

IRELESS IN THE STATE OF THE STA

WIRELESS M-BUS 868 MHz BAND TRX MODULE

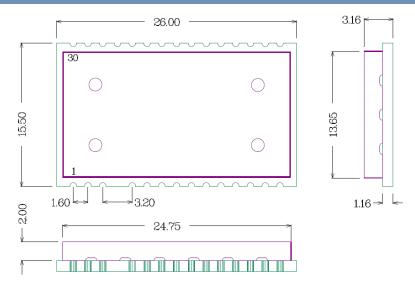
Product Code: 32001324

PRODUCT SUMMARY:

The 32001324 is a **Wireless M-Bus** transceiver operating in the 868 MHz SRD Band.

Thanks to its **small LCC form factor** (15 x 25 mm only) and its **low power consumption** this module allows the implementation of highly integrated low power (battery operated) solutions for water, gas, heat or electricity metering applications, both on meter or concentrator devices.

The module supports various operating modes (S, T, R, C) to meet the requirements of one-way and two-way data communication, in stationary and mobile systems.


The embedded stack implemented according to **EN13757-4** Standard provides the **physical access** to the Wireless M-Bus communication.

SPI and **UART** allow integration flexibility and easy development of customer products.

The module meets all the requirements in the industrial temperature range -40/+85°C.

The module is certified according to R&TTED 1999/05/EC and is compliant with the **ReACH** And **ROHS** directives.

1. MECHANICAL CHARACTERISTICS

ALL DIMENSIONS ARE IN MILLIMETERS GENERAL TOLERANCE +/-0.1MM

2. PIN	DESCRIPTION			
Pin	Name	Pin type	Description	Notes
1	GND	Supply	Ground (0V)	
2	RF I/O	A IN/OUT	Tx: output RF Rx: input RF	Note 3
3	GND	Supply	Ground (0V)	
5	INTERFACE_SELECTION	D IN	Select UART/SPI. Input Pull-Up	Note 5
6	/DATA_INDICATE	D OUT	Data Indicate Pin	
7	NSS	D IN	SPI interface	
8	SCLK	D IN	SPI interface	
9	MISO	D OUT	SPI interface	
10	MOSI	D IN	SPI interface	
11	UART TX	D OUT	UART TX Pin	
12	UART RX	D IN	UART RX Pin	
13	CTS	D IN	UART CTS	
14	RTS	D OUT	UART/SPI RTS	
15	GND	Supply	Ground (0V)	
16	GND	Supply	Ground (0V)	
17	Vcc	Supply	Power supply	
18	SWDAT	NC	Reserved for programming – do no	ot connect
19	SWCLK	NC	Reserved for programming – do no	ot connect
20	SWV	NC	Reserved for programming – do no	ot connect
21	NRST	D IN	Reset. Input Pull-Up	
22	NU	NC	Not Used Pin – do not connect	
23	NU	NC	Not Used Pin - do not connect	
24	NU	NC	Not Used Pin – do not connect	
25	NU	NC	Not Used Pin - do not connect	
26	NU	NC	Not Used Pin - do not connect	
27	NU	NC	Not Used Pin - do not connect	
28	NU	NC	Not Used Pin - do not connect	
29	NU	NC	Not Used Pin – do not connect	
30	GND	Supply	Ground (0V)	

3. ABS. MAX. RATINGS	
Transceiver Power Supply +Vcc (pin 15)	-0.3 ÷ + 3.8V
Max. Voltage allowed on input pins	+ Vcc
Storage Temperature (excl. package)	- 40 ÷ + 85° C
Storage Temperature (incl. package)	- 10 ÷ + 65° C
Operating Temperature	- 40 ÷ + 85° C
Radio Frequency Input, pin 2:	+10 dBm

