
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IQ Data Service 

User Guide 

  



IQ Service User Guide   

  Page 2 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

 

 

 

 

 

 

 

 

 

  

IQ Service User Guide 

Author: Acconeer 

Version 1.0: 2018-07-05 

Acconeer AB 



  IQ Service User Guide 

Page 3 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

Table of Contents 

1 Introduction ..................................................................................................................................... 4 

2 Setting up the IQ Service ................................................................................................................. 5 

2.1 Initializing the System ............................................................................................................. 5 

2.2 IQ Service Configuration ........................................................................................................ 5 

2.3 Sweep Configuration ............................................................................................................... 5 

2.3.1 Basic Configurations ....................................................................................................... 6 

2.3.2 Set Repetition Mode and Frequency ............................................................................... 6 

2.3.3 Set Sensor Gain (Advanced) ........................................................................................... 6 

2.3.4 Set Power Save Mode (Advanced) .................................................................................. 7 

3 Capturing IQ Data ........................................................................................................................... 8 

3.1 Creating and Activating the Service ........................................................................................ 8 

3.2 Reading IQ Data from The Sensor .......................................................................................... 8 

3.3 Using Callback Functions to Receive Data (Advanced) ......................................................... 9 

4 Deactivating and Destroying the IQ service .................................................................................. 11 

5 How to Interpret the IQ Data ......................................................................................................... 12 

5.1 Calculating Amplitude and Phase ......................................................................................... 12 

5.2 Plotting amplitude and phase ................................................................................................. 13 

5.3 IQ metadata ........................................................................................................................... 14 

6 Micro Motion Measurement Example ........................................................................................... 15 

Disclaimer ............................................................................................................................................. 16 

 

  



IQ Service User Guide   

  Page 4 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

1 Introduction 
 

The IQ Service is one of three services that provide APIs for reading out the radar signal from the 
Acconeer A111 sensor. The IQ-data can be seen as an extension of the envelope data. In addition to 
the amplitude, the IQ data also includes information on the phase of the radar signal. The data returned 
from the IQ Service is represented as complex numbers and the IQ data is typically further processed 
using various signal processing algorithms. The IQ data can for example be used for measurement of 
small changes in distance with µm accuracy or for efficient background cancellation. 

For applications where the phase information is not needed you may consider using the envelope 
service or power bin service instead. They both provide amplitude data and are easier to understand 
and work with compared to the IQ Service. The envelope service provides full resolution, whereas the 
power bins API provides less processed subsampled amplitude data.   

Before using the IQ service, we recommend that you have a basic understanding of complex numbers 
and how they are used to represent phase and amplitude in signal processing. 

 



  IQ Service User Guide 

Page 5 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

2 Setting up the IQ Service 

2.1 Initializing the System 
The Radar System Services (RSS) must be activated before any other calls are done to the radar sensor 
service API. 

 

All services in the Acconeer API are created and activated in two distinct steps. In the first creation 
step the configuration settings are evaluated and all necessary resources are allocated. If there is some 
error in the configuration or if there are not enough resources in the system to run the service, the 
creation step will fail. However, when the creation is successful you can be sure that the second 
activation step will not fail due to any configuration or resource issues. When the service is activated 
the radar is turned on and the radar data starts to flow from the sensor to the application.  

 

2.2 IQ Service Configuration 
Before the IQ service can be created and activated we must prepare a service configuration.  First a 
configuration is created.  

 

The newly created service configuration contains default settings for all configuration parameters and 
can be passed directly to the acc_service_create function. However, in most scenarios there is a 

need to change at least some of the configuration parameters. 

 

2.3 Sweep Configuration 
The sweep configuration parameters determine the sensor source and how the sweep data will be 
generated in the sensor. The sweep configuration parameters are common to all services and are 
therefore handled by a separate sweep configuration. Like other configuration parameters, the sweep 
parameters have reasonable default values, but in most applications, it is necessary to modify at least 
some them. To do this we must first obtain a sweep configuration handle.  

