02h (+V)
4 - 19h TMASKA 00h
4 - 1Ah NOP | GNTH1 05h
4 - 1Bh CONTREL 22h

The FSM configuration has to be performed with both accelerometer and gyroscope sensors in power-down
mode. Refer to the following script for the complete device configuration:

1. Write 00h to register 10h // Set accelerometer sensor in power-down mode

2. Write 00h to register 11h // Set gyroscope sensor in power-down mode

3. Write 80h to register 01h // Enable access to embedded function registers

4. Write 01h to register 05h // EMB_FUNC_EN_B(FSM_EN) = 1

AN5882
FSM configuration example

AN5882 - Rev 2 page 44/68

5. Write 4Bh to register 5Fh // FSM_ODR[2:0] = 001 (30 Hz)

6. Write 03h to register 46h // FSM_ENABLE = 03h

7. Write 01h to register 0Bh // FSM_INT1 = 01h

8. Write 02h to register 0Fh // FSM_INT2 = 02h

9. Write 40h to register 17h // PAGE_RW: enable write operation

10. Write 11h to register 02h // Enable access to embedded advanced features registers, PAGE_SEL = 1

11. Write 7Ah to register 08h // PAGE_ADDRESS = 7Ah

12. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_L

13. Write 00h to register 09h // Write 00h to register FSM_LONG_COUNTER_H

14. Write 02h to register 09h // Write 02h to register FSM_PROGRAMS

15. Write 02h to register 09h // Dummy write in order to increment the write address

16. Write 00h to register 09h // Write 00h to register FSM_START_ADDRESS_L

17. Write 04h to register 09h // Write 04h to register FSM_START_ADDRESS_H

18. Write 41h to register 02h // PAGE_SEL = 4

19. Write 00h to register 08h // PAGE_ADDRESS = 00h

20. Write 51h to register 09h // CONFIG_A

21. Write 00h to register 09h // CONFIG_B

22. Write 10h to register 09h // SIZE

23. Write 00h to register 09h // SETTINGS

24. Write 00h to register 09h // RESET POINTER

25. Write 00h to register 09h // PROGRAM POINTER

26. Write AEh to register 09h // THRESH1 LSB

27. Write B7h to register 09h // THRESH1 MSB

28. Write 80h to register 09h // MASKA

29. Write 00h to register 09h // TMASKA

30. Write 00h to register 09h // TC

31. Write 10h to register 09h // TIMER3

32. Write 53h to register 09h // GNTH1 | TI3

33. Write 99h to register 09h // OUTC

34. Write 50h to register 09h // GNTH1 | NOP

35. Write 00h to register 09h // STOP (mandatory for having even SIZE bytes)

36. Write 50h to register 09h // CONFIG_A

37. Write 00h to register 09h // CONFIG_B

38. Write 0Ch to register 09h // SIZE

39. Write 00h to register 09h // SETTINGS

40. Write 00h to register 09h // RESET POINTER

41. Write 00h to register 09h // PROGRAM POINTER

42. Write 66h to register 09h // THRESH1 LSB

43. Write 3Ch to register 09h // THRESH1 MSB

44. Write 02h to register 09h // MASKA

45. Write 00h to register 09h // TMASKA

46. Write 05h to register 09h // NOP | GNTH1

47. Write 22h to register 09h // CONTREL

48. Write 01h to register 02h // Disable access to embedded advanced features registers, PAGE_SEL = 0

AN5882
FSM configuration example

AN5882 - Rev 2 page 45/68

49. Write 00h to register 17h // PAGE_RW: disable write operation

50. Write 00h to register 01h // Disable access to embedded function registers

51. Write 02h to register 5Eh // MD1_CFG(INT1_EMB_FUNC) = 1

52. Write 02h to register 5Fh // MD2_CFG(INT2_EMB_FUNC) = 1

53. Write 04h to register 10h // CTRL1 = 04h (30 Hz)

AN5882
FSM configuration example

AN5882 - Rev 2 page 46/68

10 Start routine

When the FSM is enabled, a start routine is automatically executed. The routine is executed if the PROGRAM
POINTER byte is set to 0 and it performs the following tasks:
• The STOPDONE and the JMP bits in the CONFIG_B byte are reset.
• The PP and RP pointers are initialized to the first line of code.
• The SETTINGS field is initialized with the default value 0x20, which means:

