Flash the Jetson Nano

1) Download
o https://gumstix-yocto.s3.amazonaws.com/2020-01-14/jetson-nano/warrior/gumsti
x-console-image-jetson-nano.tegraflash.zip

2) Unzip the image you’ve downloaded into a folder
3) Download the device tree (.dtb) file for the Gumstix Jetson Nano Dev Board from:
o https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001101-R3/tegra2
10-p3448-0002-p3449-0000-b00.dtb
Replace the .dtb file in the image folder with the one you’ve just downloaded (make sure
the name stays the same as the original .dtb file)

Note, that this demo also works for the Gumstix Jetson Nano Snapshot Board, as well as
the Gumstix Jetson Nano MegaDrive board.

Download the device tree for the Gumstix Jetson Nano Snapshot Board from:
o https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001185-R2/tegra2
10-p3448-0002-p3449-0000-b00.dtb
Download the device tree for the Gumstix Jetson Nano Megadrive board from:
o https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001198-R1/tegra2
10-p3448-0002-p3449-0000-b00.dtb

There are 2 ways to flash the Jetson Nano. They are outlined in the next two sections.

https://gumstix-yocto.s3.amazonaws.com/2020-01-14/jetson-nano/warrior/gumstix-console-image-jetson-nano.tegraflash.zip
https://gumstix-yocto.s3.amazonaws.com/2020-01-14/jetson-nano/warrior/gumstix-console-image-jetson-nano.tegraflash.zip
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001101-R3/tegra210-p3448-0002-p3449-0000-b00.dtb
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001101-R3/tegra210-p3448-0002-p3449-0000-b00.dtb
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001185-R2/tegra210-p3448-0002-p3449-0000-b00.dtb
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001185-R2/tegra210-p3448-0002-p3449-0000-b00.dtb
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001198-R1/tegra210-p3448-0002-p3449-0000-b00.dtb
https://catalina-live.s3.amazonaws.com/public/bsp/BRD900000001198-R1/tegra210-p3448-0002-p3449-0000-b00.dtb

Flash the Jetson Nano using the Gumstix Jetson
Nano Dev Board

Setup your Jetson Nano using the Gumstix Jetson Nano Dev Board as shown in the Figures
below:

Figure 1: Topside of Gumstix Jetson Nano Dev Board configured for flashing

e Connect a USB Micro-B cable from your host machine to the the Micro-B jack labelled
“‘DEVICE”
Connect the Jetson Nano into the Jetson Nano slot
Prepare a DC power adapter, with a voltage range between 5.5-36V (with ~12W
capability for the TensorFlow demo), to connect to the Barrel connector on the top right
of the board (don’t actually apply power yet though)

-ecovery
button

Figure 2: Bottom side of Gumstix Jetson Nano Dev Board configured for flashing. Recovery
Button highlighted in yellow.

Running the flash script (Gumstix Jetson Nano Dev Board):

On your host machine, open a terminal in the folder/directory that you’ve extracted the Jetson
Nano image to.
1) Press and hold the “Recovery” button on the bottom side of the Gumstix Jetson Nano
Dev Board
2) Apply power by inserting the DC power adapter. Once you’ve powered up, you can let
go of the “Recovery” button
3) In the terminal, run:

$ sudo ./doflash.sh

You should start seeing activity on the terminal. If you get an output message that says “ERR:
chip does not identify as tegra210 ()”, then the “Recovery” button wasn’t properly pressed when
powering on, so try the entire process again starting at step 1.

If it successfully flashes, you should see the terminal output a message that says “Flashing
completed”.