4. ELECT	RICAL CHARA	CTERIST	ICS AT +25	S°C TEMPE	RATURE	
Parameter		Min.	Тур.	Max.	Unit	Notes
Supply Voltage	(Vcc)	2.1	3.3	3.6	Volt	
	Tx mode	-	37	-	mA	
Current consumption	Rx mode	-	25	-	mA	Note 1
Consumption	Sleep UART	-	1.6	-	μA	
	Sleep SPI	-	90	-	μA	
Operating frequ	uency range	868.03	-	868.95	MHz	Note 2
		-	S: -105	-		
Concitivity		-	T: - 103	-	dBm	Note 2 6
Sensitivity		-	R: -112	-	UDIII	Note 3, 6
		-	C: - 103	-		
Output Power (on 50 Ohm load)	-	+ 13	-	dBm	Note 3
Modulation			2-FSK / GFSK			Note 2
UART Interface	Datarate	-	115.2	115.2	kbps	
SPI Interface Datarate		0.125	1	8	MHz	
SPI Delay between Bytes		8	-	-	us	Note 4
EEPROM Write Cycling		100k	-	-		
INTERFACE_S	SELECTION Pull-up	30	45	60	kOhm	Note 4, 5
NRST Pull-up		30	45	60	kOhm	

Note 1: Current consumption measured at power supply level of +3.3V.

Note 2: According to EN13757-4 modes S, T, R, C

Note 3: All RF parameters are measured with Input/output (pin 2) connected to 50 Ohm impedance signal source or load.

Note 4: SPI minimum delay between Bytes (from the end of byte to the start of next byte).

Note 5: INTERFACE_SELECTION input pin selects UART (1) or SPI (0) interface.

Note: 6: Some M-Bus modes require response timings which cannot be satisfied with an external host controller due to long transmission times on the wired interface.

5. UART SPI INTERFACE SELECTION

At startup time, the Module reads INTERFACE_SELECTION input pin state. Should this pin be left unconnected or set to high state then the UART interface is selected; on the other hand, if the pin is set to low state, the SPI interface is selected.

6. INTERFACE DATA FRAME FORMAT

6.1. Physical SPI

Used Lines:

Line	Description
MISO	SPI, Master Input Slave Output
MOSI	SPI, Master Output Slave Input
SCLK	SPI Clock
/SS	SPI Slave Select
/DATA_INDICATE	Module Digital Output, Indicate WM-Bus Frame Received
/RTS	Module Digital Output, 0 = Module Ready

SPI Clock IDLE LOW, the single bits are provided on the falling edge from SCLK (or STE) and can be read on the rising edge. The communication is always initiated by master.

Host can configure the module through SPI interface and can also receive and transmit WM-Bus frame data.

The structure of the frame is the following:

HEADER	CMD	LENGTH	Payload	(n	CheckSum
			Bytes)		

Where:

HEADER = 0xAA

CMD = Command code to module, see following table.

LENGTH = Payload length

CheckSum = XOR of all preceding bytes

Each command from the host invokes an answer from the module in the same format. The answer to the host has the CMD field equal to host request OR 0x80.

When the module receives a command and the checksum is correct then the module sets /RTS pin to HIGH, and when answer is ready it sets /DATA_INDICATE LOW. Afterwards host microcontroller can set /SS LOW and drive SPI Clock line to read the answer. A configurable timeout is provided (DATA_INDICATE_TIMEOUT_LSB). If host microcontroller doesn't read the answer, and timeout is expired the module releases /RTS and /DATA_INDICATE.

NOTE FOR RF_AUTOSLEEP ENABLED (RF_AutoSleep = 1):

If RF_AutoSleep parameter is set to 1 (AutoSleep Enabled) host microcontroller has to wait 300us after /SS LOW to drive SPI clock in order to allow the module to wake up from sleep state. In alternative host microcontroller has to send a dummy byte, wait 300 us and then send the command.

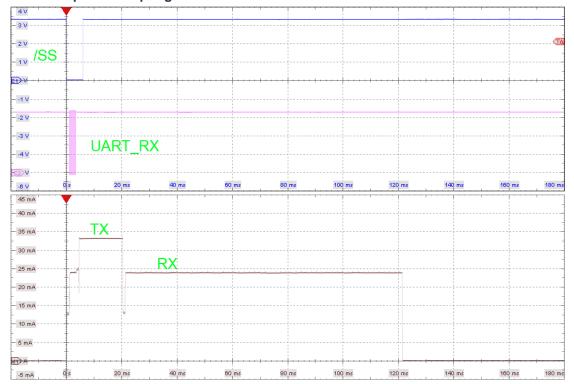
6.2. Physical UART

Used Lines:

