
Processing the Danger Shield //1

Processing the Danger Shield

// About Processing:

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics Processing the Danger Shield is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective
owners.

SparkFun Electronics Processing the Danger Shield Educational Material
Material by Linz Craig and Ben Leduc-Mills | Design by Amanda Clark | Edited by Chelsea Moll

What Processing is:
Processing is a Java based programming environment that draws on PostScript and OpenGL for 2-D and
3-D graphics respectively. Processing is a wonderful entry level program that interfaces easily with Arduino
via Serial, making it a simple, yet powerful environment.

Who created Processing:
Processing was conceived at MIT in 2001 by Casey Reas and Ben Fry. Processing is a FLOSS project
(Free, Libre, Open Source Software) with millions of contributors all linked by the Processing website,
Processing.org. Processing has a system of software extensions called “libraries”, this allows people to write
code and extend the abilities of the original software for various purposes. These “libraries” are available on
the website, including the Arduino library which is one way to interface Arduino hardware with your
Processing sketches.

Downloading and installing Processing:
Go to http://processing.org/download and select Linux, Mac or Windows depending on what kind of
machine you have.

For Linux:
Download the .tar.gz file to your home directory, then open a terminal window and type:
Tar xvfz processing-xxxx.tgz
(replace xxxx with the rest of the file’s name, which is the version number)
This will create a folder named processing-1.5 or something similar. Then change to that directory:
cd processing-xxxx
and run processing:
./processing

For Mac:
Double-click the .dmg file and drag the Processing icon from inside this file to your applications folder,
or any other location on your computer. Double click the Processing icon to start Processing.

For Windows:
Double-click the .zip file and drag the folder inside labeled Processing to a location on your hard drive.
Double click the Processing icon to start Processing.

If you are stuck go to http://wiki.processing.org/index.php/Troubleshooting for help.

Processing the Danger Shield //2

// Processing Cheat Sheet:

PROCESSING CHEAT SHEET

DATA TYPES
Primitive

boolean
byte
char
color

double
float

int
long

Composite

Array
ArrayList

HashMap
Object
String

XMLElement

Conversion
binary()

boolean()
byte()
char()
float()
hex()
int()
str()

unbinary()
unhex()

String Functions

join()
match()

matchAll()
nf()

nfc()
nfp()
nfs()

split()
splitTokens()

trim()

Array Functions
append()

arrayCopy()
concat()

expand()
reverse()
shorten()

sort()
splice()

subset()

Constants
HALF_PI

PI
QUARTER_PI

TWO_PI

!

Assign variables

= assign value to a variable
; statement terminator
, separates parameters in function

separates variables in declarations
separates variables in array

/*** Assign variables ***/
//Format is in variable_type variable_name;

int total;
//Then you can assign a value to it later

total = 0;
//Or, assign a value to it at the same time

int total = 0;
//Note: use one of the primitive data types

on the left
!

Structure: program structure
setup() defines initial enviroment

properties, screen size,
background before the draw()

draw() called after setup() & executes
code continuously inside its

block until program is stopped
or noLoop() is called.

size() size() must be first line in
setup() defines dimension of

display in units of pixels
noLoop() Stops Processing from executing

code within draw()
continuously

/*** Example ***/
void setup() {
 size(200, 200);
 background(0);
 fill(102);
}
void draw() {
 //Draw code here
 }

!

2D Primitives

point() draws a point
point(x, y)

point(x, y, z)//3D
line() draws a line

line(x1, y1, x2, y2)
line(x1, y1, z1, x2, y2, z2)//3D

rect() draws a rectangle
rect(x, y, width, height)

elipse() Draws an elipse
ellipse(x, y, width, height)

arc() draws an arc
arc(x, y, width, height, start, stop)

/*** Arc (portion of circle) ***/
//x & y = coords, width & height = size
//start + stop = starting and end points
(think angle in radians) of circle in π pie

LINK
arc(x, y, width, height, start, stop)

arc(100, 100, 50, 50, PI, 2*PI);//Sad Face
 arc(100, 100, 50, 50, 0, PI);//Happy Face
//Note: Play around with start and stop. Use
PIE constants or math operators PI/3 , .5*PI

Relational

== equality
> greater than
>= greater than or equal to
!= inequality
<= less than or equal to

/*** Example ***/
if(total == 100){
 //Then do this
}

!

Iteration
while executes statements while the

expression is true
for loop continues until the test

evaluates to false
/*** while Example ***/
while(total < 100){
 total++; //adds 1 to total
}

/*** for Example ***/
for(int i=0; i<100; i++;){
 //Do something here
}

!

Conditionals

if

 if statement evaluates to true
then execute code

else extension of if statement
executes if equals false

else if extension of if statement
executes if equals true

/*** if / else / else if ***/
if(total == 100){
 //total is equal to 100
}
else
if(total < 100){
 //total is smaller then 100
}
else{
 //total is bigger then 100
}

!

Coloring stuff

background() sets background color in RGB or
hexadecimal color

background(value1, value2,
value3)

background(hexadecimal_value)
fill() sets color for shape

fill(value1, value2, value3)
fill(hexadecimal_value)

stroke() sets color for shape
stroke(value1, value2, value3)

stroke(hexadecimal_value)
/*** Example ***/

//Note call fill or stroke before every shape you
are planning on using different colors on each

stroke(#CCCFFF);
fill(#FFFCCC);

rect(100,100,50,50);

CONTROL
Relational Operators

== (equality)
> (greater than)

>= (greater than or
equal to)

!= (inequality)
< (less than)

<= (less than or equal
to)

Iteration

for
while

Conditionals

break
case

?: (conditional)
continue

default
else

if
switch()

Logical Operators
&& (logical AND)

! (logical NOT)
|| (logical OR)

Cheat Sheet courtesy of Chrisdrogaris.com

Processing the Danger Shield
Worksheets v. 1.0

Name:
Date:

Processing the Danger Shield //3

// A Sketch in Processing:

The Sketch:

A sketch is a file or project you create in Processing. When you first open up a new sketch it will be
completely blank. Below is an example of a blank sketch.