– MASKSEL = 00
– SIGNED = 1
– R_TAM = 0
– THRS3SEL = 0
– IN_SEL = 000

• The associated output register OUTS is cleared.
• Assign to all declared temporary masks the value of the corresponding original mask (TMASKx = MASKx).
• If timers are declared, the time counter is initialized to 0 (TC = 0).
• If decimation is declared, the decimation counter is initialized with the programmed decimation time value

(DESC = DEST).
• If the previous axis sign resource is declared, it is initialized to 0 (PAS = 0).
• If the gyroscope angle computation is declared, the four angles are initialized to 0 (DX = DY = DZ = DV =

0).
When the start routine is performed, the program always restarts from a known state, independently of the way it
was stopped. However, it should be noted that the default mode implies:
• MASKA selected as running mask (MASKSEL = 00)
• Signed comparison mode (SIGNED = 1)
• Do not release temporary mask after a next condition is true (R_TAM = 0)
• Threshold1 selected instead of threshold3 for comparisons (THRS3SEL = 0)
• Input multiplexer set to select accelerometer data (IN_SEL = 000)

AN5882
Start routine

AN5882 - Rev 2 page 47/68

11 Examples of state machine configurations

11.1 Toggle
Toggle is a simple state machine configuration that generates an interrupt every n sample.
The idea is to use a timer to count n samples.

Figure 15. Toggle state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 00 00 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 0 0 0 0
02h SIZE 0Ah (10 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h TC 00h
07h TIMER3 10h (16 samples)
08h NOP | TI3 03h
09h CONTREL 22h

Instructions section description
PP = 08h: the first time this state is reached, TC = TI3. Each time a new sample set is generated, the TC byte is
decreased by one. When TC = 0, PP = PP + 1.
PP = 09h: CONTREL command is performed without needing a sample set. This generates an interrupt and
resets the program (PP = RP = 08h).
In the example, the interrupt is generated every 16 samples. TI3 can be configured in order to get the desired
toggle period, which depends on the configured FSM_ODR.

AN5882
Examples of state machine configurations

AN5882 - Rev 2 page 48/68

11.2 Adaptive self-configuration (ASC)
This example shows how to use the ASC feature to reconfigure the device based on a specific motion event.
The program below starts configuring the accelerometer in low-power mode at 30 Hz and the gyroscope in
power-down mode. When a wake-up event is detected, both the sensors are configured in high-performance
mode at 120 Hz. If stationary for a while, the accelerometer is set back to low-power mode at 30 Hz and the
gyroscope is set back to power-down mode.

Figure 16. ASC state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A
01h CONFIG B 0 0 0 1 0 0 0 0
02h SIZE
03h SETTINGS 0 0 0
04h RESET POINTER
05h PROGRAM POINTER
06h
07h
08h MASKA
09h TMASKA
0Ah TC
0Bh TIMER3
0Ch PAS
0Dh MSKIT
0Eh SETR
0Fh 10h
10h 63h
11h SETR
12h 11h
13h 00h
14h NOP | GNTH1
15h SETR
16h 10h
17h 06h
18h SETR
19h 11h
1Ah 06h
1Bh SRP
1Ch GNTH1 | TI3
1Dh CRP
1Eh CONTREL
1Fh STOP

53h
44h
22h
00h

10h
06h
B5h
11h
06h
33h

THRESH1 3C66h (1.100)

02h (+V)

B5h

00h
78h (120 samples)

00h
F5h
B5h
10h
63h
B5h
11h
10h
05h

00h

0 0
00h
00h

01 (1 threshold) 01 (1 mask) 0 01 (1 short timer)

20h (32 bytes)

Instructions section description
PP = 0Dh: MSKIT command is performed without needing a sample set. The MSKIT bit in the PAS byte is set to
1. PP = PP + 1.
PP = 0Eh: SETR command is performed without needing a sample set. The register 10h is set to 63h (the
accelerometer sensor is configured in low-power mode at 30 Hz). PP = PP + 3.
PP = 11h: SETR command is performed without needing a sample set. The register 11h is set to 00h (the
gyroscope sensor is configured in power-down mode). PP = PP + 3.
PP = 14h: this condition is evaluated each time a new sample is generated. If the vector (magnitude) of the
acceleration signal is greater than THRESH1, PP = PP + 1.
PP = 15h: SETR command is performed without needing a sample set. The register 10h is set to 06h (the
accelerometer sensor is configured in high-performance power mode at 120 Hz). PP = PP + 3.
PP = 18h: SETR command is performed without needing a sample set. The register 11h is set to 06h (the
gyroscope sensor is configured in high-performance mode at 120 Hz). PP = PP + 3.
PP = 1Bh: SRP command is performed without needing a sample set. The RESET POINTER is set to the next
state, 1Ch. PP = PP + 1.

