

ZED-F9R

u-blox F9 high precision sensor fusion GNSS receiver

Data sheet

Abstract

This data sheet describes the ZED-F9R high precision sensor fusion module with 3D sensors and a multi-band GNSS receiver. It provides reliable multi-band RTK turnkey solution with up to 30 Hz real time position update rate and full GNSS carrier raw data.

Document information

Title	ZED-F9R		
Subtitle	u-blox F9 high precision senso	u-blox F9 high precision sensor fusion GNSS receiver	
Document type	Data sheet		
Document number	UBX-19054459		
Revision and date	R03	10-Nov-2020	
Document status	Advance information		
Disclosure restriction	C1-Public		

Product status	Corresponding content status	
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	Firmware version	PCN reference
ZED-F9R	ZED-F9R-01B-00	HPS 1.20	N/A

u-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of u-blox is strictly prohibited.

The information contained herein is provided "as is" and u-blox assumes no liability for the use of the information. No warranty, either express or implied, is given with respect to, including but not limited to, the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, please visit www.u blox.com.

Copyright © 2020, u-blox AG.

u-blox is a registered trademark of u-blox Holding AG in the EU and other countries.

Contents

1 Functional description	4
1.1 Overview	4
1.2 Performance	4
1.3 Supported GNSS constellations	5
1.4 Supported GNSS augmentation systems	6
1.4.1 Quasi-Zenith Satellite System (QZSS)	6
1.4.2 Satellite based augmentation system (SBAS)	
1.4.3 Differential GNSS (DGNSS)	
1.5 Broadcast navigation data and satellite signal measurements	
1.5.1 Carrier-phase measurements	
1.6 Supported protocols	
1.7 High precision sensor fusion (HPS)	8
2 System description	9
2.1 Block diagram	9
3 Pin definition	10
3.1 Pin assignment	
4 Electrical specification	
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	
5 Communications interfaces	
5.1 UART interface	
5.2 SPI interface	
5.3 Slave I2C interface	
5.4 USB interface	
5.5 WT (wheel tick) and DIR (forward/reverse indication) inputs	
5.6 Default interface settings	
6 Mechanical specification	
7 Reliability tests and approvals	
·	
7.1 Approvals	
8 Labeling and ordering information	
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	22
Related documents	23
Pavisian history	24

1 Functional description

1.1 Overview

The ZED-F9R module with the u-blox F9 multi-band GNSS receiver features rapid convergence time within seconds. This mass-market component combines high precision positioning with highest availability, while making use of all four GNSS constellations simultaneously. It is the first sensor fusion module with an integrated inertial measurement unit (IMU) capable of high precision positioning. The sophisticated built-in algorithms fuse the IMU data, GNSS measurements, wheel ticks, and a dedicated dynamic model to provide high accurate positioning where GNSS alone would fail.

The module operates under open sky, sidewalks, roads, in the wooded countryside, in difficult multipath environments, and even in tunnels and underground parking. For modern autonomous robotic applications such as unmanned ground vehicles where control and availability are key to success, ZED-F9R is the ultimate solution.

The device is a turnkey solution eliminating the technical risk of integrating third party libraries, precise positioning engines, and the multi-faceted hardware engineering aspects of radio frequency design and digital design. The u-blox approach provides a transparent evaluation of the positioning solution and clear lines of responsibility for design support while reducing supply chain complexity during production.

ZED-F9R offers support for a range of correction services allowing each application to optimize performance according to the application's unique needs. ZED-F9R comes with built-in support for RTCM formatted corrections, enabling high precision navigation using internet or satellite data connectivity. In a future release, the product will support SSR-type correction services suitable for mass-market deployment. Finally the full set of RAW data from IMU sensors and GNSS carriers are provided.

ZED-F9R modules use GNSS chips qualified according to AEC-Q100 and are manufactured in ISO/TS 16949 certified sites. Qualification tests are performed as stipulated in the ISO16750 standard. The professional-grade ZED-F9R module adheres to industrial standard quality specifications and production flow.