 

 
if (!acc_rss_activate()) { 
    /* Handle error */ 
} 
 

 
acc_service_configuration_t iq_configuration; 
 
iq_configuration = acc_service_iq_configuration_create(); 
 
if (iq_configuration == NULL) { 
    /* Handle error */  
} 

 
acc_sweep_configuration_t sweep_configuration; 
 
sweep_configuration = acc_service_get_sweep_configuration(iq_configuration); 
 
if (sweep_configuration == NULL) { 
    /* Handle error */ 
} 



IQ Service User Guide   

  Page 6 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

 

2.3.1 Basic Configurations 
Using the sweep configuration handle, we call access functions to set individual configuration 
parameters such as the sweep start and range.  

 

When using a connector board with multiple sensors the sensor id must also be set in the sensor 
configuration. 

 

 

2.3.2 Set Repetition Mode and Frequency 
A repetition mode describes how the sensor behaves when producing data. There are currently two 
settable modes: Streaming and Max Frequency. 

Streaming is the default mode and uses the sensor hardware as source for when to perform sweeps, i.e. 
the sensor hardware determines the timing. In this mode it is possible to set a desired frequency, see 
below. 

 

The other repetition mode, Max Frequency, allows the host to perform sweeps continuously as fast as 
possible. The limiting factor on the update rate is now the whole system, i.e. both host and sensor. It is 
not possible to set a certain frequency in this mode. This mode does not guarantee any form of 
accurate timing. This mode is not compatible with Power Save Mode A (see chapter on Power Save 
Mode). Max frequency is set as below. 

 

 

2.3.3 Set Sensor Gain (Advanced) 
Advanced users can control the receiver gain in the sensor. This may be useful for example in cases 
when measuring reflections from strong reflectors close to the sensor. The gain value must be between 
0.0 and 1.0, where 0.0 is the lowest gain and 1.0 is the highest gain. 

 
// Set sweep start and length 
acc_sweep_configuration_requested_range_set(sweep_configuration, .20, 0.4); 
 

 
acc_sweep_configuration_sensor_set(sweep_configuration, 1); 
 

 
// Set repetition mode streaming and the desired sweep frequency 
acc_sweep_configuration_repetition_mode_streaming_set(sweep_configuration, 100);  
 

 
// Set repetition mode max frequency 
acc_sweep_configuration_repetition_mode_max_frequency_set(sweep_configuration);  
 



  IQ Service User Guide 

Page 7 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

 

 

2.3.4 Set Power Save Mode (Advanced) 
 

Each power save mode corresponds to how much of the sensor hardware is shutdown between sweeps. 
Mode A means that the whole sensor is shutdown between sweeps while mode D means that the 
sensor is in its active state all the time. For each power save mode there will be a limit in the 
achievable update rate. Mode A will have the lowest update rate limit but also consumes the least 
amount of power for low update rates. 

 The update rate limits also depend on integration and range settings so for each scenario it is up to the 
user to find the best possible compromise between update rate, range and power consumption. 

 

 

 

ACC_SWEEP_CONFIGURATION_POWER_SAVE_MODE_A Maximum power save 
ACC_SWEEP_CONFIGURATION_POWER_SAVE_MODE_B High power save 
ACC_SWEEP_CONFIGURATION_POWER_SAVE_MODE_C Limited power save 
ACC_SWEEP_CONFIGURATION_POWER_SAVE_MODE_D Sensor always active – no 

power save 
 

 

 
// Decrease receiver gain 
float current_gain; 
current_gain = acc_sweep_configuration_receiver_gain_get(sweep_configuration); 
acc_sweep_configuration_receiver_gain_set(sweep_configuration, 0.8 * current_gain); 
 

 
acc_sweep_configuration_power_save_mode_set 
 (sweep_configuration, ACC_SWEEP_CONFIGURATION_POWER_SAVE_MODE_B); 
 



IQ Service User Guide   

  Page 8 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

3 Capturing IQ Data 

3.1 Creating and Activating the Service 
 

After the configuration has been prepared and populated with desired configuration parameters, the 
actual IQ service instance must be created. During the creation step all configuration parameters are 
validated and the resources needed by RSS are reserved. This means that if the creation step is 
successful we can be sure that it is possible to activate the service and get data from the sensor (unless 
there is some unexpected hardware error).   