	

Processing the Danger Shield
Worksheets v. 1.0

Name:
Date:

// Toolbar Buttons:

There are a few key interface buttons that you will need to understand to get started in Processing, the rest
you can discover later. These buttons are:

Run:		 Stop:		 New:		 and Save:

	
	 Run executes the code you have written… or it doesn’t if you have errors in your code.

	 Stop ends the execution of your Processing Sketch.

	 New creates a new blank sketch in Processing.

	 Save we are all familiar with, it saves your Processing sketch. Save often and save different versions 	
	 so you can backtrack if you need to. This cannot be stressed enough. Create your own saving file	
	 name structure to keep track of your progress. You may never use your previous saved files, but if 	
	 you do you will be very, very thankful that you saved previous versions.

Processing the Danger Shield //4

Processing the Danger Shield
Worksheets v. 1.0

Name:
Date:

	
 	
 	
 	

	

	

	

	

Processing the Danger Shield
Worksheets v. 1.0

// The Setup Function & Draw Loop:

Name:
Date:

Processing the Danger Shield //5

	

The draw loop:

This function is where everything happens in your sketch. The draw loop is the portion of code that keeps
repeating while the Processing sketch is open. Any animation, interaction or changes to the images or
variables in your sketch will need to be programmed inside of this loop. The draw loop looks like this:

	

The setup function:

This function runs once, at the very beginning of your sketch. You will use setup to set up certain aspects of
your sketch, makes sense right? This is where you will declare things like the size of the window your sketch
will appear in, variables you plan to use a lot, and image modes such as smooth (a less pixelated way to
draw images) and 3-D image ability. Most importantly for this activity you will begin Serial communication in
the setup function. The setup function without anything in it looks like this:

Processing the Danger Shield
Worksheets v. 1.0

// Reference in Processing:

Name:
Date:

Reference in Processing:

One very convenient way to access Processing’s Help Reference is to highlight a function or a word used in
your code, right click and select Find in Reference. In the example below the word “draw” has been
highlighted.

Processing the Danger Shield //6

	

This will open Processing’s Help File directly to the function or word you have highlighted. This will not work
with variable names or anything that is not a “reserved word” already used in the Processing language. Here
is what the Help Reference looks like, it is an invaluable tool for both the beginner and the expert:

	

Processing the Danger Shield
Worksheets v. 1.0

// Getting Started With Processing:

Name:
Date:

Let’s get started with Processing:

1) Let’s draw a dot, a line and some shapes. To do this first we will need a window to draw the dot in.
Type the following code inside your setup function:

void setup (){
size (700, 500);
}

Go ahead and press Run, you should get a window that is 700 pixels wide by 500 pixels tall. Don’t forget the
parentheses or semicolon, everything is important in a Processing sketch. The parentheses indicate values
inside of them and the semicolon tells the computer to execute the line. If you don’t type a line indicating size
Processing will create a 100 X 100 window for you.

Now let’s put a dot (one single pixel) in your window by typing the following inside of the draw loop,
but replace x with a number smaller than 700 and y with a number smaller than 500:

void draw (){
point (x, y);
}

Again, don’t forget the comma or semicolon, they’re important and you will get an error message if you forget
them. Try different values for x and y to gain an understanding of how Processing uses coordinates and the
x and y. Values of 0 are at the absolute left side of the window for x and at the very top for y. What happens
if you choose a number that is larger than your window is wide or tall? Does Processing wrap around to the
other side of the window or does the point disappear? Try it out for yourself.

2) Next we are going to draw a single line in the window. Delete (or comment out using // before the
text) the line that created your dot. Replace it with the following line inside of the draw loop. (We left
the draw loop syntax out from this point on, you’re a big kid now.)

line (x1, y1, x2, y2);

Replace x1 and y1 with the coordinates where your line will start and x2 and y2 with the coordinates where
your line will end. Pretty simply, huh? Delete this line or comment it out before moving on to the next step.

Processing the Danger Shield //7

Processing the Danger Shield
Worksheets v. 1.0

// Drawing Simple Shapes:

Name:
Date:

3) Now let’s draw three shapes, a rectangle, a circle and a triangle. Type the lines below and substitute
numbers for the red variables, each of which are explained below.

triangle (x1, y1, x2, y2, x3, y3);
rect (x, y, width, height);
ellipse (x, y, width, height);

Triangle is pretty straightforward and you should understand what x1, y2 and the rest are at this point.
(The three different points of the triangle.)

Rectangle’s x and y coordinates specify the upper left corner of the rectangle, with width and height
being the width and height of the rectangle. There are a lot of functions that use width and height. These
values are measured in pixels, just like lines and windows, so to find out where the shape ends just add
the starting position (x for width and y for height) to the width or height values of the shape.

Ellipse is almost the same as rectangle except the x and y coordinates indicate the center of the ellipse you
are creating.

The order in which you write the code for the shapes will effect which shape is on top of the others
with the first shape, in this case the triangle, being on the bottom, or behind all the other shapes.
Play around with different values for these shapes until you feel comfortable with them. If you’re already
comfortable with coding these shapes either use a bunch of these shapes to create a more complicated
image, or try some of the more advanced shapes on the handout provided.

4) Leave the code for your three shapes in the Sketch and play with the outline of the shapes.

Changing the outline:
Every shape in processing has a stroke (outline) and a fill (internal color).To change the width of the outline of
your shape use the line below, replace p with the number of pixels you want for the width of your outline.
You will need to write this code before the line that creates the shape you want to affect.

strokeWeight (p);

This line will change the outline for all the shapes you draw after it, so make sure to set it back to 1 after you
are done drawing shapes with thick lines, otherwise everything will have thick outlines.

To create shapes with no outline use the line below. You will need to write this code before the line that
creates the shape you want to affect. Don’t forget to turn the outline back on once you are done by writing
strokeWeight(p); after the line that creates your shape with no outline.

noStroke ();

To get your outline back use the line of code below.

stroke ();

Processing the Danger Shield //8

Processing the Danger Shield
Worksheets v. 1.0

// Adding Color to Your Sketch:

Name:
Date:

To create a shape with just an outline and no “fill” color use the line below. You will need to write this code
before the line that creates the shape you want to affect.

noFill ();

To create shapes with a color after this line has been used you must use the fill(color); line which is
outlined in the next section. You will need to write this code before the line that creates the shape you want
to affect.