1.2 Performance

Parameter	Specification		
Receiver type	pe Multi-band GNSS high precision sensor fusion receiver		
Accuracy of time pulse signal	RMS	30 ns	
	99%	60 ns	
Frequency of time pulse signal		0.25 Hz to 10 MHz	
		(configurable)	
Operational limits ¹	Dynamics	≤ 4 g	
•	Altitude	80,000 m	
	Velocity	500 m/s	
Position error during GNSS loss ²		2%	

¹ Assuming airborne 4 g platform

^{2 68%} error incurred without GNSS as a percentage of distance of traveled 3000 m, applicable to four-wheel road vehicle

Parameter	Specification	
Max navigation update rate (RTK) ³	Priority navigation mode	30 Hz
- ,	Non-priority navigation mode	2 Hz
Navigation latency	Priority navigation mode	15 ms
Velocity accuracy ⁴		0.05 m/s
Dynamic attitude accuracy ⁴	Heading	0.2 deg
	Pitch	0.3 deg
	Roll	0.5 deg
Max sensor measurement output rate		100 Hz

GNSS		GPS+GLO+GAL +BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	BDS+GLO
Acquisition ⁵	Cold start	26 s	25 s	30 s	25 s	28 s
•	Hot start	2 s	2 s	2 s	2 s	2 s
	Aided starts ⁶	3 s	3 s	3 s	3 s	3 s
Re-convergence time ^{7 8}	RTK	≤ 10 s	≤ 10 s	≤ 10 s	≤ 10 s	≤ 30 s
Sensitivity ^{9 10}	Tracking and nav.	-160 dBm	-160 dBm	-160 dBm	-160 dBm	-160 dBm
· · · · · · · · · · · · · · · · · · ·	Reacquisition	-157 dBm	-157 dBm	-157 dBm	-157 dBm	-157 dBm
	Cold start	-147 dBm	-147 dBm	-147 dBm	-147 dBm	-145 dBm
	Hot start	-158 dBm	-158 dBm	-158 dBm	-158 dBm	-158 dBm

Table 1: ZED-F9R performance in different GNSS modes

GNSS		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Horizontal	PVT ¹¹	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP	1.5 m CEP
pos. accuracy	SBAS ¹¹	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP	1.0 m CEP
	RTK ¹²	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m
		+ 1 ppm CEP	+ 1 ppm CEP	+ 1 ppm CEI	P + 1 ppm CEI	P + 1 ppm CEI	P + 1 ppm CEP
Vertical pos.	RTK ¹²	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m	0.01 m
accuracy		+ 1 ppm R50	+ 1 ppm R50	+ 1 ppm R5	0 + 1 ppm R50	0 + 1 ppm R50	0 + 1 ppm R50

Table 2: ZED-F9R position accuracy in different GNSS modes

1.3 Supported GNSS constellations

The ZED-F9R GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS constellations. Owing to the multi-band RF front-end architecture, all four major GNSS constellations (GPS, GLONASS, Galileo and BeiDou) plus SBAS and QZSS satellites can be received concurrently. All satellites in view can be processed to provide an RTK navigation solution when used

³ Rates with QZSS enabled for > 98% fix report rate under typical conditions

^{4 68%} at 30 m/s for dynamic operation

⁵ All satellites at -130 dBm

⁶ Dependent on the speed and latency of the aiding data connection, commanded starts

⁷ 68% depending on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and geometry

⁸ Time to ambiguity fix after 20 s outage

⁹ Demonstrated with a good external LNA

¹⁰ Configured minCNO of 6 dBHz, limited by FW with minCNO of 20 dBHz for best performance

^{11 24} hours static

¹² Measured using 1 km baseline and patch antennas with good ground planes. Does not account for possible antenna phase center offset errors. ppm limited to baselines up to 20 km.

with correction data. If power consumption is a key factor, the receiver can be configured for a subset of GNSS constellations.

All satellites in view can be processed to provide an RTK navigation solution when used with correction data; the highest positioning accuracy will be achieved when the receiver is tracking signals on both bands from multiple satellites, and is provided with corresponding correction data.

The QZSS system shares the same frequency bands as GPS and can only be processed in conjunction with GPS.

To take advantage of multi-band signal reception, dedicated hardware preparation must be made during the design-in phase. See the ZED-F9R Integration manual [1] for u-blox design recommendations.

The ZED-F9R supports the GNSS and their signals as shown in Table 3.

