
Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Installing Arduino 
 

Mac platform PC platform 
1. Double click the file arduino-0022.dmg 
inside the folder \SIK Applications\Mac\ 
 
2. Go to “Arduino” in the devices section of 
the finder and move the “Arduino” application 
to the “Applications” folder. 
 
3. Go to the “Arduino” device, double click 
and install: 
“FTDI drivers for Intel Macs 0022.pkg” 
or 
“FTDI drivers for PPC Macs 0022.pkg” 
then Restart your computer. 
 
4. Plug your Arduino board into a free USB 
port using the USB cord provided. 

1. Unzip the file arduino-0022 inside the 
folder \SIK Applications\PC\. We recommend 
unzipping to your c:\Program Files\ directory. 
 
2. Open the folder containing your unzipped 
Arduino files and create a shortcut to 
Arduino.exe. Place this on your desktop for 
easy access. 
 
3. Plug your Arduino board into a free USB 
port using the USB cord provided. Wait for a 
pop up box about installing drivers. 
 
4. Skip “searching the internet”. Click “Install 
from a list or specific location” in the 
advanced section. Choose the location 
c:\program files\arduino-0022\drivers\Arduino 
Uno\  
 
(You may have to do this last step more 
than once) 
(If you are using the Duemilanove you will 
have to choose the sub-directory, FTDI 
USB Drivers and you will have to do this 
twice) 

 
Issues with Java? Make sure you have the latest version of Java installed.    

Otherwise.... 
Ta da! You're ready to open the Arduino programming environment. 

 
(For Linux info go to http://ardx.org/LINU) 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

A few notes about Arduino setup 
 

Selecting your board: 
 You are using the Arduino Uno board with an ATmega 328 micro-controller. This means 
you will need to select “Arduino Uno” as your board. To do this you click on the “Tools” menu 
tab, then click the “Board” tab and select “Arduino Uno”. If you are using a different board you 
will need to select the correct model in order to properly upload to your board. 
Selecting your com port: 
 Another option that is necessary to change occasionally is your “Serial Port”. This can 
also be found under the “Tools” menu tab. When you click on this tab you should be presented 
with at least one com port labeled “COM1” (or “COM2, etc....) This indicates which USB port 
your board is plugged into. Sometimes you will need to make sure you are using the correct com 
ports for your Arduino, here is some information on your com ports depending on which platform 
you are using: 

Mac PC 
The Mac version of Arduino refreshes your com 
port list every time you plug in a device. For this 
reason all you really need to do is select the com 
port called “/dev/cu.usbserial-XXXX” where XXXX 
will be a value that changes.  
 
 

The PC version of Arduino creates a new com 
port for every distinct board you plug into your 
computer. You will need to find out which com 
port is the board you are currently trying to use. 
This is likely to be COM3 or higher (COM1 and 
COM2 are usually reserved for hardware serial 
ports). To find out, you can disconnect your 
Arduino board and re-open the menu; the entry 
that disappears should be the Arduino board. 
Reconnect the board and select that serial port.  

A few more tidbits that will help to know.... 
 There are seven buttons that look like this at the top of your Arduino window: 

 

Here is what they do from left to right: 
Compile Stop New Open Save Upload Serial Monitor 

This checks 
your code for 

errors. 

This stops 
the program. 

This creates 
a new 
sketch. 

This opens 
an existing 

sketch. 

This saves 
the open 
sketch. 

This 
uploads the 

sketch to 
your board. 

Used to display 
Serial 

Communication. 
 

 
For any words or phrases you are unfamiliar with try the Glossary in the back. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Basic Arduino Reference Sheet 
Installation:  Arduino:  http://www.arduino.cc/en/Guide/HomePage  
Support:  Arduino:  http://www.arduino.cc, http://www.freeduino.org, google.com  
Forums:  Arduino:   http://forum.sparkfun.com/viewforum.php?f=32  
 

Basic Arduino code definitions: 
 

setup( ): A function present in every Arduino sketch. Run once before the loop( ) function. Often 
used to set pinmode to input or output. The setup( ) function looks like:  
 void setup( ){ 
  //code goes here 
  } 
 

loop( ): A function present in every single Arduino sketch. This code happens over and over 
again. The loop( ) is where (almost) everything happens. The one exception to this is setup( ) 
and variable declaration. ModKit uses another type of loop called “forever( )” which executes 
over Serial. The loop( ) function looks like: 
 void loop( ) { 
  //code goes here 
  }  
 

input: A pin mode that intakes information. 
 

output: A pin mode that sends information. 
 

HIGH: Electrical signal present (5V for Uno). Also ON or True in boolean logic. 
 

LOW: No electrical signal present (0V). Also OFF or False in boolean logic. 
 

digitalRead: Get a HIGH or LOW reading from a pin already declared as an input. 
 

digitalWrite: Assign a HIGH or LOW value to a pin already declared as an output. 
 

analogRead: Get a value between or including 0 (LOW) and 1023 (HIGH). This allows you to 
get readings from analog sensors or interfaces that have more than two states. 
 

analogWrite: Assign a value between or including 0 (LOW) and 255 (HIGH). This allows you to 
set output to a PWM value instead of just HIGH or LOW. 
 

PWM: Stands for Pulse-Width Modulation, a method of emulating an analog signal through a 
digital pin. A value between or including 0 and 255. Used with analogWrite. 
  

Arduino Uno pin type definitions: (Take a look at your Arduino board) 
Reset 3v3 5v Gnd Vin Analog In  RX/TX Digital PWM(~) AREF 
Resets 
Arduino 
sketch 
on 
board  

3.3 
volts 
in 
and 
out 

5 
volts 
in 
and 
out 

Ground Voltage 
in for 
sources 
over 7V  
(9V - 12V) 

Analog 
inputs, can 
also be 
used as 
Digital 

Serial 
comm. 
Receive 
and 
Transmit 

Input or 
output, 
HIGH or 
LOW 

Digital 
pins with 
output 
option of  
PWM 

External 
reference 
voltage 
used for 
analog 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Basic Arduino Pin Reference Sheet 

 
 These boards below use the same micro-controller, just in a different package. 
The Lilypad is designed for use with conductive thread instead of wire and the Arduino 
Mini is simply a smaller package without the USB, Barrel Jack and Power Outs. Other 
boards in the Arduino family can be found at http://arduino.cc/en/Main/Hardware.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

 
Analog 

A continuous stream of information with values between and including 0% and 100%. 
 

 Humans perceive the world in analog. Everything we see and hear is a continuous 
transmission of information to our senses. The temperatures we perceive are never 100% hot or 
100% cold, they are constantly changing between our ranges of acceptable temperatures. (And 
if they are out of our range of acceptable temperatures then what are we doing there?)   This 
continuous stream is what defines analog data. Digital information, the complementary concept 
to Analog, estimates analog data using only ones and zeros.  
 In the world of Arduino an Analog signal is simply a signal that can be HIGH (on), LOW 
(off) or anything in between these two states. This means an Analog signal has a voltage value 
that can be anything between 0V and 5V (unless you mess with the Analog Reference pin). 
Analog allows you to send output or receive input about devices that run at percentages as well 
as on and off. The Arduino does this by sampling the voltage signal sent to these pins and 
comparing it to a voltage reference signal (5V). Depending on the voltage of the Analog signal 
when compared to the Analog Reference signal the Arduino then assigns a numerical value to 
the signal somewhere between 0 (0%) and 1023 (100%). The digital system of the Arduino can 
then use this number in calculations and sketches. 
 To receive Analog Input the Arduino uses Analog pins # 0 - # 5. These pins are designed 
for use with components that output Analog information and can be used for Analog Input. 
There is no setup necessary, and to read them use the command:  
 analogRead(pinNumber); 
where pinNumber is the Analog In pin to which the the Analog component is connected. The 
analogRead command will return a number including or between 0 and 1023. 
 The Arduino also has the capability to output a digital signal that acts as an Analog 
signal, this signal is called Pulse Width Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 
and #11 have PWM capabilities. To output a PWM signal use the command: 
 analogWrite(pinNumber, value);  
where pinNumber is a Digital Pin with PWM capabilities and value is a number between 0 (0%) 
and 255 (100%). On the Arduino UNO PWM pins are signified by a ~ sign. For more information 
on PWM see the PWM worksheets or S.I.K. circuit 12. 
 