AN5882
Adaptive self-configuration (ASC)

AN5882 - Rev 2 page 49/68

PP = 1Ch: this condition is evaluated each time a new sample is generated. If the vector (magnitude) of the
acceleration signal is greater than THRESH1, then PP = RP, and TC is set to TI3. If the vector (magnitude) of the
acceleration signal is lower than THRESH1 for TI3 consecutive samples, PP = PP + 1.
PP = 1Dh: CRP command is performed without needing a sample set. The RESET POINTER is set to its default
value, 0Dh. PP = PP + 1.
PP = 1Eh: CONTREL command is performed without needing a sample set. This does not generate an interrupt
due to the execution of the MSKIT command and resets the program. PP = RP = 0Dh.
In the example, the wake-up threshold is 1.1 g, and the timer is 120 samples (which means 1 s).

AN5882
Adaptive self-configuration (ASC)

AN5882 - Rev 2 page 50/68

11.3 Free-fall
This feature is used to detect when a system is dropping (for example, to protect data on the hard drive). If the
object is in free-fall, the acceleration on the X-axis, Y-axis, and Z-axis goes to zero.
To implement this function, acceleration on all axes should be less than a configured threshold, for a minimum
configured duration. When this condition is detected, an interrupt is generated.

Figure 17. Free-fall state machine example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 01 (1 short timer)
01h CONFIG B 0 0 0 0 0 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 34CDh (0.300)
07h
08h MASKA A8h (+X, +Y, +Z)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 03h (3 samples)
0Ch SSIGN0 12h
0Dh SRP 33h
0Eh GNTH1 | TI3 53h
0Fh OUTC 99h
10h GNTH1 | NOP 50h
11h STOP 00h

Instructions section description
PP = 0Ch: SSIGN0 command is performed without needing a sample set. The SIGNED bit of the SETTINGS byte
is set to 0, indicating that unsigned comparison mode was set. PP = PP + 1.
PP = 0Dh: SRP command is performed without the need of a sample set. The RESET POINTER is set to the next
state, 0Eh. PP = PP + 1.
PP = 0Eh: if the acceleration on one axis is greater than THRESH1, then PP = RP. If acceleration on all axes is
lower than THRESH1 for three consecutives samples, then the PP is increased (PP = PP + 1).
PP = 0Fh: OUTC command is performed without needing a sample set. This generates an interrupt and increases
the PP (PP = PP + 1).
PP = 10h: if acceleration on one axis is greater than THRESH1, then PP = RP. This means that the device is no
longer in free-fall, so the program has to be reset.
In the example, the free-fall threshold is set to 0.3 g and the free-fall duration is set to three samples.

Note: Free-fall duration is strictly related to FSM_ODR. For example, if FSM_ODR is set to 30 Hz, the free-fall duration
is ~100 ms (three samples at 30 Hz).

AN5882
Free-fall

AN5882 - Rev 2 page 51/68

11.4 Decision tree interface
This example shows how to use the decision tree interface with the FSM. It is assumed that the machine learning
core is configured as below:
• Decision tree number 0 (the first one) implements an activity recognition algorithm able to detect three user

activities (classes): stationary, walking, and running.
• An output value is associated to each recognized activity:

– Stationary output is 0.
– Walking output is 1.
– Running output is 2.

• The window length for the features calculation is 2 seconds (60 samples having an ODR equal to 30 Hz)
The FSM implements a simple wakeup algorithm that is enabled after the output of the decision tree is equal to
stationary. In this case, if the device starts moving again, a wake-up interrupt is generated by the FSM.