GPS	GLONASS	Galileo	BeiDou
L1C/A (1575.42 MHz)	L10F (1602 MHz + k*562.5 kHz, k = -7,, 5, 6)	E1-B/C (1575.420 MHz)	B1I (1561.098 MHz)
L2C (1227.600 MHz)	L2OF (1246 MHz + k*437.5 kHz, k = -7,, 5, 6)	E5b (1207.140 MHz)	B2I (1207.140 MHz)

Table 3: Supported GNSS and signals on ZED-F9R

The following GNSS assistance services can be activated on ZED-F9R:

AssistNow™ Online	AssistNow™ Offline	AssistNow™ Autonomous
Supported	-	-

Table 4: Supported Assisted GNSS (A-GNSS) services

1.4 Supported GNSS augmentation systems

1.4.1 Quasi-Zenith Satellite System (QZSS)

The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system that provides positioning services for the Pacific region covering Japan and Australia. The ZED-F9R high precision sensor fusion receiver is able to receive and track QZSS signal concurrently with GPS signals, resulting in better availability especially under challenging signal conditions, e.g. in urban canyons.

QZSS can be enabled only if GPS operation is also configured.

1.4.2 Satellite based augmentation system (SBAS)

The ZED-F9R high precision sensor fusion receiver optionally supports SBAS (including WAAS in the US, EGNOS in Europe, MSAS in Japan and GAGAN in India) to deliver improved location accuracy within the regions covered. However, the additional inter-standard time calibration step used during SBAS reception results in degraded time accuracy overall.

SBAS reception is disabled by default in ZED-F9R.

1.4.3 Differential GNSS (DGNSS)

When operating in RTK mode, RTCM version 3.3 messages are required and the module supports DGNSS according to RTCM 10403.3. ZED-F9R can decode the following RTCM 3.3 messages:

Message type	Description
RTCM 1001	L1-only GPS RTK observables

Message type	Description
RTCM 1002	Extended L1-only GPS RTK observables
RTCM 1003	L1/L2 GPS RTK observables
RTCM 1004	Extended L1/L2 GPS RTK observables
RTCM 1005	Stationary RTK reference station ARP
RTCM 1006	Stationary RTK reference station ARP with antenna height
RTCM 1007	Antenna descriptor
RTCM 1009	L1-only GLONASS RTK observables
RTCM 1010	Extended L1-only GLONASS RTK observables
RTCM 1011	L1/L2 GLONASS RTK observables
RTCM 1012	Extended L1/L2 GLONASS RTK observables
RTCM 1033	Receiver and antenna description
RTCM 1074	GPS MSM4
RTCM 1075	GPS MSM5
RTCM 1077	GPS MSM7
RTCM 1084	GLONASS MSM4
RTCM 1085	GLONASS MSM5
RTCM 1087	GLONASS MSM7
RTCM 1094	Galileo MSM4
RTCM 1095	Galileo MSM5
RTCM 1097	Galileo MSM7
RTCM 1124	BeiDou MSM4
RTCM 1125	BeiDou MSM5
RTCM 1127	BeiDou MSM7
RTCM 1230	GLONASS code-phase biases

Table 5: Supported input RTCM 3.3 messages

1.5 Broadcast navigation data and satellite signal measurements

The ZED-F9R can output all the GNSS broadcast data upon reception from tracked satellites. This includes all the supported GNSS signals plus the augmentation services QZSS and SBAS. The UBX-RXM-SFRBX message is used for this information. The receiver also makes available the tracked satellite signal information, i.e. raw code phase and Doppler measurements, in a form aligned to the Radio Resource LCS Protocol (RRLP) [3]. For the UBX-RXM-SFRBX message specification, see the u-blox ZED-F9R Interface description [2].

1.5.1 Carrier-phase measurements

The ZED-F9R modules provide raw carrier-phase data for all supported signals, along with pseudorange, Doppler and measurement quality information. The data contained in the UBX-RXM-RAWX message follows the conventions of a multi-GNSS RINEX 3 observation file. For the UBX-RXM-RAWX message specification, see the u-blox ZED-F9R Interface description [2].

Raw measurement data are available once the receiver has established data bit synchronization and time-of-week.

1.6 Supported protocols

The ZED-F9R supports the following protocols:

Protocol	Туре
UBX	Input/output, binary, u-blox proprietary
NMEA up to 4.11	Input/output, ASCII
RTCM 3.3	Input, binary

Table 6: Supported protocols

For specification of the protocols, see the u-blox ZED-F9R Interface description [2].

1.7 High precision sensor fusion (HPS)

u-blox's proprietary high precision sensor fusion (HPS) solution uses a 3D inertial measurement unit (IMU) included within the module and speed pulses from the wheel sensors. Alternatively, the velocity data can be provided via software interface. Sensor data and GNSS signals are processed together, achieving 100% coverage, with highly accurate and continuous positioning even in GNSS hostile environments (e.g. urban areas) or in case of GNSS signal absence (e.g. tunnels, multi-level parking structures).

