
i

Ansible
AnsiBull’s Galactic Adventures

Script by Máirín Duffy | Illustration by Wildfire | Concept and storyboard by Angela Pagan and Mary Shakshober

Supported by Red Hat

1

Meet AnsiBull.
He is an astronaut commander and scientist.

2

Using Ansible from a control machine aboard his rocket, he manages a vast
interstellar network with tens of thousands of surface rovers that collect data

for his mission to further our understanding of the universe.

Some rovers are identical, or very similar, in design. Others are customized for the
environments they survey. All must be kept updated with the latest data collection

commands, configuration, software updates, and security updates that apply to
their specific design.

3

The rovers are remote and may go many years without physical intervention,
so stability and resource efficiency is critical.

AnsiBull’s current project is provisioning a new set of ice-digging rovers
to the moons of the gas giants in Earth’s solar system.

4

All rovers have SSH built in natively, so no extra assembly is required for reach rover’s
deployment. SSH is ubiquitous and is used across many computer systems. SSH uses strong

encryption for secure communication between the control machine and individual rovers, even
across insecure interstellar networks. Thanks to SSH, those mischievous Betelgeusians from

Orion’s Belt can’t replace rover imaging data with furless Rigellian felinoid memes.

Rather than using an add-on agent to communicate with rovers, AnsiBull uses SSH.
Since SSH is a secure communication protocol built in to each rover’s operating

system, no additional resources are required as they would be with an add-on agent.

5

AnsiBull has stepped away
from the observation deck.

AWAY MESSAGE

A L E RT

.....
ROVER 1.6BDATABASE

AnsiBull has stepped away
from the observation deck.

AWAY MESSAGE

A L E RT

.....
ROVER 1.6BDATABASE

AnsiBull has some of his rovers listed in a static inventory file. He creates his list
using rover hostnames or IP addresses, and he lists his rovers logically into groups.

AnsiBull keeps track of thousands of rovers under his watch in an Ansible inventory.

6

He stores some variables that apply to certain groups in his inventory file, as well.

[jupiter-rovers]
io
europa
ganymede
callisto

[saturn-rovers]
saturn-rover-*

[rocky-rovers]
io
ganymede
callisto
saturn-rover-[01:03]

[icy-rovers]
europa
ganymede
callisto
saturn-rover-[04:13]

[moon-rovers:children]
jupiter-rovers
saturn-rovers

7

He can also have a dynamic inventory that updates automatically based on tags
applied to systems in external places, like a cloud provider or LDAP.

[*]
image_storage_path = /media/images

[icy-rovers:vars]
ice_drill = enabled

[rocky-rovers:vars]
rock_drill = enabled

8

Now AnsiBull has his rovers neatly inventoried and organized. What does he do
with them? How does he run commands, or modify configuration files,

or install software on them? Modules!

9

TASKS

MODULE ONE

MODULE TWO

UPDATE

80%

90%

TASKS

MODULE ONE

MODULE TWO

UPDATE

80%

90%

There are hundreds of modules available for Ansible! AnsiBull can even write
his own. But how does he use them? Where do they run?

Modules are Ansible plugins that execute tasks. For example: The ping module is a simple
diagnostic test to make sure a given rover can be contacted. If successful, a “pong” is returned.

10

E X IT
E X IT

A play is a set of tasks. A task is a set of actions, like updating a mission waypoint
data package. These are completed with modules, like the yum module for

installing packages. Plays are grouped into Ansible playbooks.

How does AnsiBull consistently manage complex multi-step configuration? How does
he setup thousands of rovers so quickly, and up to spec? Ansible playbooks!

11

ROVERMANAGER_r16.3.65

ROVER
DATA

Traditionally, system administrators like AnsiBull would manage a set of systems,
trying to script everything the system should do. Ansible has a focus on system state.

It does the bare minimum to get the system to the state specified by the playbook.

