
Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

About Processing

Processing is a free, open source, cross-platform programming language and
environment for people who want to create images, animations, and interactions. Itʼs
easy to get started, and more importantly, it can serve as an easy way to add a visual
component or interaction with your hardware project (visualizing sensor data, playing a
game, displaying video, etc.).

Setup

• Download and install the latest version of Processing from http://processing.org
(thatʼs it!)

Getting Started

• Open up Processing. You should see something like the window below:

The IDE (Integrated Development Environment, i.e. what all the buttons do)

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Your First Sketch

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

• In the programming area, type:

print("hello world!");

• Press the ʻrunʼ button. Voila! You should see the message ʻhello world!ʼ in the output
area of the IDE. You will also notice that a small grey box popped up – thatʼs because
Processing is primarily used as a visual tool, and so it comes built in with a canvas
ready to draw on.

Drawing

• Drawing simple shapes in Processing is very straightforward. For example, typing:

ellipse(40, 50, 100, 110);

Gives us an ellipse with an x coordinate of 40, a y coordinate of 50, a width of 100, and
a height of 110. Notice how the size goes off the canvas – weʼll get to that in a sec.

Processing has a ton of built-in methods and functions - it would take us way too long to
cover them all – but the full reference can be found at:
http://processing.org/reference/

Letʼs get serious

While very simple Processing sketches donʼt require much in the way of format, for
anything dynamic (including motion, repetition, reading data, etc.) youʼll want to set up
your processing sketch with a certain structure.

To help with this, Processing has a few reserved functions (much like Arduino): setup()
and draw()

As you might imagine, we do our setup within the setup() function and our drawing
within the draw() function. For practical purposes this means that setup() only gets

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

called once at the beginning of the sketch, and that draw() is called repeatedly, much
like the loop() function in Arduino.

In addition, things like import statements for libraries and global variables typically go
before the setup function. Custom functions, class declarations, and other reserved
methods can go after the draw function or in a separate tab, depending on your
preference. (Weʼll talk more about this later).

Bouncy Ball

In this example, weʼre going to see the basic structure of a Processing program set up
to display a bouncing ball.

• In Processing, navigate to the top menu under File -> Examples. A pop-up window (or
drop-down list) should appear. Go to Topics -> Motion -> Bounce and open the sketch.

• Go ahead and run it. You should see a white ball ʻbouncingʼ off the edges of the
screen. Hereʼs the code if you canʼt find it:

int size = 60; // Width of the shape
float xpos, ypos; // Starting position of shape

float xspeed = 2.8; // Speed of the shape
float yspeed = 2.2; // Speed of the shape

int xdirection = 1; // Left or Right
int ydirection = 1; // Top to Bottom

void setup()
{
 size(640, 200);
 noStroke();
 frameRate(30);
 smooth();
 // Set the starting position of the shape
 xpos = width/2;
 ypos = height/2;
}

void draw()
{
 background(102);

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 // Update the position of the shape
 xpos = xpos + (xspeed * xdirection);
 ypos = ypos + (yspeed * ydirection);

 // Test to see if the shape exceeds the boundaries of the screen
 // If it does, reverse its direction by multiplying by -1
 if (xpos > width-size || xpos < 0) {
 xdirection *= -1;
 }
 if (ypos > height-size || ypos < 0) {
 ydirection *= -1;
 }

 // Draw the shape
 ellipse(xpos+size/2, ypos+size/2, size, size);
}

A few things worth noticing / doing:

• Notice how setup() and draw() are used and where theyʼre placed, look at how global
variables are used

• Look at some of the common built-in functions: size(), background(), width, height,
frameRate(), smooth()

• Play with the size, speed, and direction variables and see what happens

• Move the background() command to the setup() function. What happens? Why?

• Change colors using stroke(), fill(), and background()

• Remove smooth() – what happens?

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Hacking Simon!

Part 1: Hardware Setup

• If you havenʼt already, solder in some female headers to the breakout pins on your
Simon.