Wheel or speed sensor rate variations and the 3D IMU sensors are calibrated automatically and continuously by the module, accommodating, for example, if wheel diameter changes.

For more details, see the ZED-F9R Integration manual [1].

The ZED-F9R combines GNSS and sensor measurements and computes a position solution at rates of up to 2 Hz with non-priority navigation mode. In priority navigation mode the navigation rate can be increased using IMU-only data to deliver accurate, low-latency position measurements at rates up to 30 Hz. These solutions are reported in standard NMEA, UBX-NAV-PVT and similar messages.

The ZED-F9R will work optimally in priority navigation mode when the IMU and WT sensors are calibrated, and the alignment angles are correct.

Dead reckoning mode allows navigation to commence as soon as power is applied to the module (i.e. before a GNSS fix has been established) under the following conditions:

- · the vehicle has not been moved while the module is switched off
- at least a dead reckoning (DR) fix was available when the vehicle was last used
- a back-up supply has been available for the module since the vehicle was last used

The save-on-shutdown feature can be used when no back-up supply is available. All information necessary will be saved to the flash and read from the flash upon restart.

2 System description

2.1 Block diagram

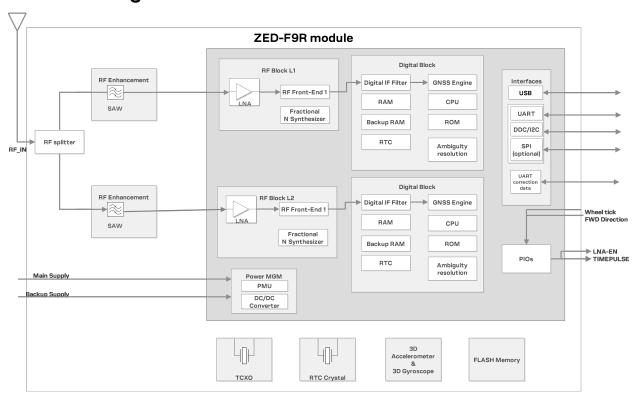


Figure 1: ZED-F9R block diagram

3 Pin definition

3.1 Pin assignment

The pin assignment of the ZED-F9R module is shown in Figure 2. The defined configuration of the PIOs is listed in Table 7.

The ZED-F9R is an LGA package with the I/O on the outside edge and central ground pads.

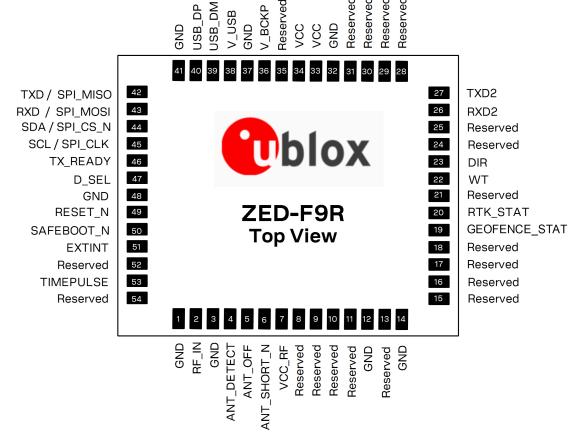


Figure 2: ZED-F9R pin assignment

Pin no.	Name	1/0	Description
1	GND	-	Ground
2	RF_IN	I	RF input
3	GND	-	Ground
4	ANT_DETECT	I	Active antenna detect
5	ANT_OFF	0	External LNA disable
6	ANT_SHORT_N	I	Active antenna short detect
7	VCC_RF	0	Voltage for external LNA
8	Reserved	-	Reserved
9	Reserved	-	Reserved
10	Reserved	-	Reserved
11	Reserved	-	Reserved