Line	Description	Notes
TX UART	Uart Tx pin. Output Push-pull	
RX UART	Uart Rx pin. Input Pull-up	Pull-up equivalent resistor is
		min 30 to max 60 kOhm.
CTS	Uart CTS pin. Input Pull-down	Pull-down equivalent resistor is
		min 30 to max 60 kOhm.
RTS	Uart RTS pin. Output Push-pull.	
/DATA_INDICATE	Module Digital Output, Indicate WM-	
	Bus Frame Received.	
/SS	Input to wake up module when sleep	Pull-up equivalent resistor is
	state is enable. Input Pull-up	min 30 to max 60 kOhm.

Default UART configuration is 115200 8n1.

Frame structure is the same of SPI interface. The main difference in communication occurs when the module has to transfer a received WM-Bus frame to host microcontroller. In this case the slave module sets /DATA_INDICATE to low and after DATA_INDICATE_TIMEOUT sends the UART message containing the WM-Bus frame message. So in UART interface, DATA_INDICATE_TIMEOUT has a different meaning, and represents the time between /DATA_INDICATE pin goes low and the start of UART transmission.


NOTE FOR RF AUTOSLEEP ENABLED (RF AutoSleep = 1):

In UART interface /SS pin has the function to wake up the module when RF_AUTOSLEEP is enabled.

If RF_AUTOSLEEP parameter is set to 1 (AutoSleep Enabled) host microcontroller has to wait 300us after /SS LOW to send UART message in order to allow the module wake up from the sleep state.

6.2.1. Example of Sleep Signal Flow:

- 1) Host controller sets NSS to 0 in order to wake-up the module
- 2) After 300 us host controller sends via UART the W-MBus message to be transmitted
- 3) Module starts RF transmission
- 4) At the end of transmission module is set in reception for the time set through the Rx_Window parameter (100 ms in the example)

6.3. Data Format

Command (CMD)	Value	Description
RESET_CMD	0x30	SW Reset
FACTORY_RESET_CMD	0x31	Restore EEPROM to default values
SET_MODE_CMD	0x32	Change Wm-BUS mode.
EEPROM_WRITE_CMD	0x33	Write EEPROM parameter
EEPROM_READ_CMD	0x34	Read EEPROM parameter
TX_MSG_CMD	0x35	Transmission of Wm-Bus Message
RX_MSG_IND	0x36	Indicate reception of Wm-Bus Message
GET_FW_VERSION_CMD	0x37	Get Fw Version
GET_SERIALNO_CMD	0x38	Get Serial Number stored in Module
GET_RSSI_CMD	0x39	Get last RSSI value
SET_C_FIELD_CMD	0x40	Set C-Field Wm-BUS value.

6.3.1.RESET_CMD (0x30)

Host: 0xAA, 0x30, 0x00, 0x9A Reply: 0xAA, 0xB0, 0x01, status, cks

Status: 0x00: success 0xFF: failure

6.3.2.FACTORY_RESET_CMD (0x31)

Host: 0xAA, 0x31, 0x00, 0x9B Reply: 0xAA, 0xB1, 0x01, status, cks

Status: 0x00: success

Mipot S.p.A. reserves the right to modify the specifications without notice

0xFF: failure

6.3.3.SET_MODE_CMD(0x32)

Host: 0xAA, 0x32, 0x02, Mem_Type, mode, cks

Reply: 0xAA, 0xB2, 0x01, status, cks

Status: 0x00: success

0xFF: failure

Mode: WM-bus mode

Mem_Type: 0x00 Set value in RAM memory

0xFF Set value in EEPROM memory

6.3.4.EEPROM_WRITE_CMD(0x33)

Host: 0xAA, 0x33, Length, Start Address, <Data>, cks

Reply: 0xAA, 0xB3, 0x01, status, cks

Status: 0x00: success

0xFF: failure

Note: Invalid data will not be stored in EEPROM.