• Next, get your breadboard and run power and ground from the VCC and GND pins on
the Simon to the breadboard.

• On your breadboard, set up 2 trimpots, somewhat far apart, and run them to pins A0
and A1 on the Simon. Make sure you run power and ground to your trimpots as well.

A little diagram: Just think of the batteries as your power and ground from the Simon
board. Youʼll want to space out the two potentiometers as much as possible, so that itʼs
easier to turn both at once.

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Part 2: Arduino

Now that youʼre hardware is setup, open a new sketch in Arduino, and paste in the
SimonSketch code:

/* Simon Sketch - A Simon Tweak from SparkFun */

//define pins for led's and buttons
#define blueLed 13
#define yellowLed 3
#define redLed 5
#define greenLed 10

#define blueButton 12
#define yellowButton 2
#define redButton 6
#define greenButton 9

int leftPot = A0;
int rightPot = A1;

int buttonState; //variable to detect button press
int numButtons = 4; //number of buttons
int buttons[] = { //put our buttons in an array
 blueButton, yellowButton, redButton, greenButton};
int leds[] = { //put our led's in an array
 blueLed, yellowLed, redLed, greenLed};

void setup() {

 //init our pins - input for buttons, output for led's
 for(int i = 0; i < numButtons; i++) {
 pinMode(buttons[i], INPUT);
 pinMode(leds[i], OUTPUT);
 digitalWrite(buttons[i], HIGH); //init internal pull-up on button pins
 }

 Serial.begin(9600); //begin serial communication

 //UnComment this line after you configure your button pins
 //establishContact();
}

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

void loop() {

// UnComment these lines after you configure your button pins
// if (Serial.available() > 0) {
//
// int inByte = Serial.read();

 //send trimpot values
 int leftPotVal = analogRead(leftPot);
 Serial.print(leftPotVal, DEC);
 Serial.print(";");
 int rightPotVal = analogRead(rightPot);
 Serial.print(rightPotVal, DEC);

 //read buttons
 for(int i = 0; i < numButtons; i ++) {

 //is there a press?
 buttonState = digitalRead(buttons[i]);

 //if so, light up the corresponding led, and send the value to
 // processing via serial
 if (buttonState == 0) {
 digitalWrite(leds[i], HIGH);
 Serial.print(";");
 Serial.print(buttons[i]);
 delay(100);
 digitalWrite(leds[i], LOW);
 }
 }
 Serial.print('\n');

 }
//UnComment this line after you configure your button pins
//}

void establishContact() {
 while (Serial.available() <= 0) {
 Serial.println("hello"); // send a starting message
 delay(300);
 }
}

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

• Next, get your FTDI breakout connected to your computer and to the Simon Board.
You may need some male or female headers to do this.

• When plugging in the FTDI breakout to your Simon board, make sure the BLK and
GRN markings on the FTDI breakout match up with those on the Simon.

• In Arduino, select ʻLilyPad Arduino w/ATmega 328ʼ as your board type.

• Upload the code!

• IMPORTANT: You will have to configure your button and LED pins at the top of the
sketch to match the colors they are assigned to. (e.g., blueLed should be with blue
button and actually make the color blue when pressed). You can do this by opening the
Serial Monitor from Arduino and looking at the number that shows up when you press
each button. This is the button pin number that should be associated with the color of
that LED.

• Note the formatting we do around printing out the sensor values – this is going to help
us separate them back out in Processing.

• After youʼve configured your button pins, Un-comment the lines of code that say
ʻuncomment this line after youʼve configured your buttonsʼ. There are 3 places where
you have to do this (around line 38, lines 44-46, and line 74).

• Re-upload your code to the Simon.

• If you re-uploaded the Arduino code successfully, open up the Serial Monitor – what
do you see? Why?

• If you see ʻhelloʼ over and over again, youʼre done! Congrats!