Examples of Analog: 
Values: Temperature, volume level, speed, time, light, tide level, spiciness, the list goes on.... 
Sensors: Temperature sensor, Photoresistor, Microphone, Turntable, Speedometer, etc.... 
 

Things to remember about Analog: 
Analog Input uses the Analog In pins, Analog Output uses the PWM pins 
To receive an Analog signal use: analogRead(pinNumber);  

 To send a PWM signal use: analogWrite(pinNumber, value);  
 Analog Input values range from 0 to 1023 (1024 values because it uses 10 bits, 210) 

PWM Output values range from 0 to 255 (256 values because it uses 8 bits, 28) 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Digital 
An electronic signal transmitted as binary code that can be either the presence or absence of 

current, high and low voltages or short pulses at a particular frequency. 
 

 Humans perceive the world in analog, but robots, computers and circuits use Digital. A 
digital signal is a signal that has only two states. These states can vary depending on the signal, 
but simply defined the states are ON or OFF, never in between. 
 In the world of Arduino, Digital signals are used for everything with the exception of 
Analog Input. Depending on the voltage of the Arduino the ON or HIGH of the Digital signal will 
be equal to the system voltage, while the OFF or LOW signal will always equal 0V. This is a 
fancy way of saying that on a 5V Arduino the HIGH signals will be a little under 5V and on a 
3.3V Arduino the HIGH signals will be a little under 3.3V.   
 To receive or send Digital signals the Arduino uses Digital pins # 0 - # 13. You may also 
setup your Analog In pins to act as Digital pins. To set up Analog In pins as Digital pins use the 
command: 
  pinMode(pinNumber, value);  
where pinNumber is an Analog pin (A0 – A5) and value is either INPUT or OUTPUT. To setup 
Digital pins use the same command but reference a Digital pin for pinNumber instead of an 
Analog In pin. Digital pins default as input, so really you only need to set them to OUTPUT in 
pinMode.  To read these pins use the command: 
  digitalRead(pinNumber);  
where pinNumber is the Digital pin to which the Digital component is connected. The digitalRead 
command will return either a HIGH or a LOW signal. To send a Digital signal to a pin use the 
command: 
  digitalWrite(pinNumber, value);  
where pinNumber is the number of the pin sending the signal and value is either HIGH or LOW. 
 The Arduino also has the capability to output a Digital signal that acts as an Analog 
signal, this signal is called Pulse Width Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 
and #11 have PWM capabilities. To output a PWM signal use the command:  
 analogWrite(pinNumber, value);  
where pinNumber is a Digital Pin with PWM capabilities and value is a number between 0 (0%) 
and 255 (100%). For more information on PWM see the PWM worksheets or S.I.K. circuit 12. 
 

Examples of Digital: 
Values: On/Off, Men's room/Women's room, pregnancy, consciousness, the list goes on.... 
Sensors/Interfaces: Buttons, Switches, Relays, CDs, etc.... 
 

Things to remember about Digital: 
Digital Input/Output uses the Digital pins, but Analog In pins can be used as Digital 
To receive a Digital signal use: digitalRead(pinNumber);  
To send a Digital signal use: digitalWrite(pinNumber, value);  

 Digital Input and Output are always either HIGH or LOW 
 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Input Signals 
A signal entering an electrical system, in this case a micro-controller. Input to the Arduino pins 

can come in one of two forms; Analog Input or Digital Input. 
 Analog Input enters your Arduino through the Analog In pins # 0 - # 5. These signals 
originate from analog sensors and interface devices. These analog sensors and devices use 
voltage levels to communicate their information instead of a simple yes (HIGH) or no (LOW). For 
this reason you cannot use a digital pin as an input pin for these devices. Analog Input pins are 
used only for receiving Analog signals. It is only possible to read the Analog Input pins so there 
is no command necessary in the setup( ) function to prepare these pins for input.  To read 
the Analog Input pins use the command:  
 analogRead(pinNumber);  
where pinNumber is the Analog Input pin number. This function will return an Analog Input 
reading between 0 and 1023. A reading of zero corresponds to 0 Volts and a reading of 1023 
corresponds to 5 Volts. These voltage values are emitted by the analog sensors and interfaces. 
If you have an Analog Input that could exceed Vcc + .5V you may change the voltage that 1023 
corresponds to by using the Aref pin. This pin sets the maximum voltage parameter your Analog 
Input pins can read. The Aref pin's preset value is 5V. 
 Digital Input can enter your Arduino through any of the Digital Pins # 0 - # 13. Digital 
Input signals are either HIGH (On, 5V) or LOW (Off, 0V). Because the Digital pins can be used 
either as input or output you will need to prepare the Arduino to use these pins as inputs in your 
setup( )function. To do this type the command:  
 pinMode(pinNumber, INPUT);  
inside the curly brackets of the setup( ) function where pinNumber is the Digital pin number 
you wish to declare as an input. You can change the pinMode in the loop( )function if you 
need to switch a pin back and forth between input and output, but it is usually set in the setup( 
)function and left untouched in the loop( )function. To read the Digital pins as inputs use: 
 digitalRead(pinNumber);  
where pinNumber is the Digital Input pin number.  
 Input can come from many different devices, but each device's signal will be either 
Analog or Digital, it is up to the user to figure out which kind of input is needed, hook up the 
hardware and then type the correct code to properly use these signals. 
 

Things to remember about Input: 
 Input is either Analog or Digital, make sure to use the correct pins depending on type. 

To take an Input reading use analogRead(pinNumber); (for analog) 
Or digitalRead(pinNumber); (for digital) 
Digital Input needs a pinMode command such as pinMode(pinNumber, INPUT); 

 Analog Input varies from 0 to 1023 
 Digital Input is always either HIGH or LOW 
Examples of Input: 
 Push Buttons, Potentiometers, Photoresistors, Flex Sensors  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Output Signals 
A signal exiting an electrical system, in this case a micro-controller. 

 

 Output to the Arduino pins is always Digital, however there are two different types of 
Digital Output; regular Digital Output and Pulse Width Modulation Output (PWM). Output is only 
possible with Digital pins # 0 - # 13.  The Digital pins are preset as Output pins, so unless the 
pin was used as an Input in the same sketch, there is no reason to use the pinMode command 
to set the pin as an Output. Should a situation arise where it is necessary to reset a Digital pin to 
Output from Input use the command: 
 

 pinMode(pinNumber, OUTPUT);  
 

where pinNumber is the Digital pin number set as Output. To send a Digital Output signal use 
the command: 
 

  digitalWrite(pinNumber, value);  
 

where pinNumber is the Digital pin that is outputting the signal and value is the signal. When 
outputting a Digital signal value can be either HIGH (On) or LOW (Off).  
 Digital Pins # 3, # 5, # 6, # 9, # 10 and #11 have PWM capabilities. This means you can 
Output the Digital equivalent of an Analog signal using these pins. To Output a PWM signal use 
the command: 
 

 analogWrite(pinNumber, value);  
 

where pinNumber is a Digital Pin with PWM capabilities and value is a number between 0 (0%) 
and 255 (100%). For more information on PWM see the PWM worksheets or S.I.K. circuit 12. 
 Output can be sent to many different devices, but it is up to the user to figure out which 
kind of Output signal is needed, hook up the hardware and then type the correct code to 
properly use these signals. 
 