6.3.5.EEPROM_READ_CMD(0x34)

Host: 0xAA, 0x34, 0x02, Start Address, Number of bytes, cks

Reply: 0xAA, 0xB4, Length, Status, Data, cks

Status: 0x00: success, Data contains EEPROM values

0xFF: failure, Data is empty and Length is equal to 1

6.3.6.TX_MSG_CMD(0x35)

Host: 0xAA, 0x35, Length, <Payload>, cks

Reply: 0xAA, 0xB5, 0x01, status, cks Status: 0x00: success (SPI transfer OK).

0xFF: failure

The content of Payload depends on Block1_From_Module_Enable field as following:

If Block1_From_Module_Enable = 0:

If Block1_From_Module_Enable = 1:

_		
Ī	CI Field (1 Byte)	Payload (n Bytes)

6.3.7.RX MSG IND(0x36)

There are two cases:

When module receives a valid WM-BUS frame then the module sets /DATA_INDICATE pin low and then if polled from master sends on MISO line the following frame:

If RSSI Enable = 0:

0xAA	0x36	Length	Block1 (9	CI Field (1	Payload (n	CheckSum
		(n+10)	Bytes)	Byte)	Bytes)	(1 Byte)

If RSSI_Enable =1:

In this configuration and if WM-Bus selected mode has a frame format A then the WM-BUS maximum length is limited to 254 bytes (SPI Maximum length – 1).

0xAA	0x36	Length	Block1 (9	CI Field (1	Payload (n	RSSI (1	CheckSu
		(n+11)	Bytes)	Byte)	Bytes)	Byte)	m (1 Byte)

6.3.8.GET_FW_VERSION_CMD(0x37)

Host: 0xAA, 0x37, 0x00, 0x9D

Reply: 0xAA, 0xB7, 8, FWV0, FWV1, FWV2, FWV3, FWR0, FWR1, FWR2, FWR3,cks

FWV0, FWV1, FWV2, FWV3: Fw version FWR0, FWR1, FWR2, FWR3: Fw revision

6.3.9.GET_SERIALNO_CMD(0x38)

Host: 0xAA, 0x38, 0x00, 0x92

Reply: 0xAA, 0xB8, 0x04, SN0, SN1, SN2, SN3, cks

6.3.10. GET RSSI CMD(0x39)

Host: 0xAA, 0x39, 0x00, 0x93 Reply: 0xAA, 0xB9, 1, RSSI, cks

6.3.11. SET_C_FIELD_CMD(0x40)

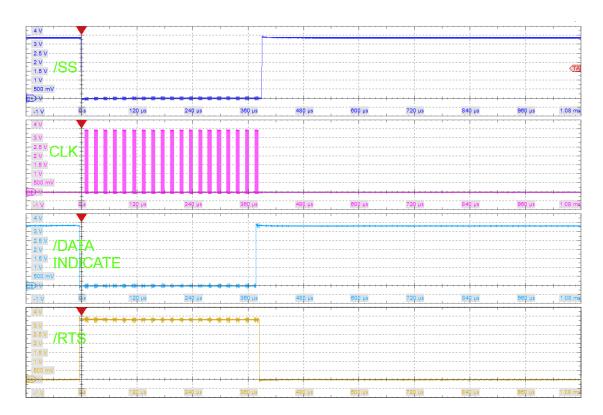
Host: 0xAA, 0x40, 0x02, Mem_Type, C-field, cks