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Part 3: Interlude – Getting serial data into Processing

Weʼre going to walk through the basics of setting up Serial communication in
Processing. Youʼre going to want to do most of these steps any time you want to
communicate with Processing using the serial port, especially for things like reading in
sensor values from an Arduino.

• First, open Processing. (Duh.) Start a new sketch. Call it ʻSerialBasicʼ, or whatever
you prefer.

• Under the ʻSketchʼ menu in Processing, go to ʻImport Libraryʼ and select ʻSerial I/Oʼ.
You should see something like: import processing.serial.*; in your sketch now. Good
job! You just imported your first library. This allows us to make use of some Serial
communication commands that will make our job much easier.

• Continue by copying the rest of the program below – make sure to read the comments
so you understand what each line is for.

/* SerialBasic w/ handshake -
 * Prints out a set of sensor readings from Arduino using the Serial Library
 */

//import the Serial library – should be there already
import processing.serial.*;

Serial myPort; //the Serial port object

// since we're doing serial handshaking,
// we need to check if we've heard from the microcontroller
boolean firstContact = false;

void setup() {

 // initialize your serial port:
 // this code picks the first port in the array of available ports,
 // and sets the baud rate to 9600
 myPort = new Serial(this, Serial.list()[0], 9600);
 myPort.bufferUntil('\n'); //buffer until we get a carriage return
}

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

void draw() {
 //we can leave the draw method empty,
 //because all our programming happens in the SerialEvent (see below)
}

//the serialEvent method is called every time we get new stuff in on the
// serial port
//in this case we're constantly getting info, so it acts as our draw loop
void serialEvent(Serial myPort) {

 //put the incoming data into a String -
 //the '\n' is our end delimiter indicating the end of a complete packet
 String myString = myPort.readStringUntil('\n');

 //make sure our data isn't empty before continuing
 if (myString != null) {

 //trim whitespace and formatting characters (like carriage return)
 myString = trim(myString);
 //println(myString);

 //look for our 'hello' string to start the handshake
 //if it's there, clear the buffer, and send a request for data
 if (firstContact == false) {
 if (myString.equals("hello")) {
 myPort.clear();
 firstContact = true;
 myPort.write('A');
 println("contact");
 }
 }
 else { //if we've already got contact, keep getting and parsing data

 //split the string of data back into separate values, using the
 //semicolon we printed in Arduino
 int sensors[] = int(split(myString, ';'));
 //run through the sensor values and print them out
 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {
 println("Sensor " + sensorNum + ": " + sensors[sensorNum]);
 }
 // when you've parsed the data you have, ask for more:
 myPort.write("A");
 }
 }
}

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

• Plug in your Simon and run your Processing sketch, if there are no errors, you should
see the sensor values from your Simon being printed out in the Processing terminal.
Sweet!

• If not, check for syntax errors, make sure you imported the serial library, hooked up
your Simon properly, and donʼt have any other serial monitors open.

• Setting up Serial communication in this way in called a ʻhandshakeʼ – Arduino waits for
an incoming byte from Processing before it starts sending data, and waits to send more
data until another byte from Processing arrives (signaling that Processing is done with
the earlier data). This helps control the flow of data between the two programs.

Part 4: SimonSketch!

At this point, weʼve got our Simon hooked up to some sensors, and we can read the
values of those sensors in Processing. Now itʼs time to use these values in Processing
to create a little thing we call the SimonSketch (think Simon meets Etch-A-Sketch).

1. Copy and Paste your SerialBasic code into a new sketch, called ʻSimonSketchʼ.

2. What does an etch-a-sketch do? It draws, and it moves using two dials, right? So we
need to keep track of our position, using info from our two dials (our trim pots). Letʼs
make global variables for our pots and the x and y coordinate of where weʼre currently
drawing.

Add these lines below your ʻSerial myPort;ʼ declaration:

int leftPot;
int rightPot;

float x = width/2;
float y = height/2;

This gives us a place to store the values from the pots, as well as an x and y for the
position of our cursor.