Things to remember about Output: 
 

 Output is always Digital 
There are two kinds of Output: regular Digital or PWM (Pulse Width Modulation) 

 To send an Output signal use analogWrite(pinNumber, value); (for analog) or 
 digitalWrite(pinNumber, value); (for digital) 
 Output pin mode is set using the pinMode command: pinMode(pinNumber, 
 OUTPUT); 
 Regular Digital Output is always either HIGH or LOW 
 PWM Output varies from 0 to 255 
 

Examples of Output: 
 

 Light Emitted Diodes (LED's), Piezoelectric Speakers, Servo Motors 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 1 
Explanation: 
 
      This circuit takes electricity from digital Pin # 9 
on the Arduino. Pin # 9 on the Arduino has Pulse 
Width Modulation capability allowing the user to 
change the brightness of the LED when using 
analogWrite. The LED is connected to the circuit 
so electricity enters through the anode (+, or 
longer wire) and exits through the cathode (-, or 
shorter wire). The resistor dissipates current so 
the LED does not draw current above the 
maximum rating and burn out. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground. 
 
 

 Schematic: 
 

Components: 
 
Arduino Digital Pin # 9: Power source, PWM (if 
code uses analogWrite) or digital (if code uses 
digitalWrite) output from Arduino board. 
 
LED: As in other diodes, current flows easily from 
the + side, or anode (longer wire), to the - side, or 
cathode (shorter wire), but not in the reverse 
direction. Also lights up! 
 
330 Ohm Resistor: A resistor resists the current 
flowing through the circuit. In this circuit the 
resistor reduces the current so the LED does not 
burn out. 
 
Gnd: Ground 

 Code: 
 
int ledPin = 3;  
 

 void setup() {  
   pinMode(ledPin, OUTPUT);  
} 
  

 void loop() { 
   digitalWrite(ledPin, HIGH); //LED on 
   delay(1000); // wait second 
   digitalWrite(ledPin, LOW); //LED off 
   delay(1000); // wait second 
}  
 

or for PWM output loop could read : 
int ledPin = 3;  
 

void setup() {  
 pinMode(ledPin, OUTPUT);  
} 
 

 void loop() { 
   analogWrite(ledPin, 255); // LED on 
   delay(1000); // wait second 
   analogWrite(ledPin, 0); // LED off 
   delay(1000); // wait second 
} 

 This first circuit is the simplest form of output in the kit. You can use the LED to teach both analog and digital 
output before moving on to more exciting outputs. There is an LED built into your Arduino board which corresponds to 
Digital Pin # 13. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 2 
Explanation: 
 
      This circuit takes electricity from Pin # 2 
through Pin # 9 on the Arduino. The LEDs are 
connected to the circuit so electricity enters 
through the anode (+, or longer wire) and exits 
through the cathode (-, or shorter wire). The 
resistor dissipates current so the LEDs do not 
draw current above the maximum rating and burn 
out. Finally the electricity reaches ground, closing 
the circuit and allowing electricity to flow from 
power source to ground. 
 
 

 Schematic: 
 

Components: 
 
Arduino Digital Pins # 2 - # 9: Power source, analog (if code 
uses analogWrite, only possible on pins 3, 5, 6, & 9) or digital 
(if code uses digitalWrite) output from Arduino board. 
 
LEDs: As in other diodes, current flows easily from the + 
side, or anode (longer wire), to the - side, or cathode (shorter 
wire), but not in the reverse direction. Also lights up! 
 
330 Ohm Resistor: The resistors resist the current flowing 
through the circuit. In this circuit the resistors reduce the 
current so the LEDs do not burn out. 
 
Gnd: Ground 

 Code: 
 

//this line below declares an array 
int ledPins[ ] = {2,3,4,5,6,7,8,9};  
 

void setup( ) { 
 

//these two lines set Digital Pins # 0 
// – 8 to output 
for(int i = 0; i < 8; i++){ 
pinMode(ledPins[i],OUTPUT); 
  

}  
 

void loop( ) { 
  

//these lines turn LEDs on and then off 
for(int i = 0; i <= 7; i++){ 
  digitalWrite(ledPins[i], HIGH); 
  delay(delayTime); 
  digitalWrite(ledPins[i], LOW); 
  } 
} 

 The code examples in the S.I.K get a little complicated for the second circuit, but don't 
worry, it's just more outputs. Some of the code examples use “for” loops to do something a 
number of times, if you're not familiar with “for” look it up because it is a key programming 
concept. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 3 
 

Explanation: 
The motor in this circuit takes electricity from 5V on the 
Arduino. The transistor takes electricity from Pin # 9 on 
the Arduino. The resistor before the transistor limits the 
voltage so the PWM output from the Arduino affects the 
motor rate properly. The higher the voltage supplied to the 
base of the transistor, the more electricity is allowed 
through the motor circuit to ground. If the transistor base is 
LOW no electricity is allowed through to ground and the 
motor will not run. Pin # 9 on the Arduino has PWM 
capability so it is possible to run the motor at any 
percentage. The flyback diode connected close to the 
motor is simply to protect the motor in the rare case that 
electricity flows from the transistor towards the motor. This 
only happens if the transistor is shut off suddenly. Finally, 
after turning the motor and traveling through the forward 
biased transistor, the electricity reaches ground, closing 
the circuit and allowing electricity to flow from power 
source to ground. 

 Schematic: 

Components: 
 

Arduino Digital Pin # 9: Signal power source, PWM output 
from Arduino board. 
 

Motor: Electric motor, + and – connections, converts 
electricity to mechanical energy. 
 

Transistor: A semiconductor which can be used as an 
amplifier or a switch. In this case the amount of electricity 
supplied to the base corresponds to the amount of 
electricity allowed through from the collector to the emitter. 
 

Flyback Diode: As in other diodes, current flows easily 
from the + side, or anode (longer wire), to the - side, or 
cathode (shorter wire), but not in the reverse direction. 
 

10K Ohm Resistor: A resistor resists the current flowing through 
the circuit. In this circuit the resistor acts as a 'pull-down' resistor to 
ground. 
 

+5V: Five Volt power source. 
 

Gnd: Ground 

 Code: 
 
int motorPin = 9; 

 
void setup() { 
  pinMode(motorPin, OUTPUT); 
} 

 

void loop() { 

  for (int i = 0; i < 256; i++){ 

    analogWrite(motorPin, i); 
    delay(50); 

   }  

} 

 

 This circuit is great; it teaches about transistors, one of the basic electronic building blocks. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 4 
Explanation: 
 
      The servo in this circuit takes electricity from 
5V on the Arduino. Pin # 9 on the Arduino 
supplies a PWM signal that sets the position of 
the servo. Each voltage value has a distinct 
correlating position. Finally the electricity reaches 
ground, closing the circuit and allowing electricity 
to flow from power source to ground. 
 

 Schematic: 

 

Components: 
 
Arduino Digital Pin #9: Signal power source for 
servo. 
 
Servo: Sets the position of the servo arm 
depending on the voltage of the signal received. 
 
+5V: Five Volt power source. 
 