.8559

.90880

.9111] tegrarcm --boot recovery

.9138 Applet version 00.081.0080

.1174

L1175 Retrieving storage infomation

.1205 tegrarcm --oem platformdetails storage storage info.bin

.1232 Applet is not running on device. Continue with Bootloader

.7042

7077 tegradevflash --oem platformdetails storage storage_info.bin

.7185 Cboot version 00.01.0008

.BO86 Saved platform info in storage_ info.bin

. 8095

.8097] Flashing the device

.8127 tegradevflash --pt flash.xml.bin --storageinfo storage info.bin --create
.B156 Cboot version 06.01.0008

.9125 Writing partition GPT with gpt.bin

9132

9172

.5275

SoaTa PT with flash.xml.bin

.5613

. 5655

.5877

.6043 i gumstix-console-image.img

.6536] 188%

.9120 i nvtboot cpu.bin.encrypt

.3506

.3630 i tegra210-p3448-0002-p3449-0000-be0.dtb.encrypt
3997

.4165

. 4540

.4809

.5228

.5329 i sc7entry-firmware.bin.encrypt

.5682

.5785 i tos-mon-only.img.encrypt

.6137

.6247 i tegra2l0-p3448-0002-p3449-0000-boo.dtb.encrypt
.b612

L6774 u-boot- jetson-nano.bin.encrypt

1163

.7423 Warning: EKS partition magic header mismatch!

L7710 Writing partition EKS with eks.img

A AT

. 7813

.8164

.8291

. 8650

.9150

.9183 tegradevflash --write BCT jetson-nano.bct

.9215 Cboot version 00.01.0000

.B208 Writing partition BCT with jetson-nano.bct

L0217
.1263
.1264 IFlaShing completedl

NNMNMNMNMNE R R SRR R RRRRRER R0 00

(Y
=
i

.1265] Coldbooting the device

.1296] tegradevflash --reboot coldboot
.1324] Cboot version 08.01.8000

.2327]

Figure 3: Output of terminal after successfully flashing the Jetson Nano

Flash the Jetson Nano using Gumstix’s Jetson Nano
Flasher

This is an alternative method of flashing the Jetson Nano. Some may find it easier to flash the
Jetson Nano with Gumstix’s Jetson Nano Flasher board because the “Recovery” button is a
larger tactile switch.

Orient your Jetson Nano Flasher board as shown in Figure 4, and setup your Jetson Nano as
shown in Figure 5 below.
- —— :

&
&

&5
=
5
by
B

A A e,

o oy i Ot diipEECELEdE ATt i11117

&

=
]

L AL TS

~

:‘ECOUEFJ\d (5, IIY

@b

=3

Figure 4: Gumstix’s Jetson Nano Flasher board

Jetson Nano

Figure 5: Jetson Nano Flasher board with the Jetson Nano installed

Running the flash script (Jetson Nano Flasher):

On your host machine, open a terminal in the folder/directory that you've extracted the Jetson
Nano image to.
1) Press and hold the “Recovery” button on the bottom-left side of the Jetson Nano Flasher
board
2) Connect a USB Micro-B connector from your host machine, to the USB Micro-B Jack on
the Jetson Nano Flasher board. Once the power LED turns on, you can let go of the
“‘Recovery Button”
3) Inthe terminal, run:

$ sudo ./doflash.sh

Figure 6: Jetson Nano Flasher board with USB Micro-B connected during flashing process

You should start seeing activity on the terminal. If you get an output message that says “ERR:
chip does not identify as tegra210 ()”, then the “Recovery” button wasn’t properly pressed and
held when powering on, so try the entire process again starting at step 1).

If it successfully flashes, you should see the terminal output “Flashing completed” (See Figure 3
for reference).

Test Camera Functionality

Setup your Gumstix Jetson Nano Dev Board as shown below in Figure 7 - connect ethernet, a
monitor via HDMI, Jetson Nano, power adapter (5.5-36V), and a Raspberry Pi Camera V2.1 (to

either camera slot will work).
W .

