
Page 1

Click analyzer protocol for developers

O V E R V I E W

Click analyzer offers a variety of input and output protocols that are best for WEB applications
(AJAX, python etc.). Direct human interactions and M2M applications. For best convenience
Click analyzer offers facilities for auto-detection and firmware update.

Click analyzer offers 2 communications protocols:

 1) Webmode and binary mode inputs for m2m applications
 2) XTERM mode, including mouse interaction for HMI

Click analyzer offers 3 different output protocols:

 1) Webmode (default) – JSON formatted data output
 2) Terminal mode – minimalistic GUI for direct human interface for ANSI terminals
 3) Binary mode – For easiest M2M communication with highest data throughput

Based on baud-rate selected for communication, the board offers 3 modes of operations:

 1) Baud ≤ 4800 – Start XBOOT bootloader
 2) 4800 < Baud ≤ 115200 – Reset analyzer and send welcome message
 3) 115200 < Baud – Connect to the device in current state

G E N E R I C R U L E S F O R C O M M U N I C A T I O N

The PC to Analyzer command rules:

 1) Input text in UPPERCASE
 2) A # character in the input stream causes immediate reset (see The device
 reports unrecognized or bad commands and incorrect parameters)
 3) Commands are terminated with <separator commands> character (see)
 4) Command arguments are separated with <separator parameters> character
 (see COMMANDS)
 5) Some command arguments have one numerical parameter assigned with
 <assign number> character (see COMMANDS)

Page 2

Generic remarks about response:

• The device reports unrecognized or bad commands and incorrect parameters
• If negative response sent, command fully rejected
• Based on communication mode, the response content is different

M E S S A G E F O R M A T S

Autodetecting message format

• JSON format always starts with “{“ <0x7b> character
• Binary messages never start with “{“ <0x7b> or “<ESC>” <0x1B>
• ANSI messages are not binary and not JSON formatted (“else”)

JSON format

When the communication mode is set to JSON, the input commands has to obey the standard
rules for input commands (e.g. all uppercase, proper message termination, etc.)

All responses from the device are properly formatted JSON responses. Care should be taken
for JSON readers to stop parsing the response with the first invalid JSON character, and pass
the already received data to the JSON parser. (Needed for mode auto-detection).

All responses may be combined into a global response structure, with every command
overwriting only the structure elements it is reporting.

The JSON communication mode is activated with the SET command.

BINARY format

When the communication mode is set to BIN, the input commands has to obey the standard
rules for input commands (e.g. all uppercase, proper message termination, etc.)

The binary format encapsulates responses in a CRC protected response structure. The
response payload can be JSON formatted (for settings, command list, help, etc.) or pure
binary data (e.g. logic readouts, voltages, etc.)

Binary message generic format

The binary message starts with a CRC16 value, followed by payload identification word and

Page 3

payload length word. The actual payload bytes can be 0…65535 bytes. (In version 1.0, the
maximum length of payload is 1100 bytes) Words are little-endian (Intel) format.
E.g. (bytes stream <FF><00> is 255 decimal)

The CRC16 is calculated with x16 + x12 + x5 + 1 (0x1021) polynomial and 0xFFFF seed
values. Many tools call this CRC16-CCITT-FALSE. You can test your algorithm results with the
following online tool: https://www.lammertbies.nl/comm/info/crc-calculation.html

If the calculated CRC16 message LSB is 0x7b or 0x1B then extra 0 is fed in CRC calculation.
This is necessary to maintain autodetect compatibility.

The augmented CRC16 calculation does not affect the payload length or the payload itself.
The zero padding happens only during CRC16 calculation.

BIN encapsulated JSON

Many responses are formed as JSON, encapsulated in BIN header. This help maintaining
universal information exchange among firmware versions.

Page 4

When receiving and encapsulated JSON message:

• First verify the CRC of the full datastream
• Verify Payload ID, it is 0x5447
• Strip the header and pass the full payload to a JSON parser

A N S I A N D X T E R M F O R M A T

The HMI format input and output are user friendly and comes in a separated document. The
requirements for this format is an ANSI / XTERM compliant terminal software and the user
actions are guided onscreen. This mode is not recommended for M2M applications or GUI
implementations.

Welcome message

After each reset the device automatically sends out a welcome message.

The resets happen:

 1) After power-up
 2) After exiting from bootloader mode
 3) After connecting to serial port with 4800 < Baud ≤ 115200
 4) When # character is received on the UART

The beginning of the welcome message is JSON formatted followed by a terminal autodetect
sequence. Most JSON parsers will report an error if the whole data stream is provided for
parsing due to the binary content on the end. For JSON parsing best practice is to split the
message at the first character with ASCII value below 0x20 (<space>)

Command reference

In the commands reference only the JSON and BIN format responses are discussed. All JSON
responses are designed to be subject to DEEP_MERGE.
(Merging information from all responses into one structure – on the host PC)

COMMANDS command

This function is used to discover communication parameters and all available commands.
The command list also specifies help command for each. The help command gives details
about a specific command, including description, and parameters.