Figure 18. Decision tree interface example

BYTE # NAME 7 6 5 4 3 2 1 0
00h CONFIG A 01 (1 threshold) 01 (1 mask) 00 10 (2 short timer)
01h CONFIG B 0 0 0 0 1 0 0 0
02h SIZE 12h (18 bytes)
03h SETTINGS 00 0 0 0 00
04h RESET POINTER 00h
05h PROGRAM POINTER 00h
06h

THRESH1 3C33h (1.050)
07h
08h MASKA 02h (+V)
09h TMASKA 00h
0Ah TC 00h
0Bh TIMER3 02h (2 samples)
0Ch TIMER4 3Dh (61 samples)
0Dh DECTREE 00h (selected decision tree number 0, expected output is 0)
0Eh NOP | CHKDT 0Fh
0Fh TI3 | GNTH1 35h
10h OUTC 99h
11h TI4 | NOP 40h

Instructions section description

PP = 0Eh: check the decision tree output based on the DECTREE byte. The DECTREE byte is configured to
check the decision tree number 0 and to expect an output equal to 0 (that is, stationary). If the detected activity is
stationary, then the PP is increased (PP = PP + 1).
PP = 0Fh: if TI3 expires, then PP = RP (the program is reset and the decision tree interface is checked again). If
the vector (magnitude) of the accelerometer is greater than THRESH1, then PP is increased (PP = PP + 1).
PP = 10h: OUTC command is performed without the need of a sample set. This generates an interrupt and
increases the PP (PP = PP + 1).
PP = 11h: if TI4 expires, then PP = RP.

AN5882
Decision tree interface

AN5882 - Rev 2 page 52/68

12 Finite state machine tool

The finite state machine programmability in the device is allowed through a dedicated tool, available as an
extension of the Unico GUI.

12.1 Unico GUI
Unico is the graphical user interface for all the MEMS sensor demonstration boards available in the
STMicroelectronics portfolio. It has the possibility to interact with a motherboard based on the STM32
microcontroller (professional MEMS tool), which enables the communication between the MEMS sensor and
the PC GUI.
Details about the professional MEMS tool board can be found at STEVAL-MKI109V3.
Unico GUI is available in three software packages for the three operating systems supported.
• Windows

– STSW-MKI109W
• Linux

– STSW-MKI109L
• Mac OS X

– STSW-MKI109M
Unico GUI allows visualization of sensor outputs in both graphical and numerical format and allows the user to
save or generally manage data coming from the device.
Unico allows access to the MEMS sensor registers, enabling a fast prototype of register setup and easy test of
the configuration directly in the device. It is possible to save the configuration of the current registers in a text file
and load a configuration from an existing file. In this way, the sensor can be re-programmed in few seconds.
The finite state machine tool available in the Unico GUI helps the process of register configuration by
automatically generating configuration files for the device. By clicking a few buttons, the configuration file is
available. From these configuration files, the user can create his own library of configurations for the device.
To execute the finite state machine tool, the user has to click on the dedicated [FSM] button that is available in the
left side of the main UNICO GUI window as shown in the following figure.

Figure 19. Running the finite state machine tool

AN5882
Finite state machine tool

AN5882 - Rev 2 page 53/68

https://www.st.com/en/evaluation-tools/steval-mki109v3.html
https://www.st.com/en/embedded-software/stsw-mki109w.html
https://www.st.com/en/embedded-software/stsw-mki109l.html
https://www.st.com/en/embedded-software/stsw-mki109m.html

When loaded, the main [Finite State Machine] tool window is shown.

Figure 20. [Finite State Machine] tool

In the top part of the [Finite State Machine] tool main window, the user can select which state machine
is selected (the selection is applied in both the [Configuration] tab and [Debug] tab). It is also possible to
configure the FSM ODR, the long counter parameters and the FSM latched interrupts. The FSM start address is
automatically managed by the Unico tool and should not be changed by the user. Finally, a converter from float32
to float16 format and viceversa is available. The converter is used to generate the value to be set in the threshold
resources in the [Variable Data Section].
The [Finite State Machine] tool is mainly composed of three tabs which are detailed in dedicated sections:
• [Configuration] tab (the one selected by default)
• [Interrupt] tab
• [Debug] tab

AN5882
Unico GUI

AN5882 - Rev 2 page 54/68

12.1.1 Configuration tab
The [Configuration] tab of the [Finite State Machine] tool allows the user to implement the program logic. The
UI is able to abstract the FSM program structure: for this reason, 4 group boxes are shown:
1. [SMx Status]
2. [SMx Fixed Data Section]
3. [SMx Variable Data Section]
4. [SMx Instructions Section]

