Release Notes

ZED-F9P FW 1.00 HPG 1.00
UBX-18052237 R02
Author Mårten Ström
Date 1 November 2018

Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only permitted with the express written permission of u-blox. The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, visit www.u-blox.com. Copyright © u-blox AG.

Contents

1 General information 1
 1.1 Scope 1
 1.2 Related documentation 1
2 Released firmware image 2
 2.1 Related software 2
3 Firmware description 2
 3.1 Supported GNSS constellations and signals 2
 3.2 High precision GNSS features 2
 3.3 Message interface 3
 3.3.1 Default baud rate 3
 3.3.2 NMEA protocol 3
 3.3.3 UBX protocol 3
 3.3.4 Supported RTCM messages 4
 3.4 Firmware known limitations 6

1 General information

1.1 Scope

These release notes apply to ZED-F9P modules with firmware 1.00 HPG 1.00. Both hardware (HW) and firmware (FW) are in Engineering Sample phase and should only be used for testing purposes. The Engineering Samples must not be used for production.

1.2 Related documentation

- u-blox ZED-F9P Interface Description, UBX-18010854
- u-blox ZED-F9P Data Sheet, UBX-17051259
- u-blox ZED-F9P Integration Manual, UBX-18010802
2 Released firmware image

<table>
<thead>
<tr>
<th>Released firmware image for u-blox ZED-F9P</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
</tr>
<tr>
<td>Firmware version</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROM base support</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2.1 Related software

Version 18.08 (or later) of u-center GNSS evaluation software is recommended to be used with the released product.

3 Firmware description

This chapter highlights selected features supported by this firmware.

- The firmware image contains multi-band RTK rover and reference functionality.
- The firmware image supports raw code and carrier phase measurement output for all supported GNSS signals.

3.1 Supported GNSS constellations and signals

- GPS: L1C/A, L2C
- GLONASS: L1OF, L2OF
- Galileo: E1B/C, E5b
- BeiDou: B1I, B2I
- QZSS: L1C/A, L2C

All signals are enabled in the default configuration, except BeiDou B2I.

3.2 High precision GNSS features

- RTK rover receiver features:
 - High precision RTK fixed navigation using multi-band, multi-constellation GNSS
 - High precision RTK float-only mode (CFG-NAVHPG)
 - RTCM input support (details below), supporting Network RTK (VRS) and local base stations, e.g. another ZED-F9P module
- RTK reference receiver features:
 - Fixed position mode (CFG-TMODE)
 - Survey-in mode (CFG-TMODE)
 - Reference receiver outputs in RTCM standard format (details below)
- Raw measurements:
 - Multi-band, multi-GNSS raw measurement data output (UBX-RXM-RAWX)
 - Navigation data subframe output (UBX-RXM-SFRBX)

By default, the receiver operates as a rover. The receiver must be explicitly configured in order to operate as a reference receiver.
3.3 Message interface

The message interface is described in the u-blox ZED-F9P Interface Description [1]. The released firmware supports Protocol Version 27.00.

3.3.1 Default baud rate

The default baud rate for the UART1 and UART2 ports is 38400 bits per second.

3.3.2 NMEA protocol

The default NMEA version is 4.1. Alternatively, versions 4.0, 2.3, and 2.1 can be used.

3.3.2.1 Updated NMEA messages

- NMEA-GSV (GNSS Satellite In View) includes Signal ID information.
- NMEA-GRS (GNSS Range Residuals) includes Signal ID information.
- NMEA-GBS (GNSS Satellite Fault Detection) includes Signal ID information.

The used GNSS System and Signal IDs are defined in the ZED-F9P Interface Description [1].

3.3.3 UBX protocol

This section lists the main changes in the UBX protocol version 27.00 introduced with this release.

☞ Note that the released firmware introduces a new configuration interface. To configure the receiver, the new UBX-CFG-VALSET, UBX-CFG-VALGET and UBX-CFG-VALDEL should be used. Many of the old configuration messages are deprecated.

3.3.3.1 New UBX messages

- UBX-CFG-VALSET
- UBX-CFG-VALGET
- UBX-CFG-VALDEL
- UBX-NAV-SIG
- UBX-MON-HW3
- UBX-MON-RF
- UBX-MON-COMMS

3.3.3.2 Updated UBX messages

- UBX-NAV-SAT
- UBX-RXM-RAWX
- UBX-RXM-SFRBX

3.3.3.3 Deprecated UBX messages

The following messages are marked as deprecated. Such messages are still supported by the product but are phased out and might not be supported by a future firmware update. Hence such messages should not be used in any new designs.

- UBX-CFG-ANT
- UBX-CFG-CFG
• UBX-CFG-DAT
• UBX-CFG-DGNSS
• UBX-CFG-GEOFENCE
• UBX-CFG-GNSS
• UBX-CFG-ITFM
• UBX-CFG-LOGFILTER
• UBX-CFG-MSG
• UBX-CFG-NAV5
• UBX-CFG-NAVIN
• UBX-CFG-NMEA
• UBX-CFG-ODO
• UBX-CFG-P2
• UBX-CFG-PMS
• UBX-CFG-PRT
• UBX-CFG-RATE
• UBX-CFG-RINV
• UBX-CFG-RXM
• UBX-CFG-SBAS
• UBX-CFG-TMODE
• UBX-CFG-TP5
• UBX-CFG-USB
• UBX-MON-HW
• UBX-MON-HW2
• UBX-MON-IO
• UBX-MON-MSGPP
• UBX-MON-RXBUF
• UBX-MON-TXBUF

3.3.3.4 Dropped UBX messages

The messages listed in this section are no longer supported by the released product.