Pin no.	Name	I/O	Description
12	GND	-	Ground
13	Reserved	-	Reserved
14	GND	-	Ground
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	GEOFENCE_STAT	0	Geofence status, user defined
20	RTK_STAT	0	RTK status 0 – fixed, blinking – receiving and using corrections, 1 – no corrections
21	Reserved	-	Reserved
22	WT	I	Wheel ticks
23	DIR	I	Direction
24	Reserved	-	Reserved
25	Reserved	-	Reserved
26	RXD2	I	Correction UART input
27	TXD2	0	Correction UART output
28	Reserved	-	Reserved
29	Reserved	-	Reserved
30	Reserved	-	Reserved
31	Reserved	-	Reserved
32	GND	-	Ground
33	VCC	I	Voltage supply
34	VCC	I	Voltage supply
35	Reserved	-	Reserved
36	V_BCKP	I	Backup supply voltage
37	GND	-	Ground
38	V_USB	I	USB power input
39	USB_DM	I/O	USB data
40	USB_DP	I/O	USB data
41	GND	-	Ground
42	TXD/SPI_MISO	0	Serial port if D_SEL =1(or open). SPI MISO if D_SEL = 0
43	RXD/SPI_MOSI	I	Serial port if D_SEL =1(or open). SPI MOSI if D_SEL = 0
44	SDA/SPI_CS_N	I/O	I2C data if D_SEL =1 (or open). SPI chip select if D_SEL = 0
45	SCL/SPI_CLK	I/O	I2C Clock if D_SEL =1(or open). SPI clock if D_SEL = 0
46	TX_READY	0	TX_Buffer full and ready for TX of data
47	D_SEL	ı	Interface select
48	GND	-	Ground
49	RESET_N	ı	RESET_N
50	SAFEBOOT_N	I	SAFEBOOT_N (for future service, updates and reconfiguration, leave OPEN)
51	EXT_INT	I	External interrupt pin
52	Reserved	-	Reserved
53	TIMEPULSE	0	Time pulse

Pin no.	Name	I/O	Description
54	Reserved	-	Reserved

Table 7: ZED-F9R pin assigment

4 Electrical specification

The limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only. Operation of the device at these or at any other conditions above those given below is not implied. Exposure to limiting values for extended periods may affect device reliability.

Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Backup battery voltage	V_BCKP		-0.5	3.6	V
Input pin voltage	Vin	VCC ≤ 3.1 V	-0.5	VCC + 0.5	V
		VCC > 3.1 V	-0.5	3.6	V
DC current through any digital I/O pin (except supplies)	lpin			TBD	mA
VCC_RF output current	ICC_RF			100	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DM, USB_DP		-0.5	V_USB + 0.	5 V
Input power at RF_IN	Prfin	source impedance = 50Ω , continuous wave		10	dBm
Storage temperature	Tstg		-40	+85	°C

Table 8: Absolute maximum ratings

The product is not protected against overvoltage or reversed voltages. Voltage spikes exceeding the power supply voltage specification, given in the table above, must be limited to values within the specified boundaries by using appropriate protection diodes.

4.2 Operating conditions

All specifications are at an ambient temperature of 25 °C. Extreme operating temperatures can significantly impact the specification values. Applications operating near the temperature limits should be tested to ensure the specification.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
Backup battery voltage	V_BCKP	1.65		3.6	V	
Backup battery current	I_BCKP		36		μΑ	V_BCKP = 3 V, VCC = 0 V
SW backup current	I_SWBCKP		1.5		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	
Digital IO pin low level output voltage	Vol			0.4	V	lol = 2 mA
Digital IO pin high level output voltage	Voh	VCC - 0.4			V	loh = 2 mA
VCC_RF voltage	VCC_RF		VCC - 0.1		V	

Parameter	Symbol	Min	Typical	Max	Units	Condition
VCC_RF output current	ICC_RF			50	mA	
Receiver chain noise figure 13	NFtot		9.5		dB	
External gain (at RF_IN)	Ext_gain	17		50	dB	
Operating temperature	Topr	-40	+25	85	°C	

Table 9: Operating conditions

Operation beyond the specified operating conditions can affect device reliability.

4.3 Indicative power requirements

Table 10 lists examples of the total system supply current including RF and baseband section for a possible application.

Values in Table 10 are provided for customer information only, as an example of typical current requirements. The values are characterized on samples by using a cold start command. Actual power requirements can vary depending on FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	GPS+GLO +GAL+BDS	GPS	Unit
I _{PEAK}	Peak current	Acquisition	130	120	mA
I _{VCC} ¹⁴	VCC current	Acquisition	90	75	mA
I _{supply} ¹⁴	Supply current	Tracking	85	68	mA

Table 10: Currents to calculate the indicative power requirements

All values in Table 10 are measured at 25 °C ambient temperature.

¹³ Only valid for the GPS

¹⁴ Simulated GNSS signal

5 Communications interfaces

There are several communications interfaces including UART, SPI, I2C¹⁵ and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART interface

The UART interfaces support configurable baud rates. See the ZED-F9R Integration manual [1].

