
Processing the Mouse
We are now on our way to really breaking through in Processing. We are
now going to focus on inputs for Processing. The most simple one you have
been using this whole time is the mouse. We are going to now do a little
more with the mouse than just read its X and Y coordinates!

ELECTRICAL
PROTOTYPING

ROBOTICS

SOLDERING

PROGRAMMING

DIY

MATERIALS LIST

● Computer ● Processing ● Graph Paper ● Colored Pencils ● Super fine tip sharpie

STEP 1: Mouse Variables
We have been using a few mouse based variables for quite a while. But, that is only a small portion of what is

available to you. Here are a few other mouse based variables and what they return. A couple of them require an if()
statement to be really useful to you but we will give examples for those later on in this sheet.

mouseX- The mouse X coordinate between 0 and width.
mouseY- The mouse Y coordinate between 0 and height.
pmouseX- The mouseX coordinate the last time the sketch cycled through
pmouseY- The mouseY coordinate the last time the sketch cycled through
mousePressed- A boolean (True or False) value if the mouse button is being pressed
mouseButton- Returns either a RIGHT or LEFT value (is used with an if() statement to do different things if a different
mouse button is pressed)

STEP 2: Mouse Functions
There are also a number of mouse event functions as well! We use these in a little bit of a different way than other

functions. An event function is called out as a void outside of the draw() code and is constantly waiting for a specific event
to trigger it. See the example of creating a simple drawing tool in Processing in Step 3. A
couple of mouse event functions are:

mouseClicked()- The event is triggered when the mouse button is clicked
mouseDragged()- The event is triggered when the mouse button is held down and the
mouse moved
mouseMoved()- The event is triggered when the mouse is moved
mousePressed()- The event is triggered when the mouse button is pressed
mouseReleased()­ The event is triggered when the mouse button is released

Remember that the mouse functions are event functions which have their own set
of curly brackets outside of the draw() and setup() code.

STEP 3: Using an Event function
Event functions are pretty cool! They only happen when the specific event

happens, so you can have a bunch of code running and then when that specific event is
triggered the code jumps to that event.

Our first event is going to be mouseDragged(). As you can see in the example
code that there is nothing in the draw() code and everything is either in the setup()
or the mouseDragged(), that’s OK! So, at first glance nothing is going to happen until
we click and drag! The key to remember for event functions is that they are their own void
and what happens in that function is dictated by the code you put inside the curly
brackets.

STEP 4: Using Mouse Variables within functions
We can also use a couple of mouse variables as well. Within the mouseDragged() event function there is a

line() function with four mouse variables. pmouse variables are the coordinate of the mouse at the previous frame. So this
line is from the previous mouse X and Y to the current mouse X and Y. Try this code and then we will add on to it!

STEP 5: Stacking event functions
There is no rule against using multiple event functions. For example, add a

mouseClicked() event function and place background(mouseX); inside of it. You
can then mouseDragged() to draw a line and then mouseClicked() to redraw the
background, essentially erasing what you just drew. Pretty awesome!

STEP 6: Using Mouse Variables in an if()
To allow for more control we can also add an if() statement to the

mouseClicked() event. This if() statement is going to check which mouse button
is clicked and if it is the left button recall the background() function.

This gives you further control over what button is pushed and when, as well as
what happens if a specific event is triggered! If we had to recreate this code within just
the draw() it would be an elaborate string of if() statements nest within one another,
this allows for simple and clean code! Enjoy!

STEP 7: Share your work!
If you would like to share your work...which you do! You can sign up at
openprocessing.org. Open Processing allows you to share your code, view the drawing
online, as well as allows others to fork or borrow your code to manipulate and change it on
their own while still keeping your sketch intact for others to check out.

TAKING IT FURTHER

● Check out some examples of Processing at www.processing.org/exhibition/
● What other geometry could we draw using Processing...Hint: Reference!
● Draw a second line going from the upper right corner to the lower left corner
● change the size of your window!

http://www.google.com/url?q=http%3A%2F%2Fwww.openprocessing.org%2F&sa=D&sntz=1&usg=AFQjCNHHiGwE7rLfDyB1OYwMVPBdlUXnFg
http://www.google.com/url?q=http%3A%2F%2Fwww.processing.org%2Fexhibition%2F&sa=D&sntz=1&usg=AFQjCNGg7G1mEbN7CGpmFI9WoXFb9gOgsQ