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3. At the beginning of your Setup() function, weʼre going to put a few methods to ʻsetupʼ
our drawing environment.

size(1000, 750); //defines the size of our canvas (width, height)
background(255); //defines the starting background color (255 is white)
stroke(255); //defines the starting stroke color
smooth(); //the smooth() function ‘smoothes out’ motion and curves

4. Although we will be drawing on the canvas, we can still leave the draw() method
empty and put all the actual drawing in the serialEvent method.

5. Skip down to the section in the serialEvent method after we print out the sensor
values (around line 70, shown below). Weʼre going to assign the sensor values from
Arduino to our local leftPot and rightPot variables:

for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++) {
 println("Sensor " + sensorNum + ": " + sensors[sensorNum]);
 println(sensors.length);
 }

 leftPot = sensors[0]; // <- new stuff
 rightPot = sensors[1];

6. Now that weʼve got the sensor values in their own variables, weʼve got to turn them
into numbers we want to use. In this case it means casting the integers as floats so that
we can ʻmapʼ them to the width and height of the canvas – this is just an easy way of
taking the normal range of sensor values (0 to 1023) and mapping them in a way that
makes sure they cover the whole canvas evenly (since our canvas might be bigger or
smaller than 1023 pixels squared).

Add the following directly below the lines you just wrote:

y = (float)leftPot; //casting values from int to float
x = (float)rightPot;

y = map(y, 0, 1023, 0, height); //map to height and width of canvas
x = map(x, 0, 1023, 0, width);

//print out the new values for good measure
println("X: " + x + " " + "Y: " + y);

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7. Great. We have sensor values that map to the height and width of our canvas, so
now we just have to draw a point (or a small circle) wherever our sensors tell us to go:

ellipse(x, y, 5, 5);

Yup. Simple as that.

8. Next, weʼre going to add in some functionality for changing colors based on the
button pushes from Simon, as well as an ʻeraseʼ mode if we push two buttons at once.
To do this, we can just check the size of the sensor value array – if we get 3 values, the
third corresponds to the button we should change colors to. If we can 4 values, then 2
buttons are being pushed at once, which is our cue to go into ʻeraseʼ mode.

//if there's a third value, a button has been pressed, so change the color

if (sensors.length > 2) {
 int colorC = sensors[2];
 changeColor(colorC);
//this is passing the value to our ‘changeColor’ function (see below)
}

if (sensors.length > 3) { //if you press 2 buttons, set to erase mode
 fill(255);
 stroke(255);
}

Before this code will work – we need to write our changeColor method that we use
above. Put this after your serialEvent method at the end of your sketch:

void changeColor(int colorC) {
 //match the color to the button press
 switch (colorC) {
 case 2: //yellow
 stroke(255, 255, 0);
 fill(255, 255, 0);
 break;
 case 6: //red
 stroke(255, 0, 0);
 fill(255, 0, 0);

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 break;
 case 9: //green
 stroke(0, 255, 0);
 fill(0, 255, 0);
 break;
 case 12: //blue
 stroke(0, 0, 255);
 fill(0, 0, 255);
 break;
 default:
 stroke(0, 0, 255);
 }
}

Thatʼs it! Youʼve hacked your Simon! Try running your sketch. Youʼll have to push a
button to get drawing, then control the drawing with the two potentiometers, just like an
Etch-A-Sketch. Try changing colors using the buttons, and make sure your erase mode
works. Get painting!