 

If the service handle returned from acc_service_create is equal to NULL, then some setting in 

the configuration made it impossible for the system to create the service. One common reason is that 
the requested sweep length is too long, but in general, looking for error messages in the log is the best 
way to find out why a service creation failed. 

When the service has been created it is possible to get the actual number of samples we will get for 
each sweep. This value can be useful when allocating buffers for storing the IQ data.  

 

It is now also possible to activate the service. This means that the radar sensor starts to do 
measurements. 

 

 

 

3.2 Reading IQ Data from The Sensor 
 

The easiest way to read the IQ data from the sensor is to call the function 
acc_service_iq_get_next.  This function blocks until the next sweep arrives from the sensor 

and the IQ data is then copied to the iq_data array.  

 
acc_service_handle_t iq_handle = acc_service_create(iq_configuration); 
 
if (iq_handle == NULL) { 
    /* Handle error */ 
} 
 

 
acc_service_iq_metadata_t iq_metadata; 
acc_service_iq_get_metadata(iq_handle, &iq_metadata); 
uint16_t data_length = iq_metadata.data_length; 
 

 
acc_service_status_t service_status = acc_service_activate(iq_handle); 
 



  IQ Service User Guide 

Page 9 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

 

 

 

3.3 Using Callback Functions to Receive Data (Advanced) 
 

There is an optional way for the application to obtain IQ data from the API. Instead of doing multiple 
calls to the acc_service_iq_get_next function, it is possible to register a callback function. The 

callback function is then automatically called by Radar System Services whenever there is new IQ 
data available from the sensor. The main advantage with using a callback function is that the main 
application is not blocked while waiting for the next sweep. The API overhead also reduced slightly as 
a copy of the IQ data to a second internal buffer is avoided.   

The callback function must be registered in the configuration step before creating the service. A 
pointer to a user defined data structure is also registered. This pointer will be passed to all calls to the 
register callback function. The user defined data structure should contain state information that needs 
to be saved between the calls to the callback function. It is also a good place for storing the length of 
the IQ data array. 

 

 

Note that the code in the callback function will execute in a different thread than the rest of the 
application. This means that access to shared data structures or other shared resources needs to be 
synchronized properly to avoid race conditions. 

 
float complex iq_data[iq_metadata.data_length]; 
acc_service_iq_result_info_t result_info; 
 
for (int i=0 ; i<50 ; i++)  
{ 
    service_status = acc_service_iq_get_next(iq_handle,  
                                             iq_data,  
                                             iq_metadata.data_length,  
                                             &result_info); 
  
 
    if (service_status!= ACC_SERVICE_STATUS_OK) { 
         /* Handle error */ 
    } 
 
    /* Process IQ Data */  
} 

typedef struct 
{ 
     uint16_t     data_length; 
     uint16_t     some_state_information; 
} iq_callback_user_data_t; 
 
iq_callback_user_data_t callback_user_data; 
 
acc_service_iq_iq_float_callback_set(iq_configuration,  
                                    &iq_callback,  
                                    &iq_callback_user_data); 
 



IQ Service User Guide   

  Page 10 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

 

 

 

void iq_callback(const acc_service_handle_t service_handle,  
         const uint16_t *iq_data,  
         const acc_service_iq_result_info_t *result_info,  
         void *user_reference) 

{ 
      
    iq_callback_user_data_t *callback_user_data = user_reference; 
 
    /* Process IQ Data */ 
 
  
} 



  IQ Service User Guide 

Page 11 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

4 Deactivating and Destroying the IQ service 
 

Call the acc_service_deactivate function to stop measurements. 

 

After the service has been deactivated it can be activated again to resume measurements or it can be 
destroyed to free up the resources associated with the service handle. 

 

 
Finally, call acc_rss_deactivate when the application doesn’t need to access the Radar System 
Services anymore. This releases any remaining resources allocated by RSS. 
 