Figure 21. [Finite State Machine] tool - [Configuration] tab

In the bottom part of the [Configuration] tab, the user can manage the device configuration using dedicated
buttons:
• [Read FSM Configuration]: it is used to read the FSM registers and to graphically build the UI based on

current FSM configuration and programs.
• [Write FSM Configuration]: it is used to write the entire FSM configuration (it includes FSM ODR, long

counter parameters, interrupt status and programs).
• [Reset All]: it is used to reset the entire [Finite State Machine] tool UI.
• [Load Device Configuration]: it is used to load a .ucf file.
• [Save Device Configuration]: it is used to generate a .ucf file which contains both sensor and FSM

register configurations.

AN5882
Unico GUI

AN5882 - Rev 2 page 55/68

12.1.1.1 SMx Status
The [SMx Status] groupbox is available in the top-right corner of the [Configuration] tab.

Figure 22. [Configuration] tab - [SMx Status]

The [SMx Status] groupbox allows the user to enable/disable the state machine and to route the interrupt status
to the INT1/INT2 pin. In detail:
• The [Enabled] checkbox is used to enable/disable the state machine. It is automatically set if the program

contains at least one instruction and it is automatically reset if the program does not contain any instruction.
• The [INT1] checkbox is used to enable routing the state machine interrupt to the INT1 pin. This is active if

the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.
• The [INT2] checkbox is used to enable routing the state machine interrupt to the INT2 pin. This is active if

the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

12.1.1.2 SMx Fixed Data Section
The [SMx Fixed Data Section] groupbox is available in the right part of the [Configuration] tab.

Figure 23. [Configuration] tab - [SMx Fixed Data Section]

The [SMx Fixed Data Section] groupbox allows the user to have information about the fixed data section bytes
of the program. These bytes are automatically managed by the [Finite State Machine] tool. It is also possible to
enable/disable hysteresis and the decimation resources depending on user needs. If enabled, the corresponding
resource is shown in the [SMx Variable Data Section] groupbox.

AN5882
Unico GUI

AN5882 - Rev 2 page 56/68

12.1.1.3 SMx Variable Data Section
The [SMx Variable Data Section] groupbox is available in the bottom-right corner of the configuration tab.

Figure 24. [Configuration] tab – [SMx Variable Data Section]

The [SMx Variable Data Section] groupbox simplifies the resource allocation process: all the needed resources
are automatically shown or hidden in the [SMx Variable Data Section] groupbox depending on the instructions
that compose the [SMx Instruction Section]. The user has just to set the values of the shown resources.

AN5882
Unico GUI

AN5882 - Rev 2 page 57/68

12.1.1.4 SMx Instructions Section
The [SMx Instructions Section] groupbox is available in the left part of the [Configuration] tab.

Figure 25. [Configuration] tab – [SMx Instructions Section]

The [SMx Instructions Section] groupbox helps the user to build the algorithm logic. The [SMx Variable Data
Section] groupbox is dynamically updated depending on resources used in the [SMx Instructions Section]
groupbox. In the [SMx Instructions Section] groupbox, more actions can be taken:
1. Customize an existing state. The single state is composed of:

– State number Sx
– State program relative hexadecimal address (address 0x00 corresponds to CONFIG_A byte in the

fixed data section)
– State type and opcode: user can customize the state using radio buttons and drop-down lists as

described below:
◦ [RNC] radio button: the state is a RESET/NEXT condition. In this case, two drop-down lists are

shown. The left one is related to the RESET condition while the right one is related to the NEXT
condition.

◦ [CMD] radio button: the state is a Command. In this case, one drop-down list is shown.
Commands having one or more parameters (automatically displayed by the tool) require the
user to manually configure the parameter values.

– [Add] button is used to insert a new state just before the current one.
– [Remove] button is used to remove the current state.

2. [Add State] button is used to add a new state at the end of the state machine. This button is always
positioned at the bottom of the state machine states.

3. [Import State Machine] / [Export State Machine] buttons are used to import / export the state machine
program in .fsm format. The format .fsm is used to allow the user to build the entire FSM configuration
starting from a set of .fsm state machine programs.

4. [Reset State Machine] button is used to reset the state machine instructions section (only on UI, not in the
device).