5) Adding Color to Your Sketch.

Next let’s give each of the shapes a color. To do this type the following line inserted just before a line of code
that creates a shape.

fill (red, blue, green);

Or to control the color of your outline:

stroke (red, blue, green);

Each of the variables, red, blue and green, are replaced with a number ranging from 0 to 255. The lower the
number the less the color is present in the overall color this line represents. An example of three RGB values
that you would use to create purple are red: 195, green: 3 and blue: 255. For help figuring out these three
numbers in Processing select Color Selector in the Tools menu.

Processing the Danger Shield //9

	

Processing the Danger Shield
Worksheets v. 1.0

// Adding Color to Your Sketch:

Name:
Date:

Processing the Danger Shield /10

Clicking on the color selector will give you a window that looks like this:

	

You can see each of the three RGB (R, G, B) colors that, when added together, create the color you have
selected. In this example each of the colors are maxed out at 255 giving us the color white.

Another way to use the fill function is with a hexadecimal value. In the color selector the hexadecimal value
is indicated by the # character. If you don’t know what a hexadecimal value is check the image above to see
how to get a hexadecimal value using the color selector. In this example the hexadecimal value is #FFFFFF
which signifies white. We aren’t going to go into Hexadecimal now, but it is an important programming
concept that you will bump into soon or later if you continue to write code. The hexadecimal value for purple
is displayed as #C303FF. To use a hexadecimal value in the fill function type the following and replace
hexadecimalValue with your hexadecimal value.

fill(#hexadecimalValue);

Or to control the color of your outline:

stroke(#hexadecimalValue);

Processing the Danger Shield
Worksheets v. 1.0

// Adding Color to Your Sketch:

Name:
Date:

To give your shapes or stroke transparency, simply add the variable transparency to the RGB values already
in the fill function like below. The transparency, or “alpha” value is represented by a number between 0 and
255 where 0 indicates the object is completely see through and 255 represents an object that is completely
solid.

fill (red, blue, green, transparency);
or
fill (#hexadecimalValue, transparency);

Or to control the color of your outline:

stroke (red, blue, green, transparency);
or
stroke (#hexadecimalValue, transparency);

Colors that have transparency and are laid over each other in the draw function will mix to create a new
color. Give each of your three shapes a different color before continuing with the activity.

Processing the Danger Shield //11

Processing the Danger Shield
Worksheets v. 1.0

// Importing Images:

Name:
Date:

Processing the Danger Shield //12

Processing plays well with the following image file types: .jpg, .png and .gif, it also likes raster and vector images (these
last two are math based image types instead of pixel image types, meaning they will never create distortion when
scaled). If everything goes well you should see a message that reads “One file added to the sketch” below the area
where you write code.

	

	

6) Importing Images.

Next let’s draw a background image we have on our computer in our Processing window. To do this first you need to
follow three steps to actually get the image imported into your Processing Sketch.

First select Add File from the Sketch menu and find the file you wish to add to your Sketch.

Next you will create an object to store your image in. You will create this object to store your image inside your
setup function. An object is like a variable, but it’s for a Class, don’t worry about Classes right now, we’ll go into
that later. The object name can be anything you like (I named mine img01), as long as it makes sense to you. But
the Class, PImage, needs to be the same whenever you are using an imported image. Make sure you type this line
above the setup function because you want to be able to use this variable anywhere in your sketch. If you wrote it
inside the setup function or the draw function you would only be able to use it inside those functions. We’ll name
the object img01 because you will be creating more image objects later, which we will call img02, img03, etc…
To create your image object, type the following line above your setup
function.

PImage img01;

Now you have an instance of an object from the PImage Class (this stands for Processing Image) in which
you can store the information that is your actual image. Next you have to assign the data file to the object
you created. To do this you will assign your image data file to the img01 object (or whatever you named it if
you didn’t use img01) using the loadImage function as typed below. Make sure to include quotation marks
around the image data file name as well as the file extension (.jpg, .png, and .gif). The file name is also case
sensitive so make sure you type it exactly as it appears in the folder. Place this code in the setup function as
well.

img01 = loadImage (“Image.png”);

Processing the Danger Shield
Worksheets v. 1.0

// Importing Images:

Name:
Date:

Processing the Danger Shield //13

This means Processing has automatically created a folder called Data inside your Sketch folder with the image file
inside of the Data folder. You can also drag and drop images and fonts (you will also need to import fonts to use them)
into this folder as an alternative way to complete this first step of adding files. After you have completed this step check
your Sketch folder and make sure Processing has created a data folder.

	

Processing the Danger Shield
Worksheets v. 1.0

// Importing Images:

Name:
Date:

Processing the Danger Shield //14

Okay, you’re almost ready to actually draw the image in your Processing Window. To do this you just need
to type one more line using the image function. The image function has three parameters or variables; the
image object you just created, x position and y position. Type the following line and substitute the x and y
positions where you wish your image to display for the variables x and y.

Remember that these variables indicate where the upper left corner of your image will start.
Place this code inside your loop function.

image (img01, x, y);

To control the size of the image simply add two more variables for width and height. If you leave width and
height out of the function, or give them a value of 0, the image will draw itself at whatever size the original
picture is in the data file you imported.

Type the below line inside the draw loop and substitute the size you wish your image to display in pixels for
the variables width and height (or you can enter 0 or leave them out altogether to display at the original
image’s size). The variables width and height are global variables that are always equal to the width and
height of your canvas window. Don’t make Processing draw the image larger than the original file unless you
are okay with image distortion (or you are using a vector file format like .svg).

image (img01, x, y, width, height);

To see this background image press the Run button.

Make sure your background image covers the whole window that Processing is drawing without
covering any of your existing shapes. To do this, make sure that you type the image function command
(the line above) before any of your shape lines. Once you have done that add at least three images to the
Data file folder in your Processing Sketch.

Now load these other images and assign them to PImage objects. The code to do this is shown below in
case you forgot.

Make sure you write this code above your setup function.