Hardware flow control is not supported.

UART1 is the primary host communications interface while UART2 is dedicated for RTCM 3.3 corrections and NMEA. No UBX protocol is supported on UART 2.

The UART1 is enabled if D_SEL pin of the module is left open or "high".

Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	9600	921600	bit/s
Δ_{Tx}	Tx baudrate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baudrate tolerance	-2.5%	+2.5%	-

Table 11: ZED-F9R UART specifications

5.2 SPI interface

The ZED-F9R has an SPI slave interface that can be selected by setting D_SEL = 0. The SPI slave interface is shared with UART1 and I2C pins. The SPI pins available are:

- SPI MISO (TXD)
- SPI_MOSI (RXD)
- SPI_CS_N
- SPI CLK

The SPI interface is designed to allow communication to a host CPU. The interface can be operated in slave mode only. Note that SPI is not available in the default configuration because its pins are shared with the UART and I2C interfaces. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

This section provides SPI timing values for the ZED-F9R slave operation. The following tables present timing values under different capacitive loading conditions. Default SPI configuration is CPOL = 0 and CPHA = 0.

¹⁵ I2C is a registered trademark of Philips/NXP

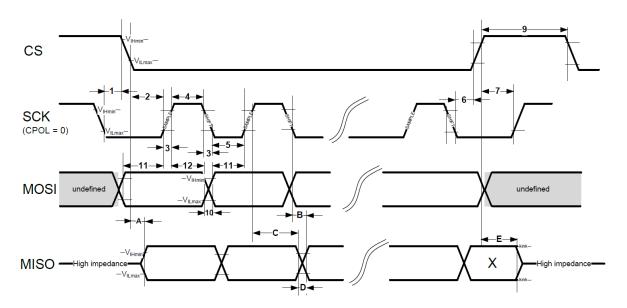


Figure 3: ZED-F9R high precision sensor fusion receiver SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

Timings 1 - 12 are not specified here as they are dependent on the SPI master. Timings A - E are specified for SPI slave.

Timing value at 2 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	14	38	
"B" - MISO data valid time (SCK) weak driver mode	21	38	
"C" - MISO data hold time	114	130	
"D" - MISO rise/fall time, weak driver mode	1	4	
"E" - MISO data disable lag time	20	32	

Table 12: ZED-F9R SPI timings at 2 pF load

Timing value at 20 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	19	52	
"B" - MISO data valid time (SCK) weak driver mode	25	51	
"C" - MISO data hold time	117	137	
"D" - MISO rise/fall time, weak driver mode	6	16	
"E" - MISO data disable lag time	20	32	

Table 13: ZED-F9R SPI timings at 20 pF load

Timing value at 60 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	29	79	
"B" - MISO data valid time (SCK) weak driver mode	35	78	
"C" - MISO data hold time	122	152	
"D" - MISO rise/fall time, weak driver mode	15	41	
"E" - MISO data disable lag time	20	32	

Table 14: ZED-F9R SPI timings at 60 pF load

5.3 Slave I2C interface

An I2C-compliant interface is available for communication with an external host CPU. The interface can be operated in slave mode only. It is fully compatible with the I2C industry standard fast mode.

Since the maximum SCL clock frequency is 400 kHz, the maximum bit rate is 400 kbit/s. The interface stretches the clock when slowed down while serving interrupts, therefore the real bit rates may be slightly lower.