Gnd: Ground 

 Code: 
 

//include the servo library for use 
#include <Servo.h>   
Servo myservo;  //create servo object  
 

int pos = 0; 
 

void setup() { 
  myservo.attach(9);   
} 
void loop() { 
//moves servo from 0° to 180° 
  for(pos = 0; pos < 180; pos += 1) {  
    myservo.write(pos); 
    delay(15); 
    } 
  // moves servo from 180° to 0°  
  for(pos = 180; pos>=1; pos-=1)  {     
    myservo.write(pos); 
    delay(15); 
    } 
} 

Remember, this is just slightly more complicated output, same as the motor and LED. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 5 
Explanation: 
 

      The shift register in this circuit takes electricity 
from 5V on the Arduino. Pin # 2, # 3 and # 4 on 
the Arduino supply a digital value. The latch and 
clock pins are used to allow data into the shift 
register. The shift register sets the eight output 
pins to either HIGH or LOW depending on the 
values sent to it via the data pin. The LEDs are 
connected to the circuit so electricity enters 
through the anode (+, or longer wire) and exits 
through the cathode (-, or shorter wire) if the shift 
register pin is HIGH. The resistor dissipates 
current so the LEDs do not draw current above 
the maximum rating and burn out. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground. 

 Schematic: 
 

Components: 
 
Arduino Digital Pin # 2, # 3 and # 4: Signal power 
source for data, clock and latch pins on shift 
register. 
 

Shift register: Allows usage of eight output pins 
with three input pins, a power and a ground. Link 
to datasheet. 
 

LED: As in other diodes, current flows easily from 
the + side, or anode (longer wire), to the - side, or 
cathode (shorter wire), but not in the reverse 
direction. Lights up! 
 

330 Ohm Resistor: A resistor resists the current 
flowing through the circuit. In this circuit the 
resistor reduces the current so the LED does not 
burn out. 
 

+5V: Five Volt power source. 
 

Gnd: Ground 

 Code: 
 

int data = 2; 
int clock = 3; 
int latch = 4;  
 

int ledState = 0; 
const int ON = HIGH; 
const int OFF = LOW;  
 

void setup() { 
  pinMode(data, OUTPUT); 
  pinMode(clock, OUTPUT); 
  pinMode(latch, OUTPUT); 
}  
 

void loop(){ 
  for(int i = 0; i < 256; i++) {  
    updateLEDs(i); 
    delay(25);  
    } 
} 
 

void updateLEDs(int value) { 
  digitalWrite(latch, LOW); 
  shiftOut(data, clock, MSBFIRST, value);  
  digitalWrite(latch, HIGH); 
}  

 For more advanced components you will need to read Datasheets to figure out how to 
use them. Any documentation is good as long as you can get the correct information out of it.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 6 
Explanation: 
 
      This circuit gets electricity from Arduino Pin # 
9. The Piezo element plays different musical 
notes depending on the speed and duration of the 
electrical signal sent from Pin # 9. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground. 

 Schematic: 

 

Components: 
 
Arduino Digital Pin # 9: Power source, digital 
output from Arduino board. (If changed to PWM 
output this creates distortion of note, not a change 
in volume.) 
 
Piezo element: A tiny speaker with a magnetic 
coil that responds to electrical current by moving 
more or less depending on the current. The coil is 
attached to a diaphragm that moves air and 
causes the noise we hear. 
 
Gnd: Ground 

 Code: 
 
/* this section contains only the two 
functions needed to make the piezo play a 
note of a given duration. These functions 
are called in the loop ( ) function. */ 
 

void playTone(int tone, int duration) { 
  for (long i = 0; i < duration * 1000L; i 
+= tone * 2) { 
    digitalWrite(speakerPin, HIGH); 
    delayMicroseconds(tone); 
    digitalWrite(speakerPin, LOW); 
    delayMicroseconds(tone); 
   } 
} 
void playNote(char note, int duration) { 
  char names[ ] = { 'c', 'd', 'e', 'f', 
'g', 'a', 'b', 'C' }; 
  int tones[ ] = { 1915, 1700, 1519, 1432, 
1275, 1136, 1014, 956 }; 
  for (int i = 0; i < 8; i++) { 
  if (names[i] == note) { 
    playTone(tones[i], duration); 
      } 
   } 
} 

This is another way to use digital pins to create analog output. 
 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 7 
Explanation: 
 
      This circuit is actually two different circuits. 
One circuit for the buttons and another for the 
LED. See ʻHow the Circuits Workʼ, Circuit 1 for an 
explanation of the LED circuit. The button circuit 
gets electricity from the 5V on the Arduino. The 
electricity passes through a pull up resistor, 
causing the input on Arduino Pins # 2 and # 3 to 
read HIGH when the buttons are not being 
pushed. When a button is pushed it allows the 
current to flow to ground, causing a LOW reading 
on the input pin connected to it. This LOW 
reading is then used in the code you load onto the 
Arduino and effects the power signal in the LED 
circuit. 
 

 Schematic: 

Components: 
 
Arduino Digital Pin # 13: Power source, PWM (if code uses 
analogWrite) or digital (if code uses digitalWrite) output from 
Arduino board. 
 
Arduino Digital Pin # 2 and # 3: Digital input to Arduino 
board. 
 
330 & 10K Ohm Resistors: Resistors resist the current 
flowing through the circuit. In the LED circuit the 330 ohm 
resistor reduces the current so the LED in the circuit does not 
burn out. In the button circuits the 10K's ensure that the 
buttons will read HIGH when they are not pressed. 
 
LED: As in other diodes, current flows easily from the + side, 
or anode (longer wire), to the - side, or cathode (shorter 
wire), but not in the reverse direction. Lights up! 
 
Button: A press button which is open (or disconnected) when 
not in use and closed (or connected) when pressed. This 
allows you to complete a circuit when you press a button. 
 
+5V: Five Volt power source. 
 
Gnd: Ground 

 Code: 
 
const int buttonPin = 2; 
const int ledPin =  13;  
 

int buttonState = 0;  
 

void setup() { 
  pinMode(ledPin, OUTPUT); 
  //this line below declares the button 
pin as input 
  pinMode(buttonPin, INPUT);   
}  
void loop(){ 
  //this line assigns whatever the 
Digital Pin 2 reads to buttonState 
  buttonState = digitalRead(buttonPin);  
  if (buttonState == HIGH) { 
    digitalWrite(ledPin, HIGH); 
   } 
  else { 
    digitalWrite(ledPin, LOW); 
   } 
} 

In this circuit you are using a Digital Pin, but you are using it as input rather than output.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 8 
Explanation: 
 

      This circuit is actually two different circuits. 
One circuit for the potentiometer and another for 
the LED. See How the Circuits Work, Circuit 1 for 
an explanation of the LED circuit. The 
potentiometer circuit gets electricity from the 5V 
on the Arduino. The electricity passes through the 
potentiometer and sends a signal to Analog Pin # 
0 on the Arduino. The value of this signal changes 
depending on the setting of the dial on the 
potentiometer. This analog reading is then used in 
the code you load onto the Arduino and effects 
the power signal in the LED circuit. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground.  

 Schematic: 
 

Components: 
 

Arduino Digital Pin # 13: Power source, PWM (if 
code uses analogWrite) or digital (if code uses 
digitalWrite) output from Arduino board. 
 

Arduino Analog Pin # 0: Analog input to Arduino 
board. 
 

330 Ohm Resistor: A resistor resists the current 
flowing through the circuit. In the LED circuit it 
reduces the current so the LED in the circuit does 
not burn out. 
 

LED: As in other diodes, current flows easily from 
the + side, or anode (longer wire), to the - side, or 
cathode (shorter wire), but not in the reverse 
direction.  
 

Potentiometer: A voltage divider which outputs an 
analog value. 
 

+5V: Five Volt power source. 
 