PImage img02;
PImage img03;

And make sure you write this code inside your setup function.

img02 = loadImage (“Image02.png”);
img03 = loadImage (“Image03.png”);

Processing the Danger Shield
Worksheets v. 1.0

// Creating A Function:

Name:
Date:

Processing the Danger Shield //15

Here is what your code might look like at this point:

	

7) Creating a Function.

Now we will take the sketch as it stands so far and turn it into what is called a Function. A Function is a way
to package a bunch of code that pertains to one action(s) or image(s) separate from your draw loop, it can
be as complicated or as simple as you like. This way the programmer can use one line of code to call the
function instead of typing all the code over and over again every time he or she wants to use the code in the
Function.

The first thing you will do is to create a new tab in which you can place the Function. To do this simply click
on the tab button and select New Tab.

Processing the Danger Shield
Worksheets v. 1.0

// Getting Started With Processing:

Name:
Date:

Processing the Danger Shield //16

	

Then you will have to create a name for this new tab, or File. Choose something that makes sense, but don’t
worry, you can always rename it later. I named mine simpleImage. Finally, click OK; this will create a new
tab with a name in which you can write code.

Now cut and paste all the code from inside the brackets of your draw loop into the new tab. It should look
something like this:

	

Processing the Danger Shield
Worksheets v. 1.0

// Creating A Function:

Name:
Date:

Processing the Danger Shield //17

functionName is the name of the Function and can be whatever you choose, but it should be relatively
short and make sense to you. Programmers don’t capitalize Function names to make it easy to remember
that it is a Function and not a Class. (We will go into Classes later.) Void simply means that the function will
not send any information back to the Draw Loop when it is “called”. As you gain more experience with
programming you may use this aspect of functions to create some more complicated code. Finish off the
Function by placing a “closed” curly bracket at the end of the code like this: }.

Here is what my Function looks like at this point:

	

I choose to call my function simpleImage. Feel free to change the name of your function from
functionName to simpleImage or whatever makes sense to you.

At this point if you press “play” nothing will happen because you have not called the simpleImage function
yet. The code is there, inside the function, but it doesn’t actually get executed in the draw loop yet.

If all went well you should be able to execute your code by “calling” your Function from inside your draw
loop. To do this simply create a blank line inside the draw loop curly brackets and type the name of your
Function followed by a pair of open and closed parenthesis and a semicolon.

Next we will need to create a Function Header that holds the code you just copy and pasted. A Function
Header is the code at the beginning of the Function as well as the parenthesis that go around the code. To
create your Function Header create a blank line at the beginning of the code by pressing enter and then type
the following:

void functionName () {

}

Processing the Danger Shield
Worksheets v. 1.0

// Creating A Function:

Name:
Date:

Processing the Danger Shield //18

Here’s what it looks like when I call my simpleImage Function from the draw loop:

	

Here’s what happens when I press the run button in Processing:

	

You probably chose a different image and your shapes probably look different, but I think you get the idea.

Processing the Danger Shield
Worksheets v. 1.0

// Function Arguments:

Name:
Date:

Processing the Danger Shield //19

8) Passing the Function Arguments.

By now you may be asking what the point of creating a Function was if the code acts exactly the same as it
did before when it was inside the draw loop. One of the great things about creating Functions is that it makes
your draw loop a lot less cluttered. Where you used to have lines and lines and lines of code, you now have
one nice tidy line that acts the same as all the previous lines of code. Once you have put your code into a
function in a different tab it is also easy to share that function code between sketches. Another great thing
is that you can pass the Function “arguments” (this is a fancy way to say variable values and other pieces
of code) from the draw loop that effect aspects of the Function. It sounds complicated, but we will start with
a couple of simple examples and soon you will understand that there are literally an infinite number of ways
this can be useful.

First we need to “declare” arguments in your Function Header. To do this, simply type the argument type (int,
char, boolean, Class name, etc…) followed by the argument name (which can be anything you like as long as
it makes sense to you) inside the empty parentheses after the Function name. If you wish to pass more than
one argument to the Function you will need to declare each argument inside the parentheses, separating
them with a comma. For now we will only worry about arguments that are variables. I have added an integer
variable called backgnd to my simpleImage Function Header, now it looks like this:

	

Now you add an integer variable to your Function Header that you will use to control the background. You
can call it background or you can call it something else, just make sure you enter the variable type integer
before the name of the variable.

In order to use this variable in the Processing sketch we need to declare it. To do this type the following line
of code above your draw loop. This way the variable is a global variable, meaning you can use it anywhere.

int backgnd;

Processing the Danger Shield
Worksheets v. 1.0

// Function Arguments:

Name:
Date:

Processing the Danger Shield //20

Now we need to make sure that every time we call the Function from the draw loop we supply the Function
with variable values. This is called “passing” the Function variables. To do this simply call the Function the
same as before by typing the Function name, followed by a set of parentheses and, of course, don’t forget
the semicolon. Only this time type your variable value (or values) inside of the parentheses. Make sure that
the variable value corresponds to the variable type. This means that if you declared an integer variable in the
Function Header you must pass the Function a number between 2,147,483,647 and -2,147,483,648 with no
decimals. One last thing to note about passing variables to a Function is that if you pass multiple variables
you will need to make sure that you pass them in the same order you declared them. Also make sure to
separate your variables with commas. Here is what it looks like when I declare the variable, set it equal to the
number one and then pass that variable to the simpleImage function:

	

Processing the Danger Shield //21

Processing the Danger Shield
Worksheets v. 1.0

// Function Arguments:

Name:
Date:

Processing the Danger Shield //21

Pass your Function an integer with a value between (and including) one and three. If you choose to place
more background images in your Data Folder you can pass your Function an integer that goes as high as
the number of images you placed in the Data Folder. If you feel comfortable passing your Function more
than one variable go ahead and plug more variables into the Function Instance.