Reply: 0xAA, 0xC0, 0x01, status, cks

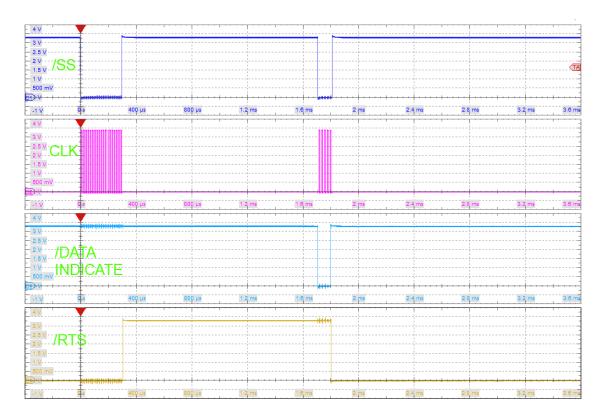
Status: 0x00: success

0xFF: failure

C-field: C-Field value

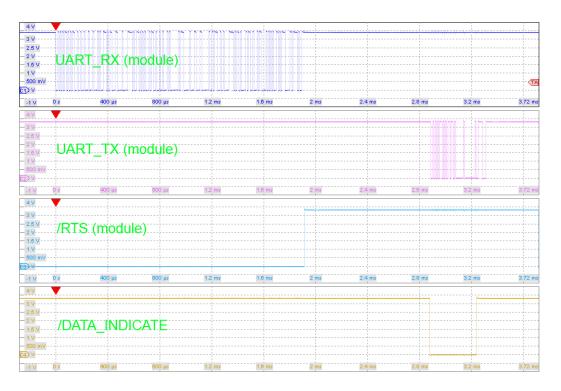

Mem_Type: 0x00 Set value in RAM memory

0xFF Set value in EEPROM memory



6.4. Detailed Signal Flow

6.4.1. Example of SPI Data Reception


6.4.2. Example of SPI Command exchange

6.4.3. Example of UART TX command session:

Frame sent by Host: AA351244AE0C7856341201078C2027780B134365872F Module response: AAB501001E

6.4.4. Example of UART RX Command session:

Frame sent by module to host upon RF frame reception: AA361244AE0C7856341201078C2027780B134365872C

Tel.+390481630200 r.a.

7. MODULE CONFIGURATION

7.1. MBUS Radio Parameters

Parameter	Description	Address	Values	Default	Notes
			Range		
WM_BUS_ Mode	WM-BUS Mode	0x00	0x00 - 0x0E	0 = S2 Short preamble	0x00 = S2 Short preamble 0x01 = S2 Long preamble 0x02 = S1 0x03 = S1-m 0x04 = T1 meter 0x05 = T2 meter 0x06 = T2 other 0x07 = R2 meter 0x08 = R2 other 0x09 = C1 meter Frame A 0x0A = C1 meter Frame B 0x0B = C2 meter Frame B 0x0C = C2 meter Frame A 0x0C = C2 other Frame B 0x0E = C2 other Frame B 0x0F = T2/C2 other
RF_Channel	RF Channel (<u>Used only in</u> <u>R mode</u>)	0x01	0 – 9	0	0 = 868.03 MHz 1 = 868.09 MHz 2 = 868.15 MHz 3 = 868.21 MHz 4 = 868.27 MHz 5 = 868.33 MHz 6 = 868.39 MHz 7 = 868.45 MHz 8 = 868.51 MHz 9 = 868.57 MHz
RF_Power	RF Power	0x02	0 – 4	4	0 = 0 dBm 1 = +5 dBm 2 = +7 dBm 3 = +10 dBm 4 = +12 dBm
RF_AutoSleep	Configure Sleep	0x03	0-1	0	0 = Sleep Disable 1 = Sleep Enable
Rx_Window	RxWindow (ms)	0x04	0x00 – 0xFF	0	

7.2. MBUS Medium Access Parameters

Parameter	Description	Address	Values	Default	Notes
			Range		
WM-Bus C Field	C Field	0x10	0x00-0xFF	0x44	
WM-Bus Man ID0	Manufacter ID	0x11	0x00-0xFF	0x00	
WM-Bus Man ID1	Manufacter ID	0x12	0x00-0xFF	0x00	
WM-Bus Device ID0	Device ID	0x13	0x00-0xFF	0x00	
WM-Bus Device ID1	Device ID	0x14	0x00-0xFF	0x00	
WM-Bus Device ID2	Device ID	0x15	0x00-0xFF	0x00	
WM-Bus Device ID3	Device ID	0x16	0x00-0xFF	0x00	
WM-Bus Version	Version	0x17	0x00-0xFF	0x00	
WM-Bus Device Type	Device Type	0x18	0x00-0xFF	0x00	