Gnd: Ground 

 Code: 
 
int sensorPin = 0; 
int ledPin = 13; 
int sensorValue = 0; 
 
void setup() { 
 pinMode(ledPin, OUTPUT); 
} 
 
void loop() { 
 
//this line assigns whatever the 
//Analog Pin 0 reads to sensorValue 
 
 sensorValue = analogRead(sensorPin); 
 
 digitalWrite(ledPin, HIGH); 
 delay(sensorValue); 
 digitalWrite(ledPin, LOW); 
 delay(sensorValue); 
} 

This is another example of input, only this time it is Analog. Circuits 7 and 8 in the S.I.K. 
introduce you to the two kinds of input your board can receive: Digital and Analog.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 9 
Explanation: 
 

      This circuit is actually two different circuits. One 
circuit for the photoresistor and another for the LED. 
See How the Circuits Work, Circuit 1 for an 
explanation of the LED circuit. The photoresistor 
circuit gets electricity from the 5V on the Arduino. 
The electricity passes through the photoresistor and 
sends a signal to Analog Pin # 0 on the Arduino. 
The value of this signal changes depending on the 
amount of sunlight. This analog reading is then used 
in the code you load onto the Arduino and affects 
the power signal in the LED circuit. The resistor 
below the Analog Pin connection creates the voltage 
divider necessary to measure the resistance of the 
photoresistor. Finally the electricity reaches ground, 
closing the circuit and allowing electricity to flow 
from power source to ground.  

 Schematic: 
 

Components: 
 

Arduino Digital Pin # 13: Power source, PWM (if 
code uses analogWrite) or digital (if code uses 
digitalWrite) output from Arduino board. 
 

Arduino Analog Pin # 0: Analog input to Arduino. 
 

330 Ohm Resistor: A resistor resists the current 
flowing through the circuit. In the LED circuit it 
reduces the current so the LED in the circuit does 
not burn out. In the photoresistor circuit the resistor 
completes the voltage divider. 
 

LED: As in other diodes, current flows easily from 
the + side, or anode (longer wire), to the - side, or 
cathode (shorter wire), but not in the reverse 
direction. Lights up! 
 

Photoresistor: A resistor with a resistance value that 
corresponds to the light hitting the sensor. 
 

+5V: Five Volt power source. 
 

Gnd: Ground 

 Code: 
 
int lightPin = 0;  
int ledPin = 9;  
 
void setup() { 
 pinMode(ledPin, OUTPUT); 
} 
  
void loop() { 
  int lightLevel = 
analogRead(lightPin); 
  lightLevel = map(lightLevel, 0, 900, 
0, 255); 
  lightLevel = constrain(lightLevel, 0, 
255); 
  analogWrite(ledPin, lightLevel); 
} 

 

This circuit is another example of Analog input. It is also a perfect example of a voltage 
divider. Don't worry about the “map” and “constrain” functions, they are explained in the 
glossary.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 10 
 

Explanation: 
 
      This circuit takes electricity from the 5V on the 
Arduino. The temp sensor sends an analog value 
to Arduino Analog Pin # 0. Then the electricity 
reaches ground, closing the circuit and allowing 
electricity to flow from power source through the 
sensor to ground. Finally Arduino uses it's Serial 
monitor to display the temperature reading. 

 Schematic: 
 

Components: 
 
Arduino Analog Pin # 0: Analog input to Arduino 
board. 
 
Temperature Sensor: Provides a voltage value 
depending on the temperature. Some math is 
then required to convert this value to Celsius or 
Fahrenheit. 
 
+5V: Five Volt power source. 
 
Gnd: Ground 

 Code: 
 

int temperaturePin = 0; 
 

void setup() { 
//Serial comm. at a Baud Rate of 9600 
  Serial.begin(9600);          
} 
void loop() { 
//Calls the function to read the sensor pin 
  float temp = getVoltage(temperaturePin); 
//Below is a line that compensates for an 
//offset (see datasheet) 
  temp = (temp - .5) * 100; 
  //This line displays the variable 
temperature after all the math 
  Serial.println(temp); 
  delay(1000); 
} 
//function that reads the Arduino pin and 
//starts to convert it to degrees 
float getVoltage(int pin) { 
  return (analogRead(pin) * .004882814);  
} 

 There is a lot of math involved in the code section of this circuit and it all has a reason. 
But, how would you know you need to offset the temperature reading by .5 unless you had read 
the Datasheet? Also, pay attention to the code lines that enable Serial communication. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 11 
Explanation: 
 

      The relay circuit gets electricity from the 5V on the 
Arduino. The electricity always passes through the 
relay communication line which is switched to either 
NO (Normally Open) or NC (Normally Closed), lighting 
up one of the two LEDs. The transistor gets electricity 
from Arduino Digital Pin # 2 with a resistor to prevent 
burn out. In this case the transistor receives a digital 
signal. The transistor closes the circuit when it is sent a 
HIGH value, allowing electricity to flow through the 
relay coil, into the collector, out the emitter and to 
ground, completing the circuit. The energized coil sets 
the relay switch to NO. The transistor opens or breaks 
the circuit when it is sent a LOW value, so no electricity 
passes through the coil and the relay switch is set to 
NC. The flyback diode connected close to the motor is 
simply to protect the motor in the rare case that 
electricity flows from the transistor towards the motor. 
This only happens if the transistor is shut off suddenly.  

 Schematic: 

 

Components: 
 

Arduino Digital Pin # 2: Power source, digital output 
from Arduino board. 
Relay: The relay acts as an electrically operated switch 
between the two LED's. 
Transistor: A semiconductor which can be used as an 
amplifier or a switch. In this case the amount of 
electricity supplied to the base corresponds to the 
amount of electricity allowed through from the collector 
to the emitter. 
330 Ohm & 10K Resistors: A resistor resists the 
current flowing through the circuit. In the transistor 
circuit it reduces the current so the transistor in the 
circuit does not burn out. 
Flyback Diode: As in other diodes, current flows easily 
from the + side, or anode, to the - side, or cathode, but 
not in the reverse direction. In this case the diode is 
being used to prevent current from 'flying back' to the 
relay in case the transistor is suddenly turned off. 

 Code: 
 
int ledPin =  2; 
 
void setup() {                 
  pinMode(ledPin, OUTPUT);      
} 
 
void loop() { 
  //set the transistor on 
  digitalWrite(ledPin, HIGH); 
  // wait for a second    
  delay(1000); 
  // set the transistor off                           
  digitalWrite(ledPin, LOW);   
 // wait for a second  
 delay(1000);                           
} 

 Transistors can be used as switches or amplifiers and they are often called the most 
important invention of the 20th century. The relay is also a great control component, but it needs 
something to activate it, hence the transistor. 
 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 12 
 

Explanation: 
 

      This circuit is pretty straight forward. The Digital 
Arduino Pins # 9, # 10 and # 11 supply a PWM 
value to each of the three different LEDs within the 
Tri-Color LED (Red, Green, and Blue). The LEDs 
are connected to the circuit so electricity enters 
through the anode (+, or longer wire) and exits 
through the cathode (-, or shorter wire). The 
resistors dissipate current so the LEDs do not draw 
current above the maximum rating and burn out. 
Finally the electricity reaches ground, closing the 
circuit and allowing electricity to flow from power 
source to ground. By supplying different values to 
just these three Digital Pins you can mix 16,777,216 
different colors! 

 Schematic: 

 

Components: 
 
Arduino Digital Pin # 9, # 10 and # 11: Power source, PWM 
output from Arduino board. 
 
RGB LED: Unlike single color LED's, on RGB (Also called 
'Tri-Color') LED's, the cathode (or ground wire) is the longest 
wire and each color (Red, Green, and Blue) gets its own 
lead. (See the schematic for details). 
 
330 Ohm Resistor: A resistor resists the current flowing 
through the circuit. In this circuit the resistor reduces the 
current so the LEDs do not burn out. 
 