Now that you have done all this work to declare and pass variables it’s time to use one of the variables you
have passed to your simpleImage Function in the code. We’re going to create a bunch of If Statements
that change the background image of your sketch depending on what variable you pass your simpleImage
Function. You will type the code below inside of the simpleImage Function. To do this first comment out
the line of code that uses the image function to draw the background image by typing two // marks on the
same line as the image function, just before it. Next type at least three If Statements that use the image
function to draw different background images depending on what the value of the variable is that you are
passing your Function. There are a couple different ways to do this if you are familiar with coding, but here is
what the code should look like in the simplest form:

	

Processing the Danger Shield
Worksheets v. 1.0

// Case/Switch Statements:

Name:
Date:

Processing the Danger Shield //22

If you’re familiar with coding go ahead and write a case/switch statement to replace these if statements,
if you’re not sure how to do this don’t worry, we’ll help you. First declare a variable to check in your case/
switch statement. In this case you will most likely use the variable that already exists, “backgnd”. Below is
an example of the code you would use; variables that may differ have been highlighted in red. Simply write
more case statements for variable values other than 2. Case/switch statements will help you save on
memory and are easier to keep track of than a bunch of if statements.

switch (backgnd) {
case: 1

//place code here
break;

case: 2

//place code for second case here
break;
}

Try passing your Function different integer variables from your Draw Loop to make sure your If or case/
switch Statements are working. For example, if I want to see my second image as the background I would
set my backgnd variable equal to two. Pretty sweet, huh? If your backgrounds are similar to each other, but
slightly different, you could create an animation for your background with a little more code. For example,
use pictures of a setting sun in sequential order to make it look like nighttime is arriving. (Hint: Look up For
Loops and use one to change the integer variable you pass to your Function in the Draw Loop to make this
happen).

Processing the Danger Shield
Worksheets v. 1.0

// Sending Data Over Serial:

Name:
Date:

Processing the Danger Shield //23

11) Sending Information from The Danger Shield.

Ok. Now you are ready to load code onto your Danger Shield hardware and use it to send values to your
Processing Sketch. To do this you will need to have a functioning Arduino set up and understand Serial
Communication basics. If you haven’t played around with this before take a minute to familiarize yourself with
Arduino and the concept of Serial Communication. Don’t worry about learning a new language; Arduino works
almost the same as Processing, so everything we have talked about so far applies to the Arduino Environment
as well, although there are a few differences. These differences are because Processing is based on the
programming language Java while Arduino is based on the programming language C.

For the code you will load onto your Danger Shield (or any other Atmega device) there are four basic parts you
will need to send variable values from inside your main Loop function (this function is basically like your Draw
Loop, but it is on the Arduino instead of in the Processing Sketch).

The first thing we need in order to send information from the Danger Shield to the Processing Sketch takes
place in the setup function and simply begins Serial Communication between the Arduino and your desktop
computer. That line of code looks like this (remember to put it in the setup function!):

Serial.begin (9600);

The number 9600 is the “Baud Rate”, or speed at which the computers talk to each other. Without this number
it is possible for one computer to talk faster than the other computer is listening. This will result in gibberish
being communicated, because, although the gibberish would contain the correct information, the receiving
computerwould not be able to decipher it at the correct speed. Imagine a sound being slowed down to the
point where you can’t understand it, although the sound may be someone speaking a sentence you can
understand, if the sound is slowed down too much you won’t be able to hear the actual sentence in
order to understand it.

Second, you need to create a variable that is equal to a reading of the sensors on your hardware. To do this
you will use the digitalRead(); and analogRead(); functions. Here is an example of creating a
variable and assigning it a value you get from reading one of your Danger Shield sensors (the first slider),
although like in the example you will need to create and assign the SLIDER1 variable before hand:

val = analogRead(SLIDER1); //read slider1

Or you might write the code like this, because the slider is on pin 2 of the Arduino. The advantage to writing the
code like this is that you don’t have to declare the SLIDER1 variable.

val = analogRead(2); //read Arduino pin # 2 which slider1 is attached to.

This code does two things; it creates a variable named val and assigns it the value that the analogRead();
function gets from slider1 (which is attached to Arduino pin # 2).

Next you need to send the information via Serial Communication to your Processing Sketch on your computer.
To do this you will be using the Serial.print(); function. Here is an example of a line of code that sends
a variable value to your computer from the Arduino Hardware:

Serial.print(val, DEC);

This is a similar concept to “passing” variables. In this case you are using Serial.print(); to pass the
variable val, and DEC indicates that your variable is a base ten number (a normal, everyday number). You need
the DEC portion of this line because the computer thinks in hexadecimal (base 16) and otherwise you’ll see
some letters when your Processing Sketch receives the values instead of plain old numbers.

Processing the Danger Shield
Worksheets v. 1.0

// Sending Data Over Serial:

Name:
Date:

Processing the Danger Shield //24

Next you will need a way to separate the many different values you will be sending from the Danger Shield to
your Processing Sketch. You didn’t think you’d just be sending one value did you? To separate your values
you need to send a character that is not a number (because otherwise the computer not be able to tell this
difference between the numbers). In the Processing the Danger Shield example code we have created a
variable to store this character called DELIMITER, in this code DELIMITER is a comma, but it could be any
non-number character. If you decide not to use a variable like DELIMITER make sure that you place single
quotes around your non-number character like the second example of code below. Here are two examples
of a line of Arduino code that send the DELIMITER value to your Processing Sketch:

Serial.print(DELIMITER);

Or you might write this line of code like this:

Serial.print(‘,’);

Notice how similar this line of code is to the line of code you used to send your variable val to the
Processing Sketch.

So, that’s almost everything you’ll need for the code on your Danger Shield (or any other Arduino or Atmega
hardware) in order to send information. Just repeat the last three steps of reading a sensor into a variable,
using Serial.print (); to send the value and then sending a delimiter value. The only other thing to
remember is that the very last variable you send should use Serial.println (): to send the variable
value instead of Serial.print ();. It’s just a two letter difference, but it is important because the
Serial.println (); sends a carriage return (this is the same as pressing the enter or return button) after
the value. The carriage return indicates the end of the data your are sending and that the next piece of data
will be the first variable value all over again. Without the carriage return the Processing Sketch would not be
able to tell when you are done sending the set of data.

Processing the Danger Shield
Worksheets v. 1.0

// Arduino Code:

Name:
Date:

Here is what all of the code I am loading onto my Arduino looks like:
(I had to cut it up into sections because it’s too big to see all at once.)