 # mission data update play

 - name: data collection templates
 hosts: all
 command: /bin/template-sync

 - name: waypoint data update
 hosts: saturn-rovers, jupiter-
 rovers, neptune-rovers, uranus-
 rovers
 yum:
 name: waypoint-data
 state: latest

12

MY PLAYBOOK

Task 5.3.2
Status Update

FAIL
NEXT

ARGH!!!
Saturn-Rover-05...
You’ve failed me

once again!

MY PLAYBOOK

Task 5.3.2
Status Update

FAIL
NEXT

ARGH!!!
Saturn-Rover-05...
You’ve failed me

once again!

AnsiBull then receives a status notification that saturn-rover-05 didn’t complete the
playbook. He runs the playbook again so that any systems that happened to fall in a ditch

or get attacked by a Rigellian felinoid catch up on anything they missed. Rovers that
already successfully completed all the tasks in the playbook’s plays aren’t affected.

If a task in a playbook fails to run on a particular system, it’s exempt
from the remaining tasks in the playbook on that run.

13

HOW
 TO

DEA
L WITH A

ROV

ER
ERROR

HOW
 TO

DEA
L WITH A

ROV

ER
ERROR

AnsiBull tries to run the playbook on the rover again, but receives a
notification that an error occurred. The ice drill on the rover can’t be enabled...

it was damaged in the cliff fall. Oops.

Ansible is a different way of approaching system management. It focuses on the
state that a system must be in; it provides an ice plant rover, a fully-updated rover,

and so on. Actions needing to be run to get rovers to those states are handled
at a lower level, in tasks and plays.

14

DEBUGGING FAILURE!

HELP!
My ice drill
is broken!

DEBUGGING FAILURE!

HELP!
My ice drill
is broken!

Time to call ice drill customer support for help! Uh-oh. Is the drill still under
warranty? Oh, and what brand drill is it? Who should AnsiBull call?

AnsiBull uses Ansible’s interactive command interface to debug the ice drill
remotely, but can’t figure it out.

15

ICE DRILLERS USA

Warranty
Serial #

CLICK HERE >

000-ICE-DRILLCall us today!

HELLO!

80% of facts loaded!

ICE DRILLERS USA

Warranty
Serial #

CLICK HERE >

000-ICE-DRILLCall us today!

HELLO!

80% of facts loaded!

Using the facts system, AnsiBull finds the right hardware vendor,
the serial number for the drill, and the warranty lapse date. It’s still under warranty!

He calls the vendor and finds out there’s been a recall on the drill.

Ansible has a feature that gathers facts about systems. Some facts are
gathered automatically based on information provided by the system.

Some facts are custom values created by scripts.

16

GROUP A

GROUP B

DRILL LIST DRILL TRACKER 2.0

a.1 a.6

b.3

e.7

inactive

inactive

inactive

inactive

ACTIVE

a.2

a.3

a.4

a.5

GROUP A

GROUP B

DRILL LIST DRILL TRACKER 2.0

a.1 a.6

b.3

e.7

inactive

inactive

inactive

inactive

ACTIVE

a.2

a.3

a.4

a.5

He also generates a list of the locations of all recalled drills so he can plan out his
trips to install replacements.

Which rovers have this kind of ice drill? Using Ansible facts, he creates a group of all
rovers with that drill model, gets the list of serial numbers, and orders replacement

drills from customer support.

17

To learn more about Ansible, please visit http://ansible.com

AnsiBull, are you ready
for a new Star System?

YES NO

AnsiBull, are you ready
for a new Star System?

YES NO

Thanks to Ansible, a drill disaster has turned into an easy fix. The AnsiBull has finished
his ice-digging rover deployments, and is ready to move on to other star systems.

This work is licensed under a
Creative Commons Attribution 4.0 International License.

For more open source activities and inspiration,
visit redhat.com/colab.

http://creativecommons.org/licenses/by/4.0/
http://redhat.com/colab

19