]

£ Ll
¢l T
Raspbmﬁy Pi
lEd |
Camerag~V2.1

Figure 7: Configuration to test camera functionality

1) Power on the board
2) SSH into the Jetson Nano by running the following command in the terminal:

$ ssh root@jetson-nano.local

After answering “yes” to the prompts, you should see:
root@jetson-nano:~#

3) To stream video from the camera to the HDMI monitor, run the following command in the
SSH terminal:

nvgstcapture-1.0

At this point, you should see the camera streaming video to the HDMI monitor. If you don't, or
you encounter an error, double check to make sure your Raspberry Pi Camera V2.1 cable is
connected properly (the metal fingers should be facing towards the Jetson Nano, the blue strip
should be facing towards the bottom edge of the board).

Setup the Gumstix Jetson Nano Dev
Board for the TensorFlow Demo

Now that we've confirmed that the camera is working, we no longer need the HDMI monitor
connected. You can set up your Gumstix Jetson Nano Dev Board as shown below in Figure 8.

Jetson Nano

i

&, ror
: pi
v 3
g .
y SR (i
S i
A I
i1
I}
/

/

Figure 8: Gumstix Jetson Nano Dev Board setup for TensorFlow Demo

Power on the Gumstix Jetson Nano Dev Board. Once it’s booted up, SSH into the Jetson Nano
by running the following command in a terminal on the host machine:

$ ssh root@jetson-nano.local

After answering “yes” to the prompts, you should see:
root@jetson-nano:~#

Run a benchmark test for TensorFlow

To verify that TensorFlow is working on the Jetson Nano, run the following commands in the
SSH terminal:

nvpmodel -m ©

jetson_clocks

cd /usr/local/tensorflow-tools/benchmarks/scripts/tf_cnn_benchmarks/

python3 tf_cnn_benchmarks.py --data_format=NHWC --device=gpu

You should see activity on the SSH terminal. If it completes correctly, you will see it output a
metric of “total images/sec: ##H#H 4.

Generating training model
WB115 ©0:45:13.584299 548262591056 deprecation.py:317] From Jfusr/lib/python3.7/site-packages/tensorflo
/python/framework/op_def library.py:263: colocate with (from tensorflow.python.framework.ops) is depr
ecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WB115 @0@:45:13.783725 548262591056 deprecation.py:317] From Jfusr/lib/python3.7/site-packages/tensorflo
/python/ops/losses/losses_impl.py:289: to_float (from tensorflow.python.ops.math_ops) is deprecated a
nd will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Initializing graph
WO115 00:45:14.265097 548262591056 deprecation.py:317] From jfusr/local/tensorflow-tools/benchmarks/scr
ipts/tf_cnn_benchmarks/benchmark _cnn.py:2238: Supervisor._ 1init__ (from tensorflow.python.training.sup
ervisor) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.MonitoredTrainingSession

:14.417048: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gp

:14.417163: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnec
with strength 1 edge matrix:
:14.417202: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
:14.417232: I tensorflow/core/common_runtime/gpu/gpu_device.cc:16063] 0: N
:14.417339: I tensorflow/corefcommon_runtime/gpu/gpu_device.cc:1115] Created TensorFlo
device (/job:localhost/replica:0/task:0/device:GPU:® with 2145 MB memory) -> physical GPU (device: ®
, name: NVIDIA Tegra X1, pci bus id: 0000:00:00.0, compute capability: 5.3)
10115 00:45:16.319206 548262591056 session_manager.py:491] Running local_init_op.
10115 0O:45:16.341547 548262591056 session_manager.py:493] Done running local_init_op.
Running warm up
2020-01-15 ©0:45:16.564677: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA 1
ibrary libcublas.so.10.8 locally
Done warm up
Img/sec total_ loss
images/sec: 1283.2 +/-
imagesfsec: 1290.1 +/-
images/sec: 1290.6 +/-
imagesfsec: 1290.3 +/-
images/sec: 1288.5 +/-
images/sec: 1288.6 +/-
imagesfsec: 1289.5
images/sec: 1290.1
imagesfsec: 1290.4
images/sec: 1290.8
imagesfsec: 1291.2

total images/sec: 1284.19

root@jetson-nano:~#

(jitter
(jitter
(jitter
(jitter
(jitter
(jitter
(jitter
(jitter
(jitter
(jitter
(jitter

oo eNODD

QOO0 00KRKEREREOD
o= =~ @

Figure 9: Expected output of Tensorflow benchmark

Note, you can compare the TensorFlow performance on the GPU to the CPU performance by
changing the --device to “cpu”. Try running the following command:

python3 tf_cnn_benchmarks.py --data_format=NHWC --device=cpu

You will notice, the CPU (~100 images/sec) performs an order of magnitude worse than the
GPU (~1000 images/sec).

