
 - 1 -

Helical Turns: Part 3, Angle of Attack and Elevator Trim Models

W. Premerlani, and Peter Hollands, May 1, 2015

This document is part three of a three part series describing the theory and
implementation of helical turn controls. It describes the theory and implementation of
angle of attack and elevator trim models.

Up until now, the MatrixPilot computations assumed that the angle of attack is zero and
that the errors due to a non zero angle of attack are small. That must have been
approximately true, because MatrixPilot did a reasonably good job of controlling pitch
and altitude. However, as improvements were made in other areas, we suspected that we
would eventually want to account for angle of attack, so here we are.

The theory says that angle of attack should be approximately a linear function of wing
loading divided by the square of the airspeed. We made measurements with real aircraft
as well as with hardware in the loop simulation (HILSIM), and verified that to be the
case. A typical plot of angle of attack as a function of relative wing loading is shown at
the top of Figure 1, where relative wing loading is equal to the wing g loading times the
square of the ratio of cruise air speed divided by actual airspeed. The data is taken from a
HILSIM flight and processed by Peter Holland's flight analysis program.

Figure 1 - Angle of attack and elevator trim as a function of relative wing loading

Note that in addition to a plot of angle of attack as a function of relative wing loading,
Figure 1 also has a plot of elevator trim as a function of relative wing loading. The reason
for showing both plots is that early in our work to implement an angle of attack model,
we discovered that an elevator trim model is equally important. We started with an angle
of attack model. We manually estimated slope and intercept from flight data, and used
them to estimate the parameters in our implementation of a real time estimate of angle of
attack, and included that in pitch and altitude computations. We got a bit of a surprise
with inverted flight during our first few test flights. We thought that angle of attack

 - 2 -

would improve pitch and altitude control during inverted flight, but what we found was
that after flipping over with altitude controls engaged, the aircraft would lose quite a bit
of altitude before the altitude controls would call for enough of a change in elevator
deflection to balance things out. A close look at the flight data revealed what was going
on: the elevator trim depends on relative wing loading.

That observation is consistent with the theory: the separation between center of gravity
and center of pressure generates a torque that must be compensated for by the elevator.
What surprised us was that quite a bit of elevator trim was typically required for inverted
flight, in some cases we saw inverted trim values as large as 60% of full deflection. This
also explained why, in those cases, maximum inverted turn rate was lower than
maximum normal turn rate. Therefore we realized we needed an elevator trim model as
well as an angle of attack model. The two models were defined within the same
framework (relative wing loading) so there was not much extra work to do. There were
two parts: parameter estimation and model implementation.

We realized that the models would not do anyone much good unless we could find a way
to estimate their parameters from flight data. Fortunately, that was easy enough to do. We
tried analyzing the data under various flight conditions such as normal and inverted
flight, turns, straight flight, varying the airspeed and found that a simple technique
provided the best plots such as the ones shown in Figure 1: engage altitude control in fly-
by-wire mode with straight and level flight, and use elevator trim to vary the speed, going
all the way down to a stall. Ideally perform both normal and inverted flight, but if you do
not intend to fly inverted, then you do not need to gather data in inverted flight. You may
need to use the elevator boost parameter in order to get significant variation in speed.

So, there is a relatively easy way to get the model parameters: perform a test flight in
which there are several segments in which you vary the speed with the elevator trim
while flying more or less straight. Use only those points in which the plane is
approximately level with small vertical velocity, they provide the best fit. Also, for real
flights, it is best to do the test flight when there is not much wind, because wind can
create updrafts or downdrafts which will bias the estimation of angle of attack
parameters. For elevator trim parameters, simply plot the elevator deflection versus the
relative wing loading. For angle of attack parameters, we recommend comparing the
angle of the air velocity vector with the pitch orientation reported by the IMU.