Processing the Danger Shield //25

Pin definitions, first part of code

Setup function, second part of code

	

Pin definitions, first part of code Setup function, second part of code

Processing the Danger Shield
Worksheets v. 1.0

// Arduino Code:

Name:
Date:

Loop function, third portion of code

Processing the Danger Shield //26

	

Processing the Danger Shield
Worksheets v. 1.0

// Arduino Code:

Name:
Date:

Second portion of the loop function, fourth portion of code.

Processing the Danger Shield //27

	
 The establishContact function, called from setup function, fifth portion of code.

	

You can just copy this if you like, but make sure you go back through this handout and understand what
the four main portions are. The most important is the establishContact () function, which is described
below.

The Serial.available () function causes the Arduino to wait until it has received a byte worth of
information and then Serial.available () is set equal to whatever the byte is. The Arduino checks to
see if there is a byte in Serial.available (). If there is a byte of information in Serial.available ()
that indicates that the Arduino has made contact with the computer and the Processing sketch. If there is
not any Serial information available the Arduino sends the message “Hello” to the Processing sketch and
continues to wait for a byte of information to be present in Serial.available (). Once the Arduino has
received a byte of Serial information it is ready to start spitting information over the Serial line to the
Processing sketch.

Processing the Danger Shield
Worksheets v. 1.0

// Importing the Serial Library:

Name:
Date:

Processing the Danger Shield //28

12) Receiving Information from the Danger Shield in the Processing sketch.

Let’s go back to the Processing Sketch now and type in the code we will need for the Processing Sketch to
receive the information your Arduino is sending.

The very first thing you will need to do is import the Library that Processing uses to work with Serial
Communication. Libraries are portions of code that other programmers have written. This means that
you can use functions that exist in the Library in your own code by first importing the Library, creating an
Instance of a Class found inside the library and then typing the Functions found inside that Class using
something called “Dot notation”. Dot notation just means that first you will type the Library name, followed
by a period, and then the name of the function in the Library you are using. Don’t worry if this seems
complicated, we’ll go through it step by step and tell you when you are using Dot notation.

Here’s the code you use to import the Processing Serial Library:

import processing.serial.*;

You can also import libraries by clicking on the Sketch tab in Processing, selecting “Import Library” and then
selecting the library you wish to import. Importing a library through the menu will create a line of code similar
to the line above at the very top of your code. When you import libraries they should always be imported at
the very top of your sketch.

The code used to import a library is an example of Dot notation; it simply means that you are importing
something from the Serial Library of your Processing Library. (It is possible to have Libraries inside of
Libraries; this is kind of like the Kiddie section Library inside your local physical Library.) The * in this line of
code means that the computer should import all the Classes in the Serial Library. Don’t forget both of the
periods in this line of code; they’re both important!

Processing the Danger Shield
Worksheets v. 1.0

// Receiving Data Over Serial:

Name:
Date:

After you have imported your Library create a Boolean variable called “firstContact”. We will use this
variable to check to see if Serial communication has started yet. This way the Arduino knows to keep
checking for beginning communication if it doesn’t hear anything from the Processing sketch. Here is
the code you will use to create that variable:

boolean firstContact = false;

Next we need to create an “object” which is like an Instance of a Class. One Serial Class Object to store the
USB port that your computer and Danger Shield are talking over and we will also create an array of integers
to store the data you get sent from the Danger Shield. Arrays are just a list of variables arranged inside of
square parentheses. Think of an array as a row of mailboxes you can put data into. The important thing to
know is that you can store and access a bunch of variables of the same data type in one array.

Here is the code you will use to create this object and array, type these above the setup function:

Serial usbPort;
int [] sensorData;

usbPort and sensorData are just the Serial Object and variable names I chose, they really can be anything
you like, they just need to make sense. Right now this array and object are empty. We will give the object
some values inside the setup function next. This is called “Initializing” the object. Before we do that let’s talk
about Classes for a second.

Classes are a way to organize code similar to Functions. The difference is that Classes can have functions
inside of them. Right now this might seem like a pain in the butt, however it is very useful once you start
doing more complicated things. Some key things to remember is that while you pass Functions variables,
you will pass Classes arguments and that Classes are a little bigger (or maybe just more important) than
Functions because they can have Functions inside of them. Arguments can be more complicated than
variables, but are a similar concept.

Processing the Danger Shield //29

Processing the Danger Shield
Worksheets v. 1.0

// Receiving Data Over Serial:

Name:
Date:

These next two lines of code are very important because they establish where the Serial Communication is
coming from that your Processing Sketch receives. Without these lines your Processing Sketch is kind of like
a person waiting for a letter without a mailbox to check, even if the letter has been sent and delivered the
person has no hope of actually getting it! The USB port is the digital mailbox where all the information is
delivered. Below is the code you will use to define your USB port Class by creating a new Instance of the
Class with some variables. Type it inside your setup function.

usbPort = new Serial (this, Serial.list() [0], 9600);
usbPort.bufferUntil (‘\n’);

The first line creates a new Serial object, it’s very similar to creating an Instance of a Function. (Remember
Instances? If not go back to the Creating a Function section.) The values inside the parentheses do three
different things; this makes sure that the code in this line references this particular object of the Serial Class,
the command Serial.list() [0] lists the available Serial Port on the computer in an array, the number
0 is the first value in the array, which is the Serial Port Processing uses, and 9600 is the baud rate at which
your computers are communicating. Make sure that this baud rate matches the baud rate in your Arduino
code you are using the Danger Shield.

The second line of code is much simpler. It uses Dot Notation to access the bufferUntil Function in the
Serial Class. This Function buffers data coming in through the Serial Port until it receives the value in the
parentheses. In this case the Processing Sketch is waiting for \n, which is what the Arduino sends for a
carriage return (Which is what comes at the end of Serial.println();), the reason it is inside single
quotes is because the variable type is char. Once the bufferUntil Function receives this value it will call a
serialEvent Function that you will type elsewhere. These qualities of the bufferUntil Function are
already defined inside of the Serial Class. (See how useful Classes are already?)