Run the TensorFlow Demo

Now that we’ve verified that the camera and TensorFlow work, we can run the full TensorFlow
demo.
1) In the SSH terminal, run the following commands:

cd ~

cd /usr/local/tensorflow-tools/tf trt_models

./install.sh

If everything installs correctly, you will see “Finished processing dependencies for
tf-trt-models==0.0"

2) On your host machine, open a new terminal and run the following command:

$ gst-launch-1.0 -v udpsrc port=5000 ! \

application/x-rtp,encoding-name=H264,payload=96 ! \
rtph264depay ! h264parse ! avdec_h264 ! autovideosink

3) Inthe SSH terminal, run TensorFlow and stream it back to your host machine by running
the following command:

python3 camera_tf_trt.py --model ssd_mobilenet_vl coco --ip-address \

192.168.xxx.yyy --stealth --build

Note, replace 192.168.xxx.yyy with your actual host machine’s IP address.

(If you receive an error that looks like: “ModuleNotFoundError: No module named
‘cycler”, run the command “sudo pip3 install cycler”, and retry the TensorFlow command
again)

You will have to wait a while, but eventually the video window will pop up on your host
machine.

Figure 10: TensorFlow demo streamed to host machine

You only need to add “--build” for the first time that particular model is used. If the model
has already been used, you can just use the command:

python3 camera_tf_trt.py --model ssd_mobilenet_vl coco --ip-address \

192.168.xxx.yyy --stealth

Add your own TensorFlow model

Let’s say you trained your own model, and want to test it out on the Jetson Nano. For example,
we trained our own model for ego_hands (https://github.com/jkjung-avt/hand-detection-tutorial).

1) Navigate to /usr/local/tensorflow-tools/tf_trt_models/data/ssd_mobilenet_v1_egohands
by running the following commands:

cd /usr/local/tensorflow-tools/tf_trt_models/data/ssd_mobilenet_vl_egohands

2) Download your model files. Run the following commands:

wget https://gumstix-tensorflow.s3-us-west-2.amazonaws.com/ssd_mobilenet_vi1_egohands/model.ckpt-20000.data-00000-0f-00001

wget https://gumstix-tensorflow.s3-us-west-2.amazonaws.com/ssd_mobilenet_v1_egohands/model.ckpt-20000.index

wget https://gumstix-tensorflow.s3-us-west-2.amazonaws.com/ssd_mobilenet_vi1_egohands/model.ckpt-20000.meta

https://github.com/jkjung-avt/hand-detection-tutorial

3) On your host machine, open a new terminal and run the following command:

$ gst-launch-1.0 -v udpsrc port=5000 ! \

application/x-rtp,encoding-name=H264,payload=96 ! \
rtph264depay ! h264parse ! avdec_h264 ! autovideosink

4) Navigate to the /usr/local/tensorflow-tools/tf_trt_models folder. Run the TensorFlow
program:

cd ~

cd /usr/local/tensorflow-tools/tf trt models

python3 camera_tf _trt.py --model ssd_mobilenet_vl_egohands \
--labelmap data/egohands_label map.pbtxt --num-classes 1 \
--ip-address 192.168.xxx.yyy --stealth --build

Remember to replace 192.168.xxx.yyy with your actual host machine’s IP address.

Figure 11: Expected output of the egohands demo

Again, you only need to add the “--build” option the first time you run the model.