 

 

 
service_status = acc_service_deactivate(iq_handle);  
 
if (service_status!= ACC_SERVICE_STATUS_OK) { 
    /* Handle error */ 
} 
 

 
acc_service_destroy(&iq_handle); 
 

 
acc_rss_deactivate(); 
 



IQ Service User Guide   

  Page 12 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

5 How to Interpret the IQ Data 
 

5.1 Calculating Amplitude and Phase 
Each IQ data sample is a complex number consisting of two parts, a real component and an imaginary 
component. All complex numbers can be written in the form a + bi, where a and b are two ordinary 

real numbers and i is the imaginary unit that can be thought of having the value  ﷩ − 1﷩. A complex 
number z = a + bi is said to have the real part a and the imaginary part b.  

Complex numbers can also be seen as points or vectors in the complex plane and be represented in 
polar coordinates with a radius r and an angle φ. In the context of IQ data, the radius r corresponds to 
the signal amplitude and φ is the phase of the signal.  

 

The Acconeer IQ data API relay on the c99 representation of complex float. Use the functions crealf 
and cimagf to extract the real and imaginary parts of the complex number. 

 

The functions cabsf and cargf can be used to extract the amplitude and phase angle φ. 

 

The phase difference between two IQ data samples z1 and z2 can be calculated using the expression 
cargf(z2 * conjf(z1)).  

 

 

Re 

Im 

a 

b 

Z=a+bi 
(a, b) 

Re 

Im 

φ 

amplitude  r = abs(Z) 
phase φ = arg(Z) 

Polar Coordinates Cartesian Coordinates 

Z 

#include <complex.h> 
 
float complex z = 2 + 3*I; 
 
float a = crealf(z); 
float b = cimagf(z); 

 
float ampliude = cabsf(z); // same as sqrtf(a*a + b*b) 
float phase = cargf(z);    // same as atan2f(b, a) 
 

 
float phase_shift = cargf(z2 * conjf(z1));    
 



  IQ Service User Guide 

Page 13 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

5.2 Plotting amplitude and phase 
The graphs below show the amplitude and phase response from an object placed about 28 cm from the 
sensor. In the amplitude graph we can see shadow reflections 6 and 12 cm behind the object. To 
achieve as stable phase as possible, we are running the A111 radar sensor in a different mode in the IQ 
Service compared to the Envelope and Power Bins services. The gets more stable in the IQ service but 
as a side effect we are getting shadow reflections behind the object. 

 

 

 

Note that in the phase plot below, the signal wraps around from π to -π at a distance around 0.30m and 
then it goes back from -π to π a little bit later.  

 

 

 

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,
14

0,
15

0,
17

0,
19

0,
20

0,
22

0,
24

0,
26

0,
27

0,
29

0,
31

0,
32

0,
34

0,
36

0,
37

0,
39

0,
41

0,
42

0,
44

0,
46

0,
48

0,
49

0,
51

0,
53

0,
54

0,
56

0,
58

0,
59

Amplitude

-4

-3

-2

-1

0

1

2

3

4

0,
14

0,
15

0,
17

0,
19

0,
20

0,
22

0,
23

0,
25

0,
27

0,
28

0,
30

0,
32

0,
33

0,
35

0,
37

0,
38

0,
40

0,
42

0,
43

0,
45

0,
47

0,
48

0,
50

0,
51

0,
53

0,
55

0,
56

0,
58

0,
60

Phase



IQ Service User Guide   

  Page 14 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

5.3 IQ metadata  
In addition to the array with IQ data samples, the metadata and the result info data structures provide 
side information that can be useful when interpreting the IQ data. 

 

The most important member variable in the meta data structure is data_length which holds the 
length of the IQ data array. The other member variables, actual_start_m, actual_length_m 
and free_space_absolute_offset, are needed in applications that needs accurate distance 
measurements.  

metadata struct member Explanation 

actual_start_m Actual start of the sweep - may differ from what requested in 
the configuration.  

actual_length_m Actual length of the sweep - may differ from what requested 
in the configuration. 

data_length Length of the IQ data array. 
free_space_absolute_offset Sensor specific offset error. Can be used to reduce the 

variation in distance measured from different sensors. 
 