AN5882
Unico GUI

AN5882 - Rev 2 page 58/68

12.1.2 Interrupt tab
The [Interrupt] tab of the [Finite State Machine] tool allows the user to check the functionality of the configured
programs at runtime of the program logic. The UI is composed of two parts as shown in Figure 26.
1. Signal plots: a plot of the accelerometer, gyroscope and interrupt signals is shown here based on enabled

sensors and interrupt configuration.
2. [State Machine Interrupts] status: in this groupbox, two columns of information are shown:

– A graphic green LED is linked to the corresponding state machine interrupt source bit. By default, the
LED is off. When the corresponding source bit is set to 1, the LED is turned on for ~300 msec.

– The OUT_Sx register value and the long counter register value can be manually read by clicking on
the corresponding [Read] button.

Figure 26. [Finite State Machine] tool - [Interrupt] tab

AN5882
Unico GUI

AN5882 - Rev 2 page 59/68

12.1.3 Debug tab
The [Debug] tab can be used to inject data into the device in order to check the functionality of the configured
programs.
The Unico GUI [Load/Save] tab, shown in the following figure, allows the user to take log files properly formatted
for the data injection procedure: these log files have to contain [LSB] data only (accelerometer and/or gyroscope
depending on user needs and programs logic).

Figure 27. Unico GUI – [Load/Save] tab

The [Debug] tab window is shown in the following figure.

Figure 28. [Finite State Machine] tool – [Debug] tab

AN5882
Unico GUI

AN5882 - Rev 2 page 60/68

The [Debug] tab is mainly composed of three UI parts:
1. State machines flows: the state machine is graphically shown here. When the debug mode is enabled,

the current state is highlighted and it is dynamically updated based on the injected sample and program
behavior.

2. Debug commands: by default, the debug mode is off. When a log file is loaded, the debug mode is
automatically turned on and the user can start to inject data into the device in order to verify the program
functionalities. Injected sample data and the number of detected interrupts are shown here.

3. Output results: after injecting a sample into the device, a new line is added to the table depending on the
[Print Results] checkbox status. Table columns represent the state machine parameters and resources,
while table rows are related to the injected sample. When a parameter or a resource value is changed, the
corresponding cell is highlighted. Finally, it is possible to export the table results in a text file format.