Gnd: Ground 

 Code: 
const int RED_LED_PIN = 9; 
const int GREEN_LED_PIN = 10; 
const int BLUE_LED_PIN = 11; 
int redIntensity = 0; 
int greenIntensity = 0; 
int blueIntensity = 0; 
const int DISPLAY_TIME = 100; 
 

void setup() { 
} 
 

void loop(){ 
  for (greenIntensity = 0; greenIntensity <= 255; 
greenIntensity+=5) { 
      redIntensity = 255-greenIntensity; 
      analogWrite(GREEN_LED_PIN, greenIntensity); 
      analogWrite(RED_LED_PIN, redIntensity); 
      delay(DISPLAY_TIME); 
  } 
  for (blueIntensity = 0; blueIntensity <= 255; 
blueIntensity+=5) { 
      greenIntensity = 255-blueIntensity; 
      analogWrite(BLUE_LED_PIN, blueIntensity); 
      analogWrite(GREEN_LED_PIN, greenIntensity); 
      delay(DISPLAY_TIME); 
  } 
  for (redIntensity = 0; redIntensity <= 255; 
redIntensity+=5) { 
      blueIntensity = 255-redIntensity; 
      analogWrite(RED_LED_PIN, redIntensity); 
      analogWrite(BLUE_LED_PIN, blueIntensity); 
      delay(DISPLAY_TIME); 
  } 
} 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 13 
 

Explanation: 
 

      This circuit is actually two different circuits. 
One circuit for the flex sensor and another for the 
servo. See How the Circuits Work, Circuit 4 for an 
explanation of the servo circuit. The flex sensor 
circuit gets electricity from the 5V on the Arduino. 
The electricity passes through the flex sensor and 
sends a signal to Analog Pin # 0 on the Arduino. 
The value of this signal changes depending on 
the amount of bend in the flex sensor. This analog 
reading is then used in the code you load onto the 
Arduino and sets the position of the servo. The 
resistor and flex sensor create a voltage divider 
which is measured by Analog Pin # 0. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground.  

 Schematic: 
 

Components: 
 
Arduino Digital Pin # 9: Power source, PWM output from 
Arduino board. 
 
Arduino Analog Pin # 0: Analog input to Arduino board. 
 
10K Ohm Resistor: A resistor resists the current flowing 
through the circuit.  
 
Flex Sensor: A resistor with a value that varies depending on 
the amount of bend in the sensor. 
 
Servo: Sets the position of the servo arm depending on the 
voltage of the signal received. 
 
+5V: Five Volt power source. 
 
Gnd: Ground 

 Code: 
 
#include <Servo.h> 
Servo myservo; 
 
int potpin = 0; 
int val; 
 
void setup() {  
  Serial.begin(9600); 
  myservo.attach(9);   
}  
 
void loop() {  
  val = analogRead(potpin);             
  Serial.println(val);   
  val = map(val, 50, 300, 0, 179);      
  myservo.write(val);                   
  delay(15);                            
}  
 

 This analog input is definitely very different from any other input we have looked at so far 
but the concept is the same. We treat the sensor as a resistor in a voltage divider to get a 
reading and then change our output depending on that reading.  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Circuit 14 
Explanation: 
 

      This circuit is actually two different circuits. One 
circuit for the soft pot and another for the RGB LED. 
See How the Circuits Work, Circuit 12 for an 
explanation of the RGB LED circuit. The soft pot 
circuit gets electricity from the 5V on the Arduino. 
The electricity passes through the soft pot and 
sends a signal out the com line of the soft pot to 
Analog Pin # 0 on the Arduino. The value of this 
signal changes depending on where the wiper (any 
type of contact) touches the soft pot. This analog 
reading is then used in the code you load onto the 
Arduino and sets the color of the RGB LED. Notice 
that yet again our sensor and the input pin form a 
voltage divider, only this time the voltage divider is 
completely inside the sensor. The wiper divides the 
resistor into two different portions with values that 
depend on the position of the wiper. Finally the 
electricity reaches ground, closing the circuit and 
allowing electricity to flow from power source to 
ground.  

 Schematic: 
 

Components: 
 

Arduino Digital Pins # 9, 10, 11: Power source, 
PWM output from Arduino board. 
 

Arduino Analog Pin # 0: Analog input to Arduino 
board. 
 

330 Ohm Resistor: A resistor resists the current 
flowing through the circuit. In the RGB LED circuit 
it reduces the current so the LED it is attached to 
does not burn out. 
 

Flex Sensor: A resistor with a value that varies 
depending on the amount of bend in the sensor. 
 

RGB LED: A grouping of three LEDs, Red, Green 
and Blue. Power goes in three different anodes 
(+, the short wires) and out one common cathode 
(-, the long wire). Lights up! 
 

+5V: Five Volt power source. 
 

Gnd: Ground 

 Code: 
 
const int RED_LED_PIN = 9;     
const int GREEN_LED_PIN = 10;  
const int BLUE_LED_PIN = 11;   
 

void setup() { 
//No setup necessary but you still need it 
} 
 

void loop() { 
  int sensorValue = analogRead(0);    
  int redValue = constrain(map(sensorValue, 
0, 512, 255, 0),0,255);  
  int greenValue = 
constrain(map(sensorValue, 0, 512, 0, 
255),0,255)-constrain(map(sensorValue, 512, 
1023, 0, 255),0,255);   
  int blueValue = 
constrain(map(sensorValue, 512, 1023, 0, 
255),0,255);  
 

  analogWrite(RED_LED_PIN, redValue); 
  analogWrite(GREEN_LED_PIN, greenValue); 
  analogWrite(BLUE_LED_PIN, blueValue); 
}  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Powering Your Projects 
When dealing with electronics, it is always a good idea to know how much power you need and 
how youʼre going to get it. If you want your project to be portable, or run separately from a 
computer, youʼll need an alternate power source. Plus, not all Arduino projects can be run off 5V 
from the USB port. Fortunately there are a lot of options, one or more of which should suit your 
purposes perfectly. 
 
Understanding Battery Ratings 
One popular way to get power to your project is through batteries. There are tons of different 
kinds of batteries (AA, AAA, C, D, Coin Cell, Lithium Polymer, etc.). In fact, there are too many 
to go over here, however, they all have a few things in common which can help you choose 
which ones to use. Each battery has a positive (+) and negative terminal (-) that you can think of 
as your power and ground. Batteries also have ratings in volts and milliamp hours (written mAh). 
Given this info along with how much current your circuit will draw, you can figure out how long a 
battery will last. For example, if I have a battery rated at 1.2v for 2500 mAh, and my circuit 
requires 100mA (milliamps) current, my battery will last around 17.5 hours. Wait, what? Why not 
25 hours you say? Well, you shouldnʼt drain your battery completely, and other factors such as 
temperature and humidity can affect battery life, so typically the equation for determining battery 
life is: 

  
(Capacity rating of battery (in mAh) ÷ Current Consumption of Circuit) x 0.7 
 
Note that we could still use our 2500 mAh battery in a 500mA circuit, but then our battery life 
would only be 3.5 hours. Make sense? Thereʼs a lot to understand about powering circuits, so 
donʼt worry if itʼs not all clicking. Just take an educated guess, be safe, use your multimeter, and 
make adjustments. 
It is also worth mentioning that batteries are not the only potential source of power for your 
project. If your project will be outside or near a window, consider using solar power. Thereʼs 
plenty of good documentation online, but basically, solar cells have the same kinds of voltage 
and current ratings that any power source might have; the only difference is that the percentage 
you get from your solar panel depends on how much sunlight itʼs getting. Check out 
http://www.solarbotics.com/ for some good products and documentation using solar power. 
 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Powering Your Projects 
 
So, what if your circuit needs 12v, and all you have are a bunch of 1.5v batteries? Or what if you 
need your project to be powered for longer, but you donʼt want to give it too much power? This 
is where your knowledge of series and parallel may actually come in handy. 
Hereʼs the rule:  
Connecting batteries in series increases the voltage but maintains the capacity (mAh) - this 
what you want to do if you need more power. 
Connecting batteries in parallel maintains the voltage but increases the capacity. This is what 
you want to do if you need your power supply to last longer. 
Hereʼs how to hook them up: 

 
 
As always, use caution. Batteries of the same kind (same voltage and capacitance) work best in 
these kinds of situations. Using different kinds of batteries may also work but it is not 
recommended, as the results are not as predictable. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Transistors 
 

What is a transistor? 
Transistors are semiconductors used to amplify or switch an electrical signal on and off.  