Page 5

JSON mode: JSON object

BIN mode: 0x5447 (Encapsulated JSON formatted response see)

Understanding the response (reformatted for easier reading)

{
 "commandline":{
 "separator_commands":";",
 "separator_parameters":" ",
 "assign_number":"="
 },
 "commands":{
 "COMMANDS":{
 "details":"GET COMMANDS_INFO"
 },
 "GOTOBOOTLOADER":{
 "details":"GET BLDR_INFO"
 },
 "LS":{
 "details":"GET LS_INFO"
 },
 "LED":{
 "details":"GET LED_INFO"
 },
 "DVM":{
 "details":"GET DVM_INFO"
 },
 "GET":{
 "details":"GET GET_INFO"
 },
 "SET":{
 "details":"GET SET_INFO"
 }
 }
}

Page 6

The command line field: Commands are understood based on these parameters. The
command separator, assignment and parameter separator are fixed only in a particular
firmware version. To be universally compatible to future firmware revisions, you need to for
the communication according to these parameters.

The commands field:
Lists all command that are accepted by the analyzer. Invoking the filed details as command
will revel detailed information about parameters, etc.

From the example above, deep merging the information gives the following structure:
{
 "commandline":{
 "separator_commands":";",
 "separator_parameters":" ",
 "assign_number":"="
 },
 "commands":{
 "COMMANDS":{
 "details":"GET COMMANDS_INFO"
 },
 "GOTOBOOTLOADER":{
 "details":"GET BLDR_INFO",
 "description":"Start bootloader session",
 "parameters":{}
 },
 "LS":{
 "details":"GET LS_INFO"
 },
 "LED":{
 "details":"GET LED_INFO"
 },
 "DVM":{
 "details":"GET DVM_INFO"
 },

Page 7

 "GET":{
 "details":"GET GET_INFO"
 },
 "SET":{
 "details":"GET SET_INFO"
 }
 }
}

GOTOBOOTLOADER command

This command is used to invoke to bootloader. The device is reset, and the bootloader takes
action. If no bootloading done, the device will restart (details in bootloader description)

LS command

Logic scope. This function will sample all digital inputs at FREQ sample rate and return
result after NUMSMP samples gathered. The NUMSMP parameter range is dependent on
output mode. The actual number of samples are returned by invoking commnds.LS.details
command. After deep-merging the commands.LS.parameters.NUMSMP.values.range filed
will specify the maximum number of samples in [min,max,scaledmin,scaled_max] format.

The sampling of the Inputs are initiated by sampling time and two atomic samples are
obtained from IO ports PORTB and PORTC (hw. Version 1.xx) This gives minimal delay at lower
sampling rates and getting more important at high sample rates. Above 1MSPS the sampling
delay of atomic reads is leading to delay between reads. The delay between reading PORTB
and PORTC is approximately 125nsec. This could be omitted at low sample-rates (1MSPS
and below)

The response format is also depending on the commands.LS.bytesPerSample field. This
filed defines the number of bytes for a single sample. This parameter is dependent on the
hardware.

The sampling frequency range is defined by commands.LS.parameters.FREQ.values.range field.

After completing the conversion, the command returns a response. Both in JSON and BIN
format will return a pin-mask and raw data. The binary value of a single channel is calculated
by simple formula:
<channel logic state> = (<pin-mask channel> & <raw datapoint>) > 0

Data format in JSON mode
The return value is an object with three fields:

Page 8

LS.samplerate : returns the exact sample rate of the pins. (see details above about delay)
LS.pins: array, length is number of inputs sampled.
LS.pins[n]: pinmask for the channel. Ch1 is LS.pins[0], Ch2 is LS.pins[1] … Chn+1 is LS.pins[n]
LS.data: array, length is number of samples collected. For every sample in time, only one
integer is sent.

Data format in BIN mode
The return value is encapsulated in a generic frame with CRC (see:)

The generic header payload ID is 0x534C (Logic Scope sample v1).

Reply structure:

Short code to get a certain pin state at a given sample:

bool getPinVal(const lsmsg_t *msg, pin, sampleid) {
 if (msg &&
 (pin>0) &&
 commands.LS.bytesPerSample > 0
 (msg->pinmapEntries <= pin) &&
 (msg->payloadLen>=(sampleid+1)*commands.LS.bytesPerSample+msg->pinmapEntries+1)) {
 //call parameters validated
 return (msg->data[sampleid] & (1<<(msg->pinmap[pin-1])));
 }
 return 0; //Invalid queries are “low” or throw an exception…
 }

Page 9

LED command

This function is for visualizing activity on a pin. The configured LED will be on for 100ms after
the last pin state change. The pin state changes are monitored by hardware and will monitor
extremely short pulses or long pulses. This function is only for visual readout from the board.