7.3. Module Parameters

Mipot S.p.A. reserves the right to modify the specifications without notice

Parameter	Description	Address	Range	Default	Notes
Block1_From_Module	Enable management of	0x20	0-1	0	
_Enable	WM-Bus from Module				
RSSI_Enable	Enable RSSI Indication	0x21	0-1	0	
	in communication frame				
DATA_INDICATE_TI	LSB Timeout in ms	0x22	0-255	5	Note #
MEOUT_LSB					
DATA_INDICATE_TI	LSB Timeout in ms	0x23	0 - 3	0	Note #
MEOUT_MSB					
UART BAUDRATE	Uart baudrate selection	0x24	0 – 5	4	0 = 9600
					1 = 19200
					2 = 38400
					3 = 57600
					4 = 115200

Note #: DATA_INDICATE_TIMEOUT RANGE from 1 to 1023 ms

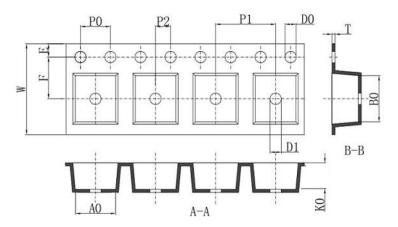
7.4. Internal DATA (Read Only)

Parameter	Description	Notes
SerialNumber0	LSB SN	Serialization at 32 bit
SerialNumber1	Byte 1 SN	Serialization at 32 bit
SerialNumber2	Byte 2 SN	Serialization at 32 bit
SerialNumber3	MSB SN	Serialization at 32 bit
FwVersion0	LSB FW Version	
FwVersion1		
FwVersion2		
FwVersion3	MSB FW Version	
FwRevision0	LSB FW Revision	
FwRevision1		
FwRevision2		
FwRevision3	MSB FW Revision	

NOTE FOR MODE T2/C2 OTHER (0x0F)

When module is used in this configuration it will be able to receive and decode frames from T-meters and C-meters (format A and format B). After reception of the sync word module detects if the frame is transmitted from a meter configured in T mode or C frame format A mode or C frame format B mode. The next transmission through TX_MSG_CMD (0x35) will have the radio parameters in accordance to received frame. The following table summarizes the configuration:

RX FRAME	NEXT TX FRAME	NOTES
T2 From Meter	T2 From Other	-
C2 Format A From Meter	C2 Format A From Other	-
C2 Format B From Meter	C2 Format B From Other	-



8. PROCESS INFORMATION

8.1. Delivery

32001324 modules are delivered in tape/reel packaging of 250 units.

Dimensions are:

W = 44 mm

P = 20 mm

T = 0.35 mm

Ao = 16 mm

Bo = 26.5 mm

Ko = 3.6 mm

D0 = 1.5 mm

D1 = 1.5 mm

8.2. STORAGE AND HANDLING

8.2.1. Moisture Sensitivity Level (MSL)

The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for devices that are sensitive to moisture-induced stress. The MSL standard is IPC/JEDEC J-STD-020 and can be downloaded from www.jedec.org.

Following table summarizes the dry pack requirements for different MSL levels in the IPC/JEDEC specification.

Dry Pack Requirement				
MSL LEVEL	Dry Pack Requirement			
1	Optional			
2	Required			
3	Required			
4	Required			

According to IPC/JEDEC specification J-STD-020, if a device passes MSL level 1, it is classified as not moisture sensitive and does not require dry pack. If a device fails level 1 but passes a higher level, it is classified as moisture sensitive and must be dry packed in accordance with J-STD-033.

The 32001324 is qualified for MSL level = 3.

8.2.2. Dry Bag

Products with an MSL level of 2 or above are shipped dry packed in a Moisture Barrier Bag (MBB). Carrier materials such as trays, tubes, reels, etc., that are placed in the MBB can affect the moisture level within the dry bag. The effect of these materials is compensated by adding additional desiccant in the MBB to ensure the shelf life of the SMT packages.

Mipot S.p.A. reserves the right to modify the specifications without notice

IPC/JEDEC specifications require that MSD sensitive devices be packaged together with a Humidity Indicator Card (HIC) and desiccant to absorb humidity. If no moisture has been absorbed, the three fields in the HIC indicate blue color.