Why is a transistor useful?  
Often you will need more power to run a component than your Arduino can provide. A transistor 

allows you to control the higher power signal by breaking or closing a circuit to ground. Combining this 
higher power allows you to amplify the electrical signal in your circuit.  
What is in a transistor? 

A transistor circuit has four parts; a signal power source (connects to transistor base), an affected 
power source (connects to transistor collector), voltage out (connects to transistor collector), and ground 
(connected to transistor emitter). 
How do you put together a transistor circuit? 
 It's really pretty easy. Here is a schematic and explanation detailing how: 

 

The transistor voltage in signal is the 
signal that is used to control the 
transistor's base. 
 
Signal in is the power source for the 
signal out which is controlled by the 
transistor's action. 
 
Signal out is the output of the signal 
originating from signal in, it is controlled 
by the collector. 
 
The amount of electrical current allowed 
through the transistor and out of the 
emitter to ground is what closes the 
entire circuit, allowing electrical current 
to flow through signal out. 

Ok, how is this transistor information used? 
It depends on what you want to do with it really. There are two different purposes outlined above for the 
transistor, we will go over both. 

If you wish to use the transistor as a switch the signal in and voltage in signal are connected to 
the same power source with a switch between them. When the switch is moved to the closed position an 
electrical signal is provided to the transistor base creating forward bias and allowing the electrical signal 
to travel from the signal in to the transistor's collector to the emitter and finally to ground. When the circuit 
is completed in this way the signal out is provided with an electrical current from signal in. 

The signal amplifier use of the transistor works the same way only Signal In and Voltage In are 
not connected. This disconnection allows the user to send differing values to the base of the transistor. 
The closer the voltage in value is to the saturation voltage of the transistor the more electrical current that 
is allowed through the emitter to ground. By changing the amount of electrical current allowed through to 
ground you change the signal value of signal out. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Voltage Dividers  
What is a voltage divider?  
 Voltage dividers are a way to produce a voltage that is a fraction of the original voltage.  
Why is a voltage divider useful?  
 A voltage divider is useful because you can take readings from a circuit that has a voltage beyond 
the limits of your input pins. By creating a voltage divider you can be sure that you are getting an accurate 
reading of voltage from a circuit. Voltage dividers are also used to provide an analog Reference signal.  
What is in a voltage divider? 
 A voltage divider has three parts; two resistors and a way to read voltage between the resistors. 
How do you put together a voltage divider? 
 It's really pretty easy. Here is a schematic and explanation detailing how: 

 

 

Often resistor # 1 is a resistor with a value that 
changes, possibly a sensor or a potentiometer. 
 

Resistor # 2 has whatever value is needed to create 
the ratio the user decides is acceptable for the 
voltage divider output.  
 

The Voltage In and Ground portions are just there to 
establish which way the electrical current is heading; 
there can be any number of circuits before and after 
the voltage divider.  
 

Here is the equation that represents how a voltage 
divider works: 

If both resistors have the same value then Voltage 
Out is equal to ½ Voltage In. 

 

Ok, how is this voltage divider information used? 
 It depends on what you want to do with it really. There are two different purposes outlined above 
for the voltage divider, we will go over both. 
 If you wish to use the voltage divider as a sensor-reading device first you need to know the 
maximum voltage allowed by the analog inputs you are using to read the signal. On an Arduino this is 5V. 
So, already we know the maximum value we need for Vout. The Vin is simply the amount of voltage 
already present on the circuit before it reaches the first resistor. You should be able to find the maximum 
voltage your sensor outputs by looking on the Datasheet; this is the maximum amount of voltage your 
sensor will let through given the voltage in of your circuit. Now we have exactly one variable left, the value 
of the second resistor. Solve for R2 and you will have all the components of your voltage divider figured 
out! We solve for R1's highest value because a smaller resistor will simply give us a smaller signal, which 
will be readable by our analog inputs. 
 Powering an analog Reference is exactly the same as reading a sensor except you have to 
calculate for the Voltage Out value you want to use as the analog Reference.  
 Given three of these values you can always solve for the missing value using a little algebra, 
making it pretty easy to put together your own voltage divider. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Pulse Width Modulation 
Computers and microprocessors only understand two things, ON and OFF. These are 

represented in a few different ways. There is ON and OFF, One and Zero, or HIGH and LOW. Ones 
and Zeros are used in the computer language Binary, HIGH and LOW are used with electricity, ON 
and OFF are plain old human speak. 

But what if we want to turn something digital less than 100% ON? Then we use something 
called PWM, or Pulse Width Modulation. The way your Arduino microprocessor does this is by 
turning the electricity on a PWM pin ON and then OFF very quickly. The longer the electricity is ON 
the closer the PWM value is to 100%. This is very useful for controlling a bunch of stuff. For 
example: the brightness of a light bulb, volume of sound, or the speed of a motor.  

For this reason some of the pins on your Arduino are labeled PWM or Pulse Width 
Modulation pins. This means you can send a bunch of ones and zeros real quick and the Arduino 
board will read these ones and zeros as an average somewhere between one and zero. The dotted 
line in the diagrams represents the average. See tables below. 
 
 
 
  PWM signal at 25%                      PWM signal at 50% 
     
 
             
 

  PWM signal at 75%                          PWM signal rising from 25% to 75 % 
 

Luckily a lot of the work has been done for you so you don't have to figure out the actual 
patterns of ones and zeros. All you have to do is pick a number between 0 and 255 and type the 
command analogWrite. The number zero means the pin is set fully off, the number 255 means the 
pin is set fully on, and all other numbers set the pin to values between ON (100% or 255) and OFF 
(0% or 0). You can use PWM on any pin labeled PWM and do not need to set the pin mode before 
sending an analogWrite command. 

A microprocessor creates a PWM signal by using a built in clock. The microprocessor 
measures a certain amount of time (also called a window or a period) and turns the PWM pin ON (or 
HIGH) for the first part of this window and then OFF (or LOW) near the end of the window. The 
window is filled up with a different length ON (or HIGH) signal depending on the PWM value. If the 
PWM value is 50% then the PWM signal is ON (or HIGH) for half of the window. If the PWM value is 
25% then the PWM signal is ON (or HIGH) for a quarter of the window. The only time the window will 
not have a LOW value is if the PWM signal is turned completely ON the whole time and therefore 
equal to 100% ON. The opposite is true as well, if the PWM signal is set to 0% or OFF, then there 
will not be any HIGH value at the beginning of the window. 

To write a PWM value to one of the PWM enabled pins (3, 5, 6, 9, 10, 11) simply use the 
following code: 

analogWrite(pin, value); 
Where pin is one of the PWM enabled pin numbers and value is a value between 0 and 255. 