• UBX-AID-ALM
• UBX-AID-AOP
• UBX-AID-EPH
• UBX-AID-HUI
• UBX-AID-INI
• UBX-NAV-DGNSS
• UBX-NAV-SOL
• UBX-NAV-SVINFO
• UBX-RXM-ALM
• UBX-RXM-EPH
• UBX-RXM-IMES
• UBX-RXM-SVSI

3.3.4 Supported RTCM messages

The receiver supports RTMC 10403.3 with details below.
3.3.4.1 Supported RTCM input messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description / Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCM 1001</td>
<td>L1-only GPS RTK observables</td>
</tr>
<tr>
<td>RTCM 1002</td>
<td>Extended L1-only GPS RTK observables</td>
</tr>
<tr>
<td>RTCM 1003</td>
<td>L1/L2 GPS RTK observables</td>
</tr>
<tr>
<td>RTCM 1004</td>
<td>Extended L1/L2 GPS RTK observables</td>
</tr>
<tr>
<td>RTCM 1005</td>
<td>Stationary RTK reference station ARP</td>
</tr>
<tr>
<td>RTCM 1006</td>
<td>Stationary RTK reference station ARP with antenna height</td>
</tr>
<tr>
<td>RTCM 1007</td>
<td>Antenna descriptor</td>
</tr>
<tr>
<td>RTCM 1009</td>
<td>L1-only GLONASS RTK observables</td>
</tr>
<tr>
<td>RTCM 1010</td>
<td>Extended L1-only GLONASS RTK observables</td>
</tr>
<tr>
<td>RTCM 1011</td>
<td>L1/L2 GLONASS RTK observables</td>
</tr>
<tr>
<td>RTCM 1012</td>
<td>Extended L1/L2 GLONASS RTK observables</td>
</tr>
<tr>
<td>RTCM 1033</td>
<td>Receiver and Antenna Description</td>
</tr>
<tr>
<td>RTCM 1074</td>
<td>GPS MSM4</td>
</tr>
<tr>
<td>RTCM 1075</td>
<td>GPS MSM5</td>
</tr>
<tr>
<td>RTCM 1077</td>
<td>GPS MSM7</td>
</tr>
<tr>
<td>RTCM 1084</td>
<td>GLONASS MSM4</td>
</tr>
<tr>
<td>RTCM 1085</td>
<td>GLONASS MSM5</td>
</tr>
<tr>
<td>RTCM 1087</td>
<td>GLONASS MSM7</td>
</tr>
<tr>
<td>RTCM 1094</td>
<td>Galileo MSM4</td>
</tr>
<tr>
<td>RTCM 1095</td>
<td>Galileo MSM5</td>
</tr>
<tr>
<td>RTCM 1097</td>
<td>Galileo MSM7</td>
</tr>
<tr>
<td>RTCM 1124</td>
<td>BeiDou MSM4</td>
</tr>
<tr>
<td>RTCM 1125</td>
<td>BeiDou MSM5</td>
</tr>
<tr>
<td>RTCM 1127</td>
<td>BeiDou MSM7</td>
</tr>
<tr>
<td>RTCM 1230</td>
<td>GLONASS code-phase biases</td>
</tr>
</tbody>
</table>

3.3.4.2 Supported RTCM output messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description / Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCM 1005</td>
<td>Stationary RTK reference station ARP</td>
</tr>
<tr>
<td>RTCM 1074</td>
<td>GPS MSM4</td>
</tr>
<tr>
<td>RTCM 1077</td>
<td>GPS MSM7</td>
</tr>
<tr>
<td>RTCM 1084</td>
<td>GLONASS MSM4</td>
</tr>
<tr>
<td>RTCM 1087</td>
<td>GLONASS MSM7</td>
</tr>
<tr>
<td>RTCM 1094</td>
<td>Galileo MSM4</td>
</tr>
<tr>
<td>RTCM 1097</td>
<td>Galileo MSM7</td>
</tr>
<tr>
<td>RTCM 1124</td>
<td>BeiDou MSM4</td>
</tr>
<tr>
<td>RTCM 1127</td>
<td>BeiDou MSM7</td>
</tr>
<tr>
<td>RTCM 1230</td>
<td>GLONASS code-phase biases</td>
</tr>
</tbody>
</table>
3.4 Firmware known limitations

- When Galileo is enabled, periodic spikes can occur on the reported velocity and speed. The magnitude of speed spikes is less than 0.1 m/s, and primarily seen on the vertical velocity.
- BeiDou B2I is not enabled by default. If BeiDou B2I is enabled it is necessary that also Galileo reception is active. Even if enabled, all active BeiDou B2I signals will not be tracked.
- Antenna supervisor not starting when ANT_DETECT enabled and low at boot time. It is recommended to use only the antenna short detection and antenna switch but not the antenna detect function (ANT_DETECT). Leave this disabled.
- Antenna state status is not reported (e.g. UBX-MON-HW, UBX-INF-NOTICE messages) unless the antenna supervisor voltage control has been configured.
- A receiver moving at very slow speed (<10 cm/s) does not update the heading information in UBX-NAV-PVT. The velocity vectors can be used reliably.
- The Geofence status pin is only available on the default pin configuration.

4 Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01</td>
<td>31-Aug-2018</td>
<td>mstr</td>
<td></td>
</tr>
<tr>
<td>R02</td>
<td>1-Nov-2018</td>
<td>mstr</td>
<td>Added information about known limitations in section 3.4</td>
</tr>
</tbody>
</table>