Adding LED to a 2MHz 1% PWM signal will show no light on the LED. The LED command will
detect these pulses and turn on the analyzer LEDs for 100ms which is very well visible for
humans. The continuous change on the pin will make the LED constantly on.

Changing the LED assignment will return the current assignment status. Issuing the command
without parameters will return the current pin to LED assignment configuration.

If a LED is assigned for pin “0” it means LED is not assigned to a pin.

Data format in JSON mode: JSON object
Data format in BIN mode: 0x5447 (Encapsulated JSON formatted response, see)

If changing assignment, always all assignment status is returned. This function is also good
candidate for DEEP_MERGE.

Page 10

Parameter details are obtained by executing command from COMMAND.LED.details.

D V M

This function is for measuring a voltage on all pins quasi simultaneously. The DVM is mimicking
the functionality of connecting 14 digital voltmeters (DVM) to all of 14 analyzer pins. DVM
temporarily disables the LED feature while the command is active.

This command does not need parameters.

Data format in JSON mode

The return value is an object with one field:
DVM.voltages : The field value is list of voltages for each pin as an array.

Data format in BIN mode

In binary mode you can get higher resolution (if needed) as the reference voltage and the
RAW ADC data is sent. Number of channels and ADC resolution is also included in the data
frame.

The generic header payload ID is 0x5644 (Digital Voltmeter sample v1).
vrefVoltage is a float24 formatted data. Float24 is a shortened IEEE 754 single precision format.

Page 11

To calculate the voltage on a specific pin from the RAW value, you can use the following
formula:

Reply structure:

S E T

The SET command is used for changing various operation modes of the analyzer. From the
COMMANDS, you can obtain all settable parameters. SET command does not generate a reply.
Available SET commands and their meaning:

G E T

The GET command is used for obtaining details about the analyzer. This command also
helps obtaining communication compatibility, by describing parameters of commands and
reporting version information. The GET command should be invoked in a sequential mode to
read all command’s parameters and complete the device information structure. (see)

Page 12

Data format in JSON mode: JSON object
Data format in BIN mode: 0x5447 (Encapsulated JSON formatted response, see)

Available GET commands and their meaning:

GET PRODUCT

Get product returns HW, FW and communication version.

It returns the product structure:
product.name filed contains human readable product name. This is for display purposes only.

product.version.HW field contains the Hardware revision in string format.

product.version.FW field holds the Firmware revision number in string format.

product.version.COMM field is changed when new commands are added or command
parameters changed since last revision. This parameter is for convenience only, as all
communication is backward compatible and most of new commands are future-proof if the
GUI is implemented in a way to read communication parameters from the device. This is the
reason why hardcoding communication format (e.g. command separator is space) is not a
good practice.

product.serialID is a globally unique identifier, that allows identifying the device.

GET xxx INFO
The command info details parameter, short description of the command. The GET xxx INFO
is a basic help system. The COMMANDS contains the available help for each command, and
the exact command that should be called. (e.g. today DVM help is GET DVM_INFO; but might
change in the future to HELP DVM;)

S C O P E

The scope command invokes the analog oscilloscope feature. The analog oscilloscope is a
66ksps 12bit oscilloscope, capable of sampling one input pin. When an input pin is used
to measure analog signals, that pin is no longer available for digital usage. This means for
example the pin change LEDs.

The NUMSMP parameter range is dependent on output mode. The actual number of samples
are returned by invoking commnds.SCOPE.details command. After deep-merging the
commands.SCOPE.parameters.NUMSMP.values.range filed will specify the maximum number
of samples in [min,max,scaledmin,scaled_max] format.

The response format is also depending on the commands.SCOPE.bytesPerSample field. This
filed defines the number of bytes for a single sample. This parameter is dependent on the
hardware.

Page 13

The sampling frequency range is defined by commands.SCOPE.parameters.FREQ.values.range field.

The PIN parameter defines the sampling pin. All available pins are listed in
commands.SCOPE.parameters.FREQ.values.range field.

After completing the conversion, the command returns a response.

Data format in JSON mode

The return value is a SCOPE object with three fields:

SCOPE.samplerate is defining the real sample rate. This could deviate from the requested
sample rate based on binary rounding of the timer divider. The SCOPE.samplerate is expressed
in samples per second units.

SCOPE.pin field value is the pin number of the sampled pin. This value is ‘1’ based. (“pin”:1 means pin1)

SCOPE.voltage is a floating point number array of the sampled voltages from SCOPE.pin at
SCOPE.samplerate sample per second.

Data format in BIN mode

In binary format the number of maximum samples are more than all other formats. The
sampling rate resolution, reference voltage and other information is sent along the sampled
RAW ADC data.

The generic header payload ID is 0x5341 (Analog Scope samples v1).

vrefVoltage and sampleRate are float24 formatted data. Float24 is a shortened IEEE 754
single precision format.

Page 14

The Click Analyzer uses one based pin numbering. This means if value stored in sampledPin
field equals 4, then we were sampling analyzer pin 4. Number 0 is reserved for denoting
“disconnected”.