7

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

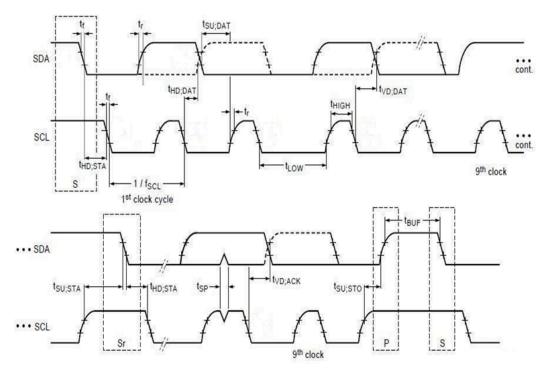


Figure 4: ZED-F9R high precision sensor fusion receiver I2C slave specification

Symbol	Parameter	Min (Standard / Fast mode)	Max	Unit	
f _{SCL}	SCL clock frequency	0	400	kHz	
t _{HD;STA}	Hold time (repeated) START condition	4.0/1	-	μs	
t _{LOW}	Low period of the SCL clock	5/2	-	μs	
t _{HIGH}	High period of the SCL clock	4.0/1	-	μs	
t _{SU;STA}	Set-up time for a repeated START condition	5/1	-	μs	
t _{HD;DAT}	Data hold time	0/0	-	μs	
t _{SU;DAT}	Data set-up time	250/100		ns	
t _r	Rise time of both SDA and SCL signals	-	1000/300 (for C = 400pF)	ns	
t _f	Fall time of both SDA and SCL signals	-	300/300 (for C = 400pF)	ns	
t _{su;sto}	Set-up time for STOP condition	4.0/1	-	μs	
t _{BUF}	Bus-free time between a STOP and START condition	5/2	-	μs	
t _{VD;DAT}	Data valid time	-	4/1	μs	
t _{VD;ACK}	Data valid acknowledge time	-	4/1	μs	
V _{nL}	Noise margin at the low level	0.1 VCC	-	V	
V _{nH}	Noise margin at the high level	0.2 VCC	-	V	

Table 15: ZED-F9R I2C slave timings and specifications

5.4 USB interface

The USB 2.0 FS (Full speed, 12 Mbit/s) interface can be used for host communication. Due to the hardware implementation, it may not be possible to certify the USB interface. The V_USB pin supplies the USB interface.

5.5 WT (wheel tick) and DIR (forward/reverse indication) inputs

ZED-F9R pin 22 (WT) is available as a wheel tick input. The pin 23 (DIR) is available as a direction input (forward/reverse indication).

By default the wheel tick count is derived from the rising edges of the WT input.

For optimal performance the wheel tick resolution should be less than 5 cm.

The DIR input shall indicate whether the vehicle is moving forwards or backwards.

Alternatively, the vehicle WT (or speed) and DIR inputs can be provided via one of the communication interfaces with UBX-ESF-MEAS messages.

For more details, see the ZED-F9R Integration manual [1].

5.6 Default interface settings

Interface	Settings	
UART1 output	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	NMEA protocol is enabled by default and GGA , GLL , GSA , GSV , RMC , VTG , TXT messages are output by default.	
	UBX protocol is enabled by default but no output messages are enabled by default.	
	RTCM 3.3 protocol output is not supported.	
UART1 input	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX, NMEA and RTCM 3.3 input protocols are enabled by default.	
UART2 output	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX protocol cannot be enabled.	
	RTCM 3.3 protocol output is not supported.	
	NMEA protocol is disabled by default.	
UART2 input	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX protocol cannot be enabled and will not receive UBX input messages.	
	RTCM 3.3 protocol is enabled by default.	
	NMEA protocol is disabled by default.	
USB	Default messages activated as in UART1. Input/output protocols available as in UART1.	
I2C	Fully compatible with the I2C ¹⁶ industry standard, available for communication with an external host CPU or u-blox cellular modules, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. Maximum bit rate 400 kb/s.	
SPI	Allow communication to a host CPU, operated in slave mode only. Default messages acti in UART1. Input/output protocols available as in UART1. SPI is not available unless D_SE set to low (see section D_SEL interface in ZED-F9R Integration manual [1]).	

Table 16: Default interface settings

UART2 can be configured as an RTCM interface. RTCM 3.3 is the default input protocol. UART2 may also be configured for NMEA output. NMEA GGA output is typically used with virtual reference service correction services.

¹⁶ I2C is a registered trademark of Philips/NXP

By default the ZED-F9R outputs NMEA messages that include satellite data for all GNSS bands being received. This results in a high NMEA load output for each navigation period. Make sure the UART baud rate used is sufficient for the selected navigation rate and the number of GNSS signals being received.

