

Name: _______________________________ Date: ___________

RedBot Library
Quick Reference Guide

Introduction
We have written our own library to simplify the
programming and interface to the RedBot motors,
encoders, sensors, and other peripherals. This is a quick
summary / overview of the RedBot Library, classes,
methods, and variables.

The RedBot library has a number of pre-written functions and
commands that make controlling the robot easier. To use the
RedBot Library, download and install the library into Arduino.
You can download the latest version of the library at:
http://sfe.io/RedBotLib​.

Unzip the contents of this folder into the ​libraries​ folder inside
the Arduino sketchbook (documents folder).

When using the RedBot Library, you have to “include” it into
your code. Do this using this single line of code at the top. Pay
attention to the case, and notice that there is not a semicolon at
the end of this line.

#include <RedBot.h>

Library Reference
You may instantiate objects using any of the classes described below. Many of these are used throughout
the tutorials around the RedBot. Feel free to play around with these features on your device.

RedBotMotors class

RedBotMotors motors;​ – this creates an instance of the RedBotMotors class. This can only be

instantiated once in your code. This allows you to control the motors with simple methods such as:

● .drive(motorPower)​ – this method drives the right side CW and the left side CCW for positive

values of motorPower (i.e. drives the RedBot forward), and it does the reverse for negative

values of motorPower.

● .pivot(motorPower)​ – this method spins the entire RedBot CW for positive values of

motorPower and CCW for negative values of motorPower.

learn.​sparkfun​.com

http://sfe.io/RedBotLib

● .coast()​ – stops the motors and allows the RedBot to coast to a stop.

● .brake()​ – applies the brakes using the H-Bridge by shorting out both of the motors. Forces

the motors to come to an abrupt stop.

● .leftMotor(motorPower)​ – controls the leftMotor independantly. Positive values of

motorPower spin the motor CW, and negative values spin the motor CCW.

● .leftBrake(motorPower)​ – applies the brakes the leftMotor.

● .leftCoast(motorPower)​ – stops the leftMotor allowing it to coast to a stop.

● .rightMotor(motorPower)​ – controls the rightMotor independantly. Positive values of

motorPower spin the motor CW, and negative values spin the motor CCW.

● .rightBrake(motorPower)​ – applies the brakes the rightMotor.

● .rightCoast(motorPower)​ – stops the rightMotor allowing it to coast to a stop.

Advanced

If you wish to control the motors independently, the following are the control pins for the left and

right motors:

leftMotor_controlPin1 = 2

leftMotor_controlPin2 = 4

leftMotor_motorPwrPin = 5

rightMotor_controlPin1 = 7

rightMotor_controlPin2 = 8

rightMotor_motorPwrPin = 6

The RedBot uses the Toshiba TB6612FNG H-Bridge Motor Driver. This is a common H-Bridge

Motor Driver used in robotics. Set the control pins either HIGH / LOW or LOW / HIGH to set the

direction of the motor. Using a PWM signal, set the speed of the motor with the motorPwrPin.

RedBotEncoder class

RedBotEncoder encoder(leftEncoder, rightEncoder);​ – this creates a RedBotEncoder object with the

left encoder connected to pin ​leftEncoder​ and the right encoder connected to pin ​rightEncoder​.

This can only be instantiated once in your code.

● .clearEnc(LEFT\RIGHT\BOTH)​ – clears the counter variable for either the ​LEFT​, ​RIGHT​, or ​BOTH

encoders. The labels ​LEFT​, ​RIGHT​, and ​BOTH​ are specific types defined in this class.

 ​learn.​sparkfun​.com 2

● .getTicks(LEFT\RIGHT)​ – returns a long integer value representing the number of encoder

ticks (counts) for either the ​LEFT​ or the ​RIGHT​ encoder.

RedBotButton class

RedBotButton button();​ – Creates an instance of the RedBotButton class on the RedBot. Because

the button is hardwired on the RedBot board to pin 12, this initialization is handled inside the library

code. This can only be instantiated once in your code.

● .read()​ – returns a boolean value representing the status of the button.