Regarding the IMU reference for level, the IMU accelerometer offsets should be
determined with the accelerometer level with the earth. As a result, IMU estimates of
pitch orientation will be the orientation of the board with respect to level. The board itself
should be mounted approximately parallel to the air velocity vector, but it does not need
to be exact, because any slight pitch offset will be accounted for with an offset in the
angle of attack model.

Once the parameters of the two models are established, it remains to implement them.
The obvious approach would be to compute the relative wing loading from estimated
airspeed and accelerometer measurements. However, that does not work, there are issues

 - 3 -

with that approach. Although any reasonable sort of air speed estimate can be used, the
accelerometers should not be used. The reason for that is they will create a feedback
instability because of transient effects not accounted for in the previous explanation.
Consideration of what happens during takeoff will shed some light on the issue:

During takeoff, the takeoff roll will generate extra loading transient on the wing. If the
angle of attack estimate responds to it, it will increase the target pitch in response to the
load transient, which will increase the load, in a positive feedback loop. The result will be
that the plane will go full pitch up and stall.

There is a simple solution to the issue: use the computed wing loading according to the
equation developed in the theory of helical turn control:

 () () ZX
Z
XZX

Z
Y

ZpZmassg
Lift

+⋅

=+⋅=−⋅=

+
⋅=

⋅
222

2

111
1

11 Equation 1

Equation 1 is shown in that form because it suggests an approximation that is easy to
compute and has been shown through testing to perform very well:

secondper metersin speedair

secondper radiansin raterotation desired ˆ

ˆ
ˆ
ˆ

=
=

+⋅

 ⋅−
≈+⋅

≈

⋅

S

ZX
g

SZX
Z
X

massg
Lift

ω

ω

 Equation 2

Equation 2 will track the actual wing loading most of the time, with departures just when
we need them, during transients. Hence it can be used to accurately compute angle of
attack and pitch trim in a feed forward method, without risking positive feedback
instability. Of course, the lift computed by equation 2 must then be multiplied by the
square of the ratio of cruise airspeed divided by actual airspeed.

Some consideration must be given stall conditions and the range of airspeed over which
equation 2 is valid. You can get some idea of the stall speed with a test flight with fly by
wire and altitude controls engaged. Pull back on the elevator slowly, it will cause the
plane to climb and slow down. At some point it just will not go any slower, and will show
signs of stalling. You can then read the stall speed from the flight data. A good rule of
thumb is to set the cruise speed to be equal to twice the stall speed, and perform the
computations as long as the airspeed is greater than 1/2 of the cruise speed. Below that,
turn off the angle of attack and pitch trim computations, and set the angle of attack and
pitch trim to zero.

The pitch trim is used only to adjust the elevator trim. The angle of attack is used in
several places, including:

 - 4 -

• Centrifugal compensation. There are now two components of the airspeed vector
in the body frame. Use the complete airspeed vector in the cross product of the
body frame rotation vector with the airspeed vector to get the complete centrifugal
acceleration vector.

• Wind estimation. Angle of attack must be accounted for.
• Pitch control. Multiply the angle of attack by Z to get the earth frame pitch

adjustment.
• Air velocity yaw reference vector. There is an adjustment in the horizontal plane

yaw reference vector that is a function of angle of attack and roll orientation.

In MatrixPilot, the pitch adjustment is implemented by:

 // project angle of attack into the earth frame
 accum.WW = (__builtin_mulss(angleOfAttack , rmat[8])) << 2 ;
 pitchAdjustAngleOfAttack = accum._.W1 ;

The yaw reference adjustment is implemented by:

 // compute horizontal projection of air velocity,
 // taking into account the angle of attack.
 longaccum.WW = (__builtin_mulss(rmat[2] , angleOfAttack)) << 2 ;
 dirOverGndHrmat[0] = rmat[1] + longaccum._.W1 ;
 longaccum.WW = (__builtin_mulss(rmat[5] , angleOfAttack)) << 2 ;
 dirOverGndHrmat[1] = rmat[4] + longaccum._.W1 ;
 dirOverGndHrmat[2] = 0;