6 Mechanical specification

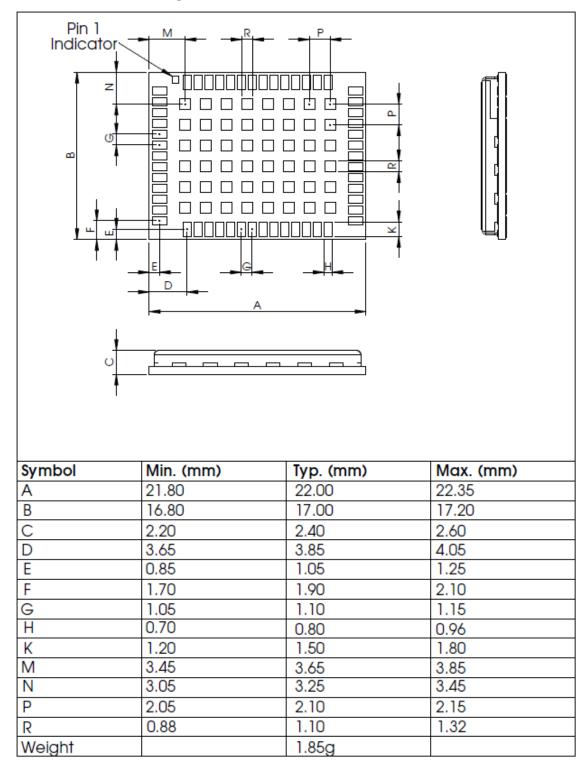


Figure 5: ZED-F9R mechanical drawing

7 Reliability tests and approvals

ZED-F9R modules are based on AEC-Q100 qualified GNSS chips.

Tests for product family qualifications are according to ISO 16750 "Road vehicles – environmental conditions and testing for electrical and electronic equipment", and appropriate standards.

7.1 Approvals

The ZED-F9R is designed to in compliance with the essential requirements and other relevant provisions of Radio Equipment Directive (RED) 2014/53/EU.

The ZED-F9R complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

Declaration of Conformity (DoC) is available on the u-blox website.

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about product handling and soldering see the ZED-F9R Integration manual [1].

8.1 Product labeling

The labeling of the ZED-F9R modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three product code formats are used. The **Product name** is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions.

The Table 17 below details these three formats.

Format	Structure	Product code	
Product name	PPP-TGV	ZED-F9R	
Ordering code	PPP-TGV-NNQ	ZED-F9R-01B	
Type number	PPP-TGV-NNQ-XX	ZED-F9R-01B-00	

Table 17: Product code formats

The parts of the product code are explained in Table 18.

Code	Meaning	Example	
PPP	Product family	ZED	
TG	Platform	F9 = u-blox F9	
V	Variant	R = High precision sensor fusion	
NNQ	Option / Quality grade	NN: Option [0099]	
		Q: Grade, A = Automotive, B = Professional	
XX	Product detail	Describes hardware and firmware versions	

Table 18: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark
ZED-F9R-00B	u-blox ZED-F9R	

Table 19: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/product-resources.

Related documents

- [1] ZED-F9R Integration manual, UBX-20039643
- [2] ZED-F9R Interface description, UBX-19056845
- [3] Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11)

Revision history

Revision	Date	Name	Status / comments
R01	19-Dec-2019	ssid	Advance information
R02	14-May-2020	ssid	Early production information
R03	10-Nov-2020	ssid	Advance information - HPS 1.20 update - ZED-F9R-01B update - public
			- Performance numbers updated - cm level accurate product
			- Performance in different GNSS modes revised
			- SBAS support added
			- Communication interfaces section updated
			- Re-convergence time performance numbers revised

Contact

For complete contact information visit us at www.u-blox.com.

u-blox Offices

North, Central and South America

u-blox America, Inc.

Phone: +1 703 483 3180 E-mail: info_us@u-blox.com

Regional Office West Coast

Phone: +1 408 573 3640 E-mail: info_us@u-blox.com

Technical Support

Phone: +1 703 483 3185 E-mail: support_us@u-blox.com Headquarters

Europe, Middle East, Africa

u-blox AG

Phone: +41 44 722 74 44
E-mail: info@u-blox.com
Support: support@u-blox.com

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.

Phone: +65 6734 3811
E-mail: info_ap@u-blox.com
Support: support_ap@u-blox.com

Regional Office Australia

Phone: +61 2 8448 2016
E-mail: info_anz@u-blox.com
Support: support_ap@u-blox.com

Regional Office China (Beijing)

Phone: +86 10 68 133 545
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Chongqing)
Phone: +86 23 6815 1588
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shanghai)

Phone: +86 21 6090 4832
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shenzhen)

Phone: +86 755 8627 1083
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office India

Phone: +91 80 4050 9200
E-mail: info_in@u-blox.com
Support: support_in@u-blox.com

Regional Office Japan (Osaka)

Phone: +81 6 6941 3660
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Japan (Tokyo) Phone: +81 3 5775 3850

E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Korea

Phone: +82 2 542 0861
E-mail: info_kr@u-blox.com
Support: support_kr@u-blox.com

Regional Office Taiwan

Phone: +886 2 2657 1090
E-mail: info_tw@u-blox.com
Support: support_tw@u-blox.com