RedBotSensor class

RedBotSensor sensorA(pinNum);​ – this creates a RedBotSensor object connected to the port (pin) on

the RedBot Mainboard. This is primarily used for the line-following sensors, but can be used with

any analog sensor. This class can only be instantiated for as many sensors as you have on your

RedBot.

● .read()​ – returns an integer value scales from 0 to 255 for the analog voltage read by the

sensor. 0 represents 0V and 255 represents 5V.

● .setBGLevel()​ – reads the value of the sensor in it’s ‘nominal’ position. This value is stored

as the ‘background’ level.

● .setDetectLevel()​ – reads the value of the sensor in it’s ‘detect’ position. This value is

stored as the threshold for a ‘detect’ level.

● .check()​ – returns a boolean value that TRUE if the measured sensor value is greater than ¼

of the difference between the background and the detect levels. Note: This method only

works if you have set both the BGLevel and the DetectLevel.

RedBotBumper class

RedBotBumper bumperA(pinNum);​ – Creates an instance of RedBotBumper object connected to the

port (pin) on the RedBot Mainboard. While the RedBotBumper is designed for use with the whisker

/ bumper switches on the RedBot, it can be used with any digital sensor or switch. This class can

only be instantiated for as many digital sensors (bumpers) as you have on your RedBot.

● .read()​ – returns a boolean value for the state of the bumper. It returns TRUE when the

bumper switch is closed or connected to GND.

RedBotAccel class

 ​learn.​sparkfun​.com 3

RedBotAccel accel();​ – Creates an instance of the RedBotAccel object. The RedBot accelerometer

uses I2C for communication. Because of this, it needs to be connected to A4/A5 on the RedBot

Mainboard. This can only be instantiated once in your code.

● .read()​ – this reads the current values of the accelerometer and stores it into local variables

in the library. It does not return any values.

● .x​ – is the raw X-axis accelerometer value read using the ​.read()​ method. In general, these

values vary from -16000 to +16000. The X-axis is aligned with the FWD/REV direction of the

RedBot.

● .y​ – is the raw Y-axis accelerometer value read using the ​.read()​ method. In general, these

values vary from -16000 to +16000. The Y-axis is aligned with the lateral or RIGHT/LEFT

direction of the RedBot.

● .z​ – is the raw Z-axis accelerometer value read using the ​.read()​ method. In general, these

values vary from -16000 to +16000. The Y-axis is aligned with the UP/DOWN direction of

the RedBot.

● .angleXZ​ – is a floating point value for the calculated angle between the X and Z axes of the

accelerometer. It calculates the arc tangent between the raw X and raw Z values. On the

RedBot, this is the forward / backward tilt.

● .angleYZ​ – is a floating point value for the calculated angle between the Y and Z axes of the

accelerometer. It calculates the arc tangent between the raw Y and raw Z values. On the

RedBot, this is the side to side tilt.

● .angleXY​ – is a floating point value for the calculated angle between the X and Y axes of the

accelerometer. It calculates the arc tangent between the raw X and raw Y values.

RedBotSoftwareSerial class

RedBotSoftwareSerial xBeeRadio();​ – Creates an instance of the RedBotSoftwareSerial object. This

library uses a lot of code from the standard Arduino ​SoftwareSerial​ library​. The RedBot Mainboard

uses pins A0 (14) and A1 (15) for TX and RX when switched to SW_SERIAL.

● .begin(baudRate)​ – opens up the serial communication on the SW_SERIAL TX and RX lines

of the RedBot Mainboard at the ​baudRate​. Acceptable baud rates include: 300, 1200, 2400,

4800, 9600, 19200, 28800, 38400, 57600, 115200.

● .write()​ – writes a single bye of data to the software serial port.

● .read()​ – returns a single byte from the software serial port.

● .available()​ – returns an integer value representing the number of bytes (characters)

available for reading from a software serial port.

 ​learn.​sparkfun​.com 4

http://arduino.cc/en/Reference/softwareSerial
http://arduino.cc/en/Reference/softwareSerial