8.2.3. Storage and floor life

The calculated shelf life for dry packed SMT packages is a minimum of 12 months from the bag seal date, when stored in a non-condensing atmospheric environment of <40°C/90% RH. Following table lists floor life for different MSL levels in the IPC/JDEC specification.

Floor life				
MSL level	Floor life (out of bag) at factory ambient ≤30°C/60% RH or as stated			
1	Unlimited at ≤30°C/85% RH			
2	1 year			
2a	4 weeks			
3	168 hours			
4	72 hours			

The parts must be processed and soldered within the time specified for the MSL level. If this time is exceeded, or the humidity indicator card in the sealed package indicates that they have been exposed to moisture, the devices need to be pre-baked before the reflow solder process.

8.2.4. Drying

Both encapsulate and substrate materials absorb moisture. IPC/JEDEC specification J-STD-020 must be observed to prevent cracking and delamination associated with the "popcorn" effect during reflow soldering. The popcorn effect can be described as miniature explosions of evaporating moisture. Baking before processing is required in the following cases:

- Humidity indicator card: At least one circular indicator is no longer blue
- Floor life or environmental requirements after opening the seal have been exceeded, e.g. exposure to excessive seasonal humidity.

Refer to Section 4 of IPC/JEDEC J-STD-033 for recommended baking procedures. Table 4-1 of the specification lists the required bake times and conditions for drying.

Following table provides a summary of specified recommendations:

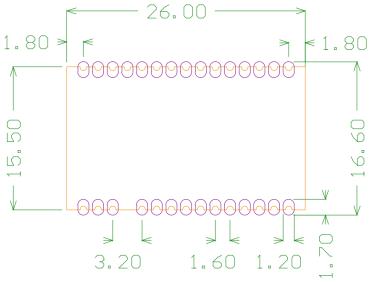
Bake Time							
		Bake @ 125°C		Bake @ 90°C ≤ 5% RH		Bake @ 40°C ≤ 5% RH	
Package Body	MSL Level	Exceeding Floor Life by > 72 h	Exceeding Floor Life by ≤ 72 h	Exceeding Floor Life by >72 h	Exceeding Floor Life by ≤ 72 h	Exceeding Floor Life by > 72 h	Exceeding Floor Life by ≤ 72 h
	2	5 hours	3 hours	17 hours	11 hours	8 days	5 days
	2a	7 hours	5 hours	23 hours	13 hours	9 days	7 days
Thicknes s	3	9 hours	7 hours	33 hours	23 hours	13 days	9 days
≤ 1.4 mm	4	11 hours	7 hours	37 hours	23 hours	15 days	9 days
	5	12 hours	7 hours	41 hours	24 hours	17 days	10 days
	5a	16 hours	10 hours	54 hours	24 hours	22 days	10 days
	2	18 hours	15 hours	63 hours	2 days	25 days	20 days
Thicknes	2a	21 hours	16 hours	3 days	2 days	29 days	22 days
S >1.4 mm	3	27 hours	17 hours	4 days	2 days	37 days	23 days
≤ 2.0 mm	4	34 hours	20 hours	5 days	3 days	47 days	28 days
	5	40 hours	25 hours	6 days	4 days	57 days	35 days

Mipot S.p.A. reserves the right to modify the specifications without notice

MIPOT S.P.A.

	5a	48 hours	40 hours	8 days	6 days	79 days	56 days
	2	48 hours	48 hours	10 days	7 days	79 days	67 days
Thicknes	2a	48 hours	48 hours	10 days	7 days	79 days	67 days
S	3	48 hours	48 hours	10 days	8 days	79 days	67 days
>2.0 mm ≤ 4.5 mm	4	48 hours	48 hours	10 days	10 days	79 days	67 days
≥ 4.5 IIIII	5	48 hours	48 hours	10 days	10 days	79 days	67 days
	5a	48 hours	48 hours	10 days	10 days	79 days	67 days

Packages of sensitive components in 32001324 have a thickness ≤1.4 mm.