All right, now we’re ready to define our serialEvent Function. To define the Function let’s start with just
the Function header. This is the portion of the code that the Processing Sketch looks for whenever there is
data incoming on the Serial Port. It looks like this:

void serialEvent (Serial usbPort) {
//code goes here
}

By now you may recognize that you are passing this serialEvent Function the object usbPort and that
it’s type is a Class called Serial. This Function is important because it is called every time there is data
available in the Serial buffer and the draw loop starts over. This means that this Function happens every draw
loop that the computer running your Processing Sketch receives some Serial Communication from the
usbPort object (Which is your Serial Communication hardware Port). So this is where you will define what
the computer does with the information coming from the Danger Shield over the Serial Communication Port.

Processing the Danger Shield //30 Processing the Danger Shield //31

Processing the Danger Shield
Worksheets v. 1.0

// Receiving Data Over Serial:

Name:
Date:

The code you will write inside this particular serialEvent Function will listen to the information coming
from the the Arduino to the USB port that Processing is listening to and save it into a String variable (a String
variable is a fancy way to say a bunch of characters) and then divide the String into sections and save those
sections in your array that you created at the beginning of this section. If it sounds complicated, don’t worry,
we’ll walk through each of the pieces of code. The code you will type inside of the serialEvent Function
(curly brackets) looks like this:

String usbString = usbPort.readStringUntil (‘\n’);
if (usbString != null) {
	 usbString = trim(usbString);
int sensors[] = int (split (usbString, ‘,’));
	 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {
		 println(“Sensor “ + sensorNum + “: “ + sensors [sensorNum]);
		 }
	 }

The first line creates a String variable called usbString and fills it with the data coming over the usbPort
object (which was created using the Serial Class) using the Serial Class’s Function readStringUntil. See
the Dot Notation? Remember Dot Notation? The readStringUntil Function enters character variables
into the usbString until it reads the characters inside the parentheses. You may remember that \n is what
the Arduino will send after any Serial.println(); function and this indicates that the last sensor value
has been sent to the Processing Sketch.

The second line (and matching closed curly bracket) is an If Statement that simply tells the computer to
continue with the code inside the curly brackets if the usbString is not empty. (In this code the characters
!= mean not equal to, in most programming languages ‘!’ in some form or another is used to represent
false or “not equal.” The word “null” means nothing, empty or no value.

The third line uses the trim function to remove the carriage return (created by the Serial.println();
Function) and any “whitespace” characters from the beginning and end of the String in usbString.
Whitespace characters include space, carriage return, tab and the Unicode “nbsp” character. Unicode
“nbsp” stands for “non-break space” and is a character that acts like a space, but doesn’t take up as much
physical space in memory.

The fourth line uses the split Function to divide up the usbString into integer variables and enters these
variable values into the sensors array. The split Function takes two arguments; the name of the String to be
split and the character that indicates the place where the split should occur. Remember back when you were
sending Serial.print(); Functions from your Danger Shield Arduino? The second argument in the split
Function should match the character you sent as a delimiter.

The fifth line (and matching closed curly bracket) is a simple “for” loop that cycles through the various values in
the sensors array. If you need a refresher on how for loops work see the attached handout.

The sixth and final line is a println(); function which displays the values of the sensors array that the “for”
loop is cycling through.

The fifth and sixth lines are not strictly necessary in order to get information from the Danger Shield hardware, but
it is nice to be able to see the values coming over the USB port and very useful for troubleshooting.

Processing the Danger Shield //31

Processing the Danger Shield
Worksheets v. 1.0

// Processing Code:

Name:
Date:

Here is what my code looks like so far in my Processing sketch now that I have added the Serial Communication
portions:

	

	

Processing the Danger Shield //32

Processing the Danger Shield
Worksheets v. 1.0

// Integrating Sensor Values:

Name:
Date:

13) Integrating the Information from the Danger Shield into your Function.

Now that there is data coming into your Processing Sketch from your Arduino you will need to plug that data
into the Classes and Functions of your Processing Sketch. Currently the variables you got from the Danger
Shield are listed in an array named sensors. To make things simpler, first you can assign these array values
to integer variables. If you replace these variables with sensors array values. You may run into some erroe
messages. Remember that arrays start with the number 0, so sensors[1] is actually the second value in
the sensors array.

Now assign the first value in the sensors array (which is coming from Slider # 1 on the Arduino and the
Danger Shield) to a variable by typing the following line of code:

int sensorValue01 = sensors[0];

By now you probably understand exactly what this line does, but in case you don’t we’ll go over it again.

Processing the Danger Shield //33

Processing the Danger Shield
Worksheets v. 1.0

// Integrating Sensor Values:

Name:
Date:

The first portion of this line, int, is necessary to create an integer variable. In this case the integer variable is
named sensorValue01, but you can name it anything that makes sense to you. The single equals sign is
used to actually assign a value to the sensorValue01 integer variable. sensors[] is the array that you
are getting information from and the number 0 is the place inside the array where the computer is looking
for the variable value.

Now that you have one of the variables from the slider on the Arduino and Danger Shield in your Processing
sketch you can use that variable to change something in your Processing draw() loop .

Do this for all the sensor values.

Let’s use the value you will get from the first slider on your Arduino DangerShield sketch to change your
Processing sketch’s background. To do this you will need to write the line of code written below inside the
draw loop. We will explain this code in the next section. Insert this code in place of the line of code you are
currently using to set the variable backgnd to either one, two or three inside of the draw loop.

Processing the Danger Shield //34

You will also need to change your simpleImage function so that it knows how to use the various values
that you are sending it in backgnd. One simpler way to do that is to use a bunch of if statements. Here is a
simple version of that code:

	

Processing the Danger Shield
Worksheets v. 1.0

// Integrating Sensor Values:

Name:
Date:

Processing the Danger Shield //35

Run your Processing code and play with the light sensor. Next you will map the value in sensorValue01
to the range that Processing uses to represent RGB colors. The value in sensorValue01 goes up to 1023,
while the value you need to represent the color red only goes up to 255. Luckily for you there is a function
designed specifically to do this. Below is an example and explanation.

Write this code above your setup function so you will be able to use this variable anywhere in your sketch.
Set it equal to zero so in case you don’t get any values from your DangerShield it won’t break your sketch.

float redValue = 0;

Write this code inside your draw loop.

redValue = map (sensorValue01, 0, 1023, 0, 255);

redValue is the name of the variable we are creating and it’s type is float. redValue needs to be a
float variable. Because the math that changes the original value in sensorValue01 you may wind up
with a decimal, which will not play nicely with an integer variable. Now that the computer has created
a variable use the single equals sign to assign the value that comes out of map to that variable.