  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Basic Operators 
 Often when you are programming you will need to do simple (and sometimes not so simple) mathematical 
operations. The signs used to do this vary from very simple to confusing if you've never seen them before. Below is a 
table of definitions as well as some examples: 

Arithmetic operators Relational operators Logical operators 

+ (addition) 
- (subtraction) 
* (multiplication) 
/ (division) 
% (modulus) 
= (assignment) 

== (equality) 
!= (inequality) 
> (greater-than) 
< (less-than) 
>= (greater-than-or-equal-
to) 
<= (less-than-or-equal-to) 

! (NOT) 
&& (AND) 
|| (OR) 

Arithmetic operators are 
your standard mathematical 
signs (no example 
provided) 

Relational operators are 
used to compare values 
and variables 

Logical operators are used 
to join two or more 
conditional statements 
together 

Pay attention to = and ==. = is used to assign variable values, == to compare values. 

Relational operator example: Logical operator example: 

 
if (x!=7){ 
//loop body code here 
} 
 
Compares x to the number 7,  
executes code inside body loop  
if the value of x does not equal 7 

 
if ((x==7)||(x==9)){ 
//loop body code here 
} 
 
Compares x to the number 7 and 9,  
executes code inside body loop  
if the value of x equals 7 or 9 

 

Comments 
As you use code other people have written you will notice //, /* and */ symbols. These are used to “comment” 

lines out so they do not affect the code. This way programmers can add comments to help you understand what the 
code does. Good code has comments that explain what each block of code (functions, classes, etc....) does but does 
not explain simpler portions of the code as this would be a waste of time. Commenting lines out is also a useful tool 
when you are writing code yourself. If you have a section of code you are working on, but isn't quite finished or 
doesnʼt work, you can comment it out so it does not affect the rest of your code when you compile or upload it. 

// /* */ 

This is used comment out a single line This is used to start a section of 
commented lines 

This is used to end or close a section of 
commented lines 

//commented out line /*comments start here comments end here*/ 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Serial Communication 
Serial is used to communicate between your computer and the Arduino as well as between 

Arduino boards and other devices. Serial uses a serial port (makes sense huh?) also known as 
UART, which stands for universal asynchronous receiver/transmitter to transmit and receive 
information. In this case the computer outputs Serial Communication via USB while the Arduino 
receives and transmits Serial using, you guessed it, the RX and TX pins. You use serial 
communication every time you upload code to your Arduino board. You will also use it to debug code 
and troubleshoot circuits. Basic serial communication is outlined in the following pages along with a 
simple activity to help you understand the concepts. 
 

Serial Monitor: This is where you monitor your serial communication and set baud rate.  
Activating the Serial Monitor: 

 
What the activated Serial Monitor looks like: 

 

Setting the Serial Monitor baud rate: 

 
There are many different baud rates, (9600 is the 
standard for Arduino) the higher the baud rate the 
faster the machines are communicating.  

In the examples above there is no Serial communication taking place yet. When you are 
running code that uses Serial any messages or information you tell Serial to display will show up in 
the window that opens when you activate the monitor. 
Things to remember about Serial from this page: 
 1. Serial is used to communicate, debug and troubleshoot. 
 2. Serial baud rate is the rate at which the machines communicate. 



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Serial Communication 
Serial setup: 
 The first thing you need to know to use Serial with your Arduino code is Serial setup. To 
setup Serial you simply type the following line inside your setup( ) function: 
 Serial.begin (9600);  
This line establishes that you are using the Digital Pins # 0 and # 1 on the Arduino for Serial 
communication. This means that you will not be able to use these pins as Input or Output because 
you are dedicating them to Serial communication. The number 9600 is the baud rate, this is the rate 
at which the computer and the Arduino communicate. You can change the baud rate depending on 
your needs but you need to make sure that the baud rate in your Serial setup and the baud rate on 
your Serial Monitor are the same. If your baud rates do not match up the Serial Monitor will display 
what appears to be gibberish, but is actually the correct communication incorrectly translated.  
 
Using Serial for code debugging and circuit troubleshooting: 
 Once Serial is configured using the basic communication for debugging and troubleshooting 
is pretty easy. Anywhere in your sketch you wish the Arduino board to send a message type the line 
Serial.println(“communication here”);. This command will print whatever you type inside 
the quotation marks to the Serial Monitor followed by a return so that the next communication will 
print to the next line. If you wish to print something without the return use 
Serial.print(“communication here”);. To display the value of a variable using println 
simple remove the quotation marks and type the variable name inside the parenthesis. For example, 
type Serial.println( i ); to display the value of the variable named i. This is useful in many 
different ways, if, for example, you wish to print some text followed by a variable or you want to 
display multiple variables before starting a new line in the Serial Monitor.  
 These lines are useful if you are trying to figure out what exactly your Arduino code is doing. 
Place a println command anywhere in the code, if the text in the println command shows up in 
your Serial Monitor you will know exactly when the Arduino reached that portion of code, if the text 
does not show up in the Serial Monitor you know that portion of code never executed and you need 
to rewrite. 
 To use Serial to troubleshoot a circuit use the println command just after reading an input 
or changing an output. This way you can print the value of a pin signal. For example, type 
Serial.print(“Analog pin 0 reads:”); and Serial.println(analogRead(A0)); to 
display the signal on Analog Input Pin # 0. Replace the second portion with 
Serial.println(digitalRead(10)); to display the signal on Digital Pin # 10. 
 
Things to remember about Serial from this page: 
 1. If Serial is displaying gibberish check the baud rates. 
 2. Use Serial.print(“communication here”); to display text. 
 3. Use Serial.println(“communication here”); to display text and start a new line. 
 4. Use Serial.print(variableName); to display the value stored in variableName. 
 5. Use Serial.print(digitalRead(10)); to display the state of Digital Pin # 10. 
  



Introduction to Arduino 
SparkFun Electronics Summer Semester 

© 2011 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA  
SparkFun Electronics Summer Semester is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.  

SparkFun Electronics Summer Semester Educational Material             

Serial Communication 
Using Serial for communication: 

This is definitely beyond the scope of the S.I.K. but here are some basics for using Serial for 
device to device communication (other than your computer), not just debugging or troubleshooting. 
(The following paragraphs assume that you have Serial Communication hardware properly 
connected and powered on two different devices.) 
 First set up Serial as outlined on the previous page.  
 Use Serial.println(“Outgoing communication here”); to send information out 
on the transmit line.  
 When receiving communication the Serial commands get a little more complicated. First you 
need to tell the Arduino to listen for incoming communication. To do this you use the command 
Serial.available();, this command tells the computer how many bytes have been sent to the 
receive pin and are available for reading. The Serial receive buffer (computer speak for a temporary 
information storage space) can hold up to 128 bytes of information. 
 Once the Arduino knows that there is information available in the Serial receive buffer you 
can assign that information to a variable and then use the value of that variable to execute code. For 
example to assign the information in the Serial receive buffer to the variable incomingByte type 
the line; incomingByte = Serial.read(); Serial.read() will only read the first available 
byte in the Serial receive buffer, so either use one byte communications or study up on parsing and 
string variable types. Below is an example of code that might be used to receive Serial 
communication at a baud rate of 9600. 
 

int incomingByte = 0; //declare variable incomingByte, assign it value 0 
 

void setup ( ) { 
 Serial.begin(9600); //begin serial communication at baud rate 9600 
} 
void loop ( ) { 
//if there is information in the Serial receive buffer 
 if (Serial.available() > 0){   
//assign the first byte in buffer to incomingByte     
  incomingByte = Serial.read();  
 } 
 if (incomingByte == 'A'){      //if incomingByte is A 
  //execute code inside these brackets if incomingByte is A 
 } 
 if (incomingByte == 'B'){      //if incomingByte is B 
  //execute code inside these brackets if incomingByte is B 
 } 
} 
 

Additional things to note about Serial: 
 You cannot transmit and receive at the same time using Serial, you must do one or the other. 
You cannot hook more than two devices up to the same Serial line. In order to communicate 
between more than two devices you will need to use an Arduino library such as NewSoftSerial. 


