
The 3rd
Dimension!
Up to this point we have been working in two
dimensions; the x direction (width) and the y
directions (height). We are now going to take
a simple look at the the third dimension or the
z direction which is (depth). There are a few
3D shapes that we will put to good use in this
HotSheet.

ELECTRICAL
PROTOTYPING

ROBOTICS

SOLDERING

PROGRAMMING

DIY

MATERIALS LIST

● Computer ● Processing ● Graph Paper ● Colored Pencils ● Super fine tip sharpie

STEP 1: The 3rd Dimension
We are really familiar with X and Y, width and height in Processing. Going into the 3rd dimension takes a little

more work but it is well worth it. When we look at our screens we know that the width increases as we move from left to
right. The height increases from the top down. For depth, or the z direction, it decreases as it moves further into the screen
and 0 is at the screen itself.

STEP 2: Setup?!
If we are going to be dealing with 3D shapes we have to add something to our setup code.

In our 2D sketches we only have width and height in our size() function. In 3D we add a third
value to size(), we add P3D after width and height. Our basic 3D size() setup looks like this.

STEP 3: Basic Shapes
Now that we have our basic setup we can now draw a few basic 3D shapes. Here are the basic 3D functions that we

can play with:
box(size); - produces a cube with each with a length of “size”
box(w,h,d);- produces a box with a width (w), a height (h), and depth(d). it is always placed at 0,0,0!
sphere(radius); - produces a sphere with a radius of “radius”. It is always placed at 0,0,0!

STEP 4: Drawing Shapes
We have one more thing that we have to add for each 3D shape. Since

all 3D shapes are placed at 0,0,0. We need to place them in a matrix so we can
move it around using translate() and the other transformation functions we have
used with the pushMatrix() and popMatrix(). For a basic cube we start
by creating a matrix using pushMatrix() and popMatrix(). Between the
two we will place our box() function with a dimension of 25 pixels. We can
now use translate() to move the box to the center of the window.

We created a box but we are looking directly at it from one side. We need to rotate the box, but if we use our basic
rotate() function we will only rotate on the X,Y plane and will not rotate away or towards us. 3D shapes have their own
transformation functions.

STEP 4: 3D Transformation
Now that we have everything up and running lets take a look at some 3D transformation functions. We want to

rotate that box so we can see that it is 3D! Here are a few:
rotateX(R); - rotates the 3D shape on the X axis in R radians.
rotateY(R); - rotates the 3D shape on the Y axis in R radians.
rotateZ(R); - rotates the 3D shape on the Z axis in R radians.

So, we add rotateX(QUARTER_PI); and rotateY(QUARTER_PI);
to our code and we get a box that has been rotated 45 degrees on the X axis and
45 degrees on the Y axis.

STEP 5: Sphere
 We can replace box with sphere(25) and get a sphere that has a radius

of 25 pixels. The sphere is made up of triangles that fit together. We can also fill()
these shapes with color we can also use all of our stroke modifiers to make
changes to our 3D shapes.

STEP 6: Motion
We can also set any value that we use to any previous built in variables that we have

used in previous HotSheets. For example: mouseX, mouseY, millis(), seconds(), etc.
We are going to have the cube bounce back and forth on the and grow based on time.

As an example of this we took the previous motion HotSheet and applied it to a box.
Notice that some of the code that we have been working with is there still, we have just added
a few built in variables and also added an X variable that we can increment and a grow variable
that we change based on a bounce. We also filled the box with red and changed its height by
second()*2 which causes it to grow over one minute and then shrink to flat when a new
minute starts.

Try it out, maybe add a second shape in a different matrix, have
that one bounce up and down. What happens when you change the
variable rotations to different axis?

STEP 8: Share your work!
If you would like to share your work...which you do! You can sign up at
openprocessing.org. Open Processing allows you to share your code, view the drawing
online, as well as allows others to fork or borrow your code to manipulate and change it on
their own while still keeping your sketch intact for others to check out.

TAKING IT FURTHER

● Make a pyramid of boxes stacked one on top of the other
● Make a 3D snowman!
● Combine 3D and 2D and see what happens!

http://www.google.com/url?q=http%3A%2F%2Fwww.openprocessing.org%2F&sa=D&sntz=1&usg=AFQjCNHHiGwE7rLfDyB1OYwMVPBdlUXnFg