 

 
acc_service_iq_metadata_t iq_metadata; 
acc_service_iq_get_metadata(iq_handle, &iq_metadata); 
 



  IQ Service User Guide 

Page 15 of 16   
 
 
2018-07-06  © 2018 by Acconeer – All rights reserved 

6 Micro Motion Measurement Example 
In this example we will implement a simple phase tracking algorithm that can detect micro motions 
about 25 cm from the sensor. It will look at differences in the phase information between consecutive 
sweeps and from that calculate how much the object has moved.  

For each sweep we will look at one sample in the middle of the sweep array so the sweep length can 
be decreased to a few centimeters.  A short sweep range also means that we can run at a high sweep 
frequency. That is good, because between two sweeps, we can only measure phase differences up to 
±π radians – which corresponds to object movements of up to ±1.25mm.  

 

The phase information is unreliable when the signal amplitude is low, so we wait with the calculations 
until the amplitude is above a threshold value. This ensures that we are not measuring just noise.  

The IQ data sample from the previous sweep is stored in the variable z0 and the sample from the 
current sweep is stored in z1. The phase difference between the two sweeps is then calculated and we 
will get the movement between the sweeps by multiplying by wavelength / (4 * pi).  

The variable acc_dist holds the accumulated distance changes since start of tracking. If the amplitude 
falls under the threshold the accumulated distance is reset to 0. Note that we are tracking relative 
movements about 25 cm from the sensor, wo do not measure any absolute distances in this example. 

 

/* Set up the IQ service as described in chapter 2 and 3, use the configuration below */ 
 
float frequencey = 300; 
acc_sweep_configuration_requested_range_set(sweep_configuration, .20, 0.1); 
acc_sweep_configuration_repetition_mode_streaming_set(sweep_configuration, frequencey); 

const float wavelength = 5.0; // wavelength in mm 
const float pi = 3.14159265359; 
const float amplitude_threshold = 0.1; 
float complex z0 = 0; 
float acc_dist = 0; 
acc_service_status_t status; 
 
while (true) { 
    status = acc_service_iq_get_next(iq_handle, iq_data, iq_metadata.data_length, 
                                     &result_info); 
    if (status != ACC_SERVICE_STATUS_OK) { 
        /* handle error */ 
    } 
 
    float complex z1 = iq_data[iq_metadata.data_length/2]; 
 
    if (cabsf(z1) > amplitude_threshold) { 
        if( z0 != 0) { 
            float delta_dist = cargf(z1 * conjf(z0)) * wavelength / (4 * pi); 
            acc_dist += delta_dist;                     
            printf("delta distance % 0.2f mm, accumulated distance % 0.2f mm, speed = " 
                   "% 0.2f m/s\n", delta_dist, acc_dist, delta_dist * frequencey /1000); 
        } 
        z0 = z1; 
    } else if (z0 != 0) { 
        printf("no object detected, resetting tracking\n"); 
        z0 = 0; 
        acc_dist = 0; 
    } 
} 



IQ Service User Guide   

  Page 16 of 16 
 
 
© 2018 by Acconeer – All rights reserved  2018-07-06 

Disclaimer 
The information herein is believed to be correct as of the date issued. Acconeer AB (“Acconeer”) will 
not be responsible for damages of any nature resulting from the use or reliance upon the information 
contained herein. Acconeer makes no warranties, expressed or implied, of merchantability or fitness 
for a particular purpose or course of performance or usage of trade. Therefore, it is the user’s 
responsibility to thoroughly test the product in their particular application to determine its performance, 
efficacy and safety. Users should obtain the latest relevant information before placing orders.  

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement 
of a particular industry standard, Acconeer is not responsible for any failure to meet such industry 
standard requirements. 

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity 
test. It is the user’s responsibility to assure that necessary regulatory conditions are met and approvals 
have been obtained when using the product. Regardless of whether the product has passed any 
conformity test, this document does not constitute any regulatory approval of the user’s product or 
application using Acconeer’s product.  

Nothing contained herein is to be considered as permission or a recommendation to infringe any 
patent or any other intellectual property right. No license, express or implied, to any intellectual 
property right is granted by Acconeer herein. 

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this 
document and/or Acconeer products without notice.  

This document supersedes and replaces all information supplied prior to the publication hereof. 

 

 