The two sets of numbers that follow the variable inside the parenthesis are the two sets of numbers that
define how small the variable can get and how large the variable can get. The first two numbers, 0 and 1023,
define the range that the variable starts in and the second set of numbers, 0 and 255, define the range we
are squishing the variable down to. For example, if the original variable’s value is 512 (halfway between 0
and 1023), then the map function will make redValue equal to approximately halfway between 0 and 255,
or around 128. If you’re still not sure about the map function feel free to look it up in the Processing reference.

Go back and assign the rest of the values inside your sensors array (sensors []) to variables with
names that make sense to you. If you are continuing to use the examples provided in this text assign
sensors[1] to sensorsValue02. Remember that even though the place in the array is #1, it is the second
value because place #0 also holds a value.

Then write the map function code from above three times, except instead of creating more variables
called redValue, create variables called greenValue and blueValue, and assign slider # 2 (or
sensorValue03) to the greenValue variable and slider # 3 (or sensorValue05) to the blueValue
variable.

Next you need to make sure you pass these variables to your simpleImage function. You’ve already done
this once by passing the backgnd variable to the simpleImage function so you should be familiar with this
concept. Make sure you pass all three color variables. If you’re running into trouble make sure that you have
the variable in the parenthesis who you call the simpleImage function from your draw loop as well as in the
simpleImage function header.

Processing the Danger Shield
Worksheets v. 1.0

// Integrating Sensor Values:

Name:
Date:

Processing the Danger Shield //36

Plug the redValue, greenValue and blueValue variables into your existing fill() function that occurs
before your shape functions in the simpleImage function. Now you can control the color of these shapes
with your sliders. Now my simpleImage function looks like this:

	

As you move the sliders up and down you should see a change in the color of your shapes.

Processing the Danger Shield //36

Processing the Danger Shield
Worksheets v. 1.0

// Using the Danger Shield as an Interface:

Name:
Date:

Processing the Danger Shield //37

14) Using the Buttons on The DangerShield to Set a Variable

But what if you don’t want the color of your shape to change until you push the button on your DangerShield
below the slider? That means you need to create a second set of variables (I’m going to call them
redValueB4, greenValueB4, etc…) to keep track of the colors before you press the button and a
way to set your first set of variables (redValue) once the button has been pushed.

First things first we have to declare our new variables on the global scale. This means we declare them at the
very top of the sketch outside of any other functions. I’ll bet you didn’t even know you had been declaring
global variables. To declare these variables type the following lines of code at the very top of the sketch:

int redValueB4;
int blueValueB4;
int greenValueB4;

Next you will need to change the line of code that takes the readings out of the array that you get out of your
serialEvent function so that the readings get stored in your first variable. If you don’t remember this line
of code so I have rewritten one of these lines below:

So change this line:
redValue = map (sensorValue01, 0, 1023, 0, 255);

To this line:
redValueB4 = map (sensorValue01, 0, 1023, 0, 255);

Do this for the other two colors as well.

Now all you need to do is create a couple If statements that set the redValue variable equal to
redValueB4 if the button below the slider that represents redValue has been pushed.

Remember that the buttons read HIGH (or 1) when they have not been pushed and LOW (or 0) when they
have been pushed because they use pull up resistors. Also remember that the button values come right after
the slider values in your sensorValue array.

Here is an example of the code you will use to make this button pushing action happen, write it in your draw
loop before you call your simpleImage function:

if (sensorValue02 == 0) {
redValue = redValueB4;
}

Do these two steps for the other two colors as well.

Pretty easy, huh?

If you would like to be able to tell what color the sensor represents before you push it, simply create a square
for each slider that is filled with the color of the variable redValueB4 (or greenValueB4 or blueValueB4).
Put these shapes in a corner of your window and make them fairly small so they don’t take up space. By
now you should be able to do this on your own, but if you need help go back and look at the shape and fill
sections at the beginning of this handout.

Processing the Danger Shield
Worksheets v. 1.0

// Using the Danger Shield as an Interface:

Name:
Date:

Processing the Danger Shield //38

15) Changing the Background Using the Photoresistor

As a last step before you start playing around with Processing and the DangerShield yourself let’s use the
photoresistor to change your background. If you chose backgrounds that are the same place, but different
times of day, this would be a great way to use the light in your surroundings to change the background of
your sketch to match.

The photoresistor is the eighth value in your sensorValue array, so you will access it using the variable
sensorValue07. Depending on how many different background images you have you will need to map the
value of sensorValue07 differently. Map sensorValue07 to the number of background images you have
and assign that variable to the backgnd variable. Put this code in your draw loop before you call your
simpleImage function and it will change the backgnd variable that interacts with your simpleImage
function. Below is an example of the code you might use to do that. I have mapped the sensorValue07
to the numbers one through three simply because that is how many background images I have. You may
have many more, so feel free to change the code.

backgnd = int (map(sensorValue07, 0, 1023, 1, 3));

The int () function, which we used before when mapping other variables, simply changes the value that
the map function creates into an integer. This is necessary because otherwise your simpleImage function,
which receives an integer variable, would not know what to do when the map function returned a decimal.

Processing the Danger Shield
Worksheets v. 1.0

// Processing Code:

Name:
Date:

Processing the Danger Shield //39

Now my code looks like this (I have broken it up into multiple parts so it will fit):

	

Processing the Danger Shield
Worksheets v. 1.0

// Processing Code:

Name:
Date:

Processing the Danger Shield //40

Processing the Danger Shield
Worksheets v. 1.0

// Processing Code:

Name:
Date:

Processing the Danger Shield //41

And my simpleImage function looks like this:

	

16) The Next Step

Um… wow. That’s a lot to process. But by now you should have the basic skills necessary to get sensor
information off of Arduino hardware into your Processing sketches on your computer. You can do anything
with this. On the DangerShield we still haven’t used the temperature sensor, the capacitive touch sensor or
the seven segment display. Feel free to play around with those, or learn more about Processing on your own
and create a game, or an animation, or a data logging sensor system, or an amazing invention!