AN5882
Unico GUI

AN5882 - Rev 2 page 61/68

Revision history

Table 10. Document revision history

Date Version Changes

18-Nov-2022 1 Initial release

31-Jan-2023 2 Minor textual updates

AN5882

AN5882 - Rev 2 page 62/68

Contents

1 Finite state machine (FSM). .2
1.1 Finite state machine definition . 2

1.2 Finite state machine in the LSM6DSV16X . 3

2 Signal conditioning block. .4
3 FSM block .6

3.1 Configuration block . 7
3.1.1 Registers. 8

3.1.2 Embedded functions registers. 9

3.1.3 Embedded advanced features pages . 10

3.2 Program block . 12
3.2.1 Input selector block . 12

3.2.2 Code block . 14

4 FSM interrupt status and signal .16
5 Long counter .17
6 Fixed Data Section. .18
7 Variable Data Section .19

7.1 Thresholds . 20

7.2 Extended sinmux. 20

7.3 Masks / temporary masks . 21

7.4 Angle calculation . 22

7.5 TC and timers . 22

7.6 Decimator. 23

7.7 Previous axis sign . 24

7.8 MLC interface . 24

8 Instructions Section .25
8.1 RESET/NEXT conditions . 25

8.1.1 NOP (0h). 27

8.1.2 TI1 (1h) . 27

8.1.3 TI2 (2h) . 27

8.1.4 TI3 (3h) . 27

8.1.5 TI4 (4h) . 28

8.1.6 GNTH1 (5h) . 28

8.1.7 GNTH2 (6h) . 28

8.1.8 LNTH1 (7h) . 28

8.1.9 LNTH2 (8h) . 29

AN5882
Contents

AN5882 - Rev 2 page 63/68

8.1.10 GLTH1 (9h) . 29

8.1.11 LLTH1 (Ah) . 29

8.1.12 GRTH1 (Bh) . 30

8.1.13 LRTH1 (Ch). 30

8.1.14 PZC (Dh). 30

8.1.15 NZC (Eh). 30

8.1.16 CHKDT (Fh) . 31

8.2 Commands. 32
8.2.1 STOP (00h). 33

8.2.2 CONT (11h). 33

8.2.3 CONTREL (22h) . 34

8.2.4 SRP (33h) . 34

8.2.5 CRP (44h). 34

8.2.6 SETP (55h) . 34

8.2.7 SETR (B5h) . 35

8.2.8 SELMA (66h) . 36

8.2.9 SELMB (77h) . 36

8.2.10 SELMC (88h) . 36

8.2.11 OUTC (99h) . 36

8.2.12 STHR1 (AAh) . 37

8.2.13 STHR2 (BBh) . 37

8.2.14 SELTHR1 (CCh) . 37

8.2.15 SELTHR3 (DDh) . 37

8.2.16 REL (FFh) . 37

8.2.17 SSIGN0 (12h) . 38

8.2.18 SSIGN1 (13h) . 38

8.2.19 SRTAM0 (14h) . 38

8.2.20 SRTAM1 (21h) . 38

8.2.21 SINMUX (23h). 38

8.2.22 STIMER3 (24h) . 40

8.2.23 STIMER4 (31h) . 40

8.2.24 INCR (34h) . 40

8.2.25 DECR (FDh) . 40

8.2.26 RSTLC (F6h). 40

8.2.27 THRXYZ1 (F7h) . 41

8.2.28 THRXYZ0 (F8h) . 41

8.2.29 JMP (41h) . 42

8.2.30 CANGLE (42h) . 42

AN5882
Contents

AN5882 - Rev 2 page 64/68

8.2.31 SMA (43h). 42

8.2.32 SMB (DFh) . 42

8.2.33 SMC (FEh) . 43

8.2.34 SCTC0 (5Bh) . 43

8.2.35 SCTC1 (7Ch) . 43

8.2.36 UMSKIT (C7h) . 43

8.2.37 MSKITEQ (EFh) . 43

8.2.38 MSKIT (F5h) . 43

9 FSM configuration example .44
10 Start routine .47
11 Examples of state machine configurations .48

11.1 Toggle . 48

11.2 Adaptive self-configuration (ASC) . 49

11.3 Free-fall . 51

11.4 Decision tree interface . 52

12 Finite state machine tool. .53
12.1 Unico GUI. 53

12.1.1 Configuration tab. 55

12.1.2 Interrupt tab . 59

12.1.3 Debug tab . 60

Revision history .62
List of tables .66
List of figures. .67

AN5882
Contents

AN5882 - Rev 2 page 65/68

List of tables
Table 1. Registers . 8
Table 2. Embedded functions registers . 9
Table 3. Embedded advanced features registers - page 0 . 10
Table 4. Embedded advanced features registers - page 1 . 11
Table 5. Embedded advanced features registers - page 2 . 11
Table 6. Conditions . 26
Table 7. List of commands. 32
Table 8. ASC FSM main page registers. 35
Table 9. ASC FSM embedded functions registers . 35
Table 10. Document revision history . 62

AN5882
List of tables

AN5882 - Rev 2 page 66/68

List of figures
Figure 1. Generic state machine. 2
Figure 2. State machine in the LSM6DSV16X . 3
Figure 3. Signal conditioning block . 4
Figure 4. FSM block . 6
Figure 5. Program block . 12
Figure 6. FSM inputs (accelerometer) . 13
Figure 7. FSM inputs (gyroscope). 13
Figure 8. FSM programx code structure. 14
Figure 9. FSM programx memory area . 15
Figure 10. [Fixed Data Section] . 18
Figure 11. [Variable Data Section] . 19
Figure 12. Single state description . 25
Figure 13. MLC identifiers for filters and features . 39
Figure 14. FSM configuration example . 44
Figure 15. Toggle state machine example . 48
Figure 16. ASC state machine example . 49
Figure 17. Free-fall state machine example . 51
Figure 18. Decision tree interface example . 52
Figure 19. Running the finite state machine tool . 53
Figure 20. [Finite State Machine] tool . 54
Figure 21. [Finite State Machine] tool - [Configuration] tab . 55
Figure 22. [Configuration] tab - [SMx Status] . 56
Figure 23. [Configuration] tab - [SMx Fixed Data Section] . 56
Figure 24. [Configuration] tab – [SMx Variable Data Section] . 57
Figure 25. [Configuration] tab – [SMx Instructions Section] . 58
Figure 26. [Finite State Machine] tool - [Interrupt] tab . 59
Figure 27. Unico GUI – [Load/Save] tab . 60
Figure 28. [Finite State Machine] tool – [Debug] tab . 60