- Do not attempt to bake modules at temperatures higher than 60°C while contained in tape and rolled up in reels. If baking at higher temperature is required, remove modules from packaging and place them individually onto oven tray.
- Oxidation Risk: Baking SMT packages may cause oxidation and/or intermetallic growth of the terminations, which if excessive can result in solderability problems during board assembly. The temperature and time for baking SMT packages are therefore limited by solderability considerations. The cumulative bake time at a temperature greater than 90°C and up to 125°C shall not exceed 96 hours. If the bake temperature is not greater than 90°C, there is no limit on bake time. Bake temperatures higher than 125°C are not allowed.

8.3. **SOLDERING INFORMATION**

8.3.1. Soldering pad pattern

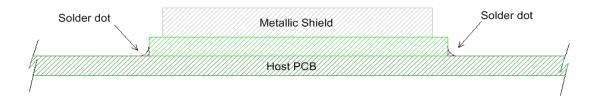
The finished surface on the printed circuit board pads should be made of Nickel/Gold.

The recommended soldering pad layout on the host board for the 32001324 is shown in the diagram below (purple lines):

All dimensions in mm

Neither via-holes nor wires are allowed on the PCB upper layer in area occupied by the module.

8.3.2. Solder Paste

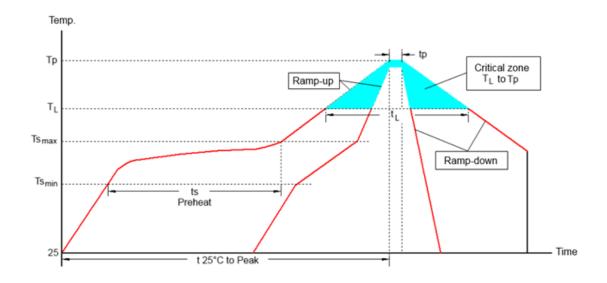

32001324 module is designed for surface mounting using half-moon solder joints (see diagram below). For proper module assembly, solder paste must be printed on the target surface of the host board. The suggested solder paste height should be within 150 μm and 180 μm .

The following diagram shows mounting characteristics for Module integration on host PCB:

Mipot S.p.A. reserves the right to modify the specifications without notice

8.3.3. Placement

The 32001324 module can be automatically placed on host boards by pick&place machines like any integrated circuit.


8.3.4. Soldering Profile (RoHS Process)

It must be noted that 32001324 module should not be allowed to be hanging upside down during the reflow operation. This means that the module has to be assembled on the side of the printed circuit board that is soldered last.

The recommendation for lead-free solder reflow in IPC/JEDEC J-STD-020D Standard should be followed.

Profile Feature	Sn-Pb Assembly	Pb-Free Assembly	
Average Ramp-UP Rate (Ts max to Tp)	3°C/second max	3°C/second max	
Preheat			
-Temperature Min (Ts min)	100°C	130°C	
-Temperature Max (Ts max)	179°C	217°C	
-Time (ts min to ts max)	80-135 seconds	80-135 seconds	
Time maintained above:			
-Temperature (TL)	183°C	220°C	
-Time (tL)	30-90 seconds	30-90 seconds	
Peak/Classification Temperature (Tp)	max. Peak Temp. 220°C	max. Peak Temp. 250°C	
Time within 5°C of actual			
Peak	10-15 seconds	10-15 seconds	
Temperature (tp)			
Ramp-Down Rate	4°C/second max	4°C/second max	
Time 25°C to Peak Temperature	6 minutes max	8 minutes max	

Note: All temperatures refer to topside of the package, measured on the package body surface

Mipot S.p.A. reserves the right to modify the specifications without notice

CAUTION – Please note that if the host board is submitted to a wave soldering after the reflow operation, a solder mask must be used in order to protect the 32001324 module's metal shield from being in contact with the solder wave.

9. REVISION HISTORY

Revision	Date	Description
1.1	20-07-2015	Preliminary
1.2	29-02-2016	Revised electrical parameters, added process information
1.3	15-12-2016	Added mode C2 + T2

DECLARATION OF CONFORMITY:

Hereby MIPOT S.p.A. declares that the product WIRELESS M-BUS TRX MODULE meets the essential requirements and other relevant provisions of Directives:

- 1999/5/CE
- Directive 2011/65/EU (RoHS)
- REGULATION (EC) No. 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 (REACH)

The declaration of conformity can be requested to Mipot at: support@mipot.com.