AN5882
List of figures

AN5882 - Rev 2 page 67/68

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5882

AN5882 - Rev 2 page 68/68

http://www.st.com/trademarks

	1 Finite state machine (FSM)
	1.1 Finite state machine definition
	1.2 Finite state machine in the LSM6DSV16X

	2 Signal conditioning block
	3 FSM block
	3.1 Configuration block
	3.1.1 Registers
	3.1.2 Embedded functions registers
	3.1.3 Embedded advanced features pages

	3.2 Program block
	3.2.1 Input selector block
	3.2.2 Code block

	4 FSM interrupt status and signal
	5 Long counter
	6 Fixed Data Section
	7 Variable Data Section
	7.1 Thresholds
	7.2 Extended sinmux
	7.3 Masks / temporary masks
	7.4 Angle calculation
	7.5 TC and timers
	7.6 Decimator
	7.7 Previous axis sign
	7.8 MLC interface

	8 Instructions Section
	8.1 RESET/NEXT conditions
	8.1.1 NOP (0h)
	8.1.2 TI1 (1h)
	8.1.3 TI2 (2h)
	8.1.4 TI3 (3h)
	8.1.5 TI4 (4h)
	8.1.6 GNTH1 (5h)
	8.1.7 GNTH2 (6h)
	8.1.8 LNTH1 (7h)
	8.1.9 LNTH2 (8h)
	8.1.10 GLTH1 (9h)
	8.1.11 LLTH1 (Ah)
	8.1.12 GRTH1 (Bh)
	8.1.13 LRTH1 (Ch)
	8.1.14 PZC (Dh)
	8.1.15 NZC (Eh)
	8.1.16 CHKDT (Fh)

	8.2 Commands
	8.2.1 STOP (00h)
	8.2.2 CONT (11h)
	8.2.3 CONTREL (22h)
	8.2.4 SRP (33h)
	8.2.5 CRP (44h)
	8.2.6 SETP (55h)
	8.2.7 SETR (B5h)
	8.2.7.1 ASC feature
	8.2.7.2 FSM-triggered batching in FIFO

	8.2.8 SELMA (66h)
	8.2.9 SELMB (77h)
	8.2.10 SELMC (88h)
	8.2.11 OUTC (99h)
	8.2.12 STHR1 (AAh)
	8.2.13 STHR2 (BBh)
	8.2.14 SELTHR1 (CCh)
	8.2.15 SELTHR3 (DDh)
	8.2.16 REL (FFh)
	8.2.17 SSIGN0 (12h)
	8.2.18 SSIGN1 (13h)
	8.2.19 SRTAM0 (14h)
	8.2.20 SRTAM1 (21h)
	8.2.21 SINMUX (23h)
	8.2.22 STIMER3 (24h)
	8.2.23 STIMER4 (31h)
	8.2.24 INCR (34h)
	8.2.25 DECR (FDh)
	8.2.26 RSTLC (F6h)
	8.2.27 THRXYZ1 (F7h)
	8.2.28 THRXYZ0 (F8h)
	8.2.29 JMP (41h)
	8.2.30 CANGLE (42h)
	8.2.31 SMA (43h)
	8.2.32 SMB (DFh)
	8.2.33 SMC (FEh)
	8.2.34 SCTC0 (5Bh)
	8.2.35 SCTC1 (7Ch)
	8.2.36 UMSKIT (C7h)
	8.2.37 MSKITEQ (EFh)
	8.2.38 MSKIT (F5h)

	9 FSM configuration example
	10 Start routine
	11 Examples of state machine configurations
	11.1 Toggle
	11.2 Adaptive self-configuration (ASC)
	11.3 Free-fall
	11.4 Decision tree interface

	12 Finite state machine tool
	12.1 Unico GUI
	12.1.1 Configuration tab
	12.1.1.1 SMx Status
	12.1.1.2 SMx Fixed Data Section
	12.1.1.3 SMx Variable Data Section
	12.1.1.4 SMx Instructions Section

	12.1.2 Interrupt tab
	12.1.3 Debug tab

	 Revision history
	Contents
	List of tables
	List of figures