Hereʼs the full sketch in case you get stumped:

/* SimonSketch - A Simon Tweak from Sparkfun
 * Use the buttons on your simon to pick colors,
 * the trimpots to move your cursor
 * 2 = yellow
 * 6 = red
 * 9 = green
 * 12 = blue
 * incoming string = leftPot;rightPot;buttonPress
 * if no button press, then just leftPot;rightPot
 */

import processing.serial.*;

Serial myPort;
int leftPot;
int rightPot;

float x = width/2;
float y = height/2;

// Whether we've heard from the microcontroller
boolean firstContact = false;

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

void setup() {

 size(1000, 750);
 background(255);
 stroke(255);
 smooth();
 println(Serial.list()); //list serial ports
 //init serial object (picks 1st port available)
 myPort = new Serial(this, Serial.list()[0], 9600);
 myPort.clear();
}

void draw() {
}

void serialEvent(Serial myPort) {

 String myString = myPort.readStringUntil('\n');
 // if you got any bytes other than the linefeed:
 if (myString != null) {

 myString = trim(myString);
 //println(myString);

 if (firstContact == false) {
 if (myString.equals("hello")) {
 myPort.clear();
 firstContact = true;
 myPort.write('A');
 println("contact");
 }
 }
 else {
 int sensors[] = int(split(myString, ';'));
 // print out the values you got:
 for (int sensorNum = 0; sensorNum < sensors.length; sensorNum++){
 println("Sensor " + sensorNum + ": " + sensors[sensorNum]);
 println(sensors.length);
 }

 leftPot = sensors[0];
 rightPot = sensors[1];

 y = (float)leftPot;
 x = (float)rightPot;

 y = map(y, 0, 1023, 0, height);
 x = map(x, 0, 1023, 0, width);

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 println("X: " + x + " " + "Y: " + y);

 ellipse(x, y, 5, 5);
//if there's a third value, a button has been pressed, change the color
 if (sensors.length > 2) {
 int colorC = sensors[2];
 changeColor(colorC);
 }

 if (sensors.length > 3) { //got 2 buttons, set to erase mode
 fill(255);
 stroke(255);
 }
 // when you've parsed the data you have, ask for more:
 myPort.write("A");
 }
 }
}

void changeColor(int colorC) {
 //match the color to the button press
 switch (colorC) {
 case 2: //yellow
 stroke(255, 255, 0);
 fill(255, 255, 0);
 break;
 case 6: //red
 stroke(255, 0, 0);
 fill(255, 0, 0);
 break;
 case 9: //green
 stroke(0, 255, 0);
 fill(0, 255, 0);
 break;
 case 12: //blue
 stroke(0, 0, 255);
 fill(0, 0, 255);
 break;
 default:
 stroke(0, 0, 255);
 }
}

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Going Further

The Simon has 6 Analog Pins broken out for us to use, so why stop after only using 2?
Letʼs push it a little further. In addition, weʼre going to write a class called SimonCursor
to control how our cursor behaves while we draw.

The following is just one example, but feel free to improve and improvise using other
components.

SimonSketchPro with Size and Transparency Control

Step 1: Hardware

• A another Trim Pot to your board, and connect it to Pin A5 on the Simon

• Add a photo-resistor to your board (donʼt forget the 10K resistor), and connect it to Pin
A4 on the Simon

It should look something like this when youʼre done:

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Step 2: Arduino

Since we added more sensors, weʼre going to have to change our Arduino code to read
those sensors and send them out to Processing.

1. Copy and Paste your ʻSimonSketchʼ code into a new sketch called ʻSimonSketchProʼ
(or whatever you like).

2. Add these lines at the beginning of your sketch for Pin declarations (new code is
Bold):

 int leftPot = A0;
 int rightPot = A1;
 int lightSensor = A4;
 int sizePot = A5;

3. In our loop() method, weʼll have to read, format, and print the new sensor values:

 int leftPotVal = analogRead(leftPot);
 Serial.print(leftPotVal, DEC);
 Serial.print(";");
 int rightPotVal = analogRead(rightPot);
 Serial.print(rightPotVal, DEC);

 Serial.print(";"); // <- new
 int sizePotVal = analogRead(sizePot);
 Serial.print(sizePotVal, DEC);
 Serial.print(";");
 int lightSensorVal = analogRead(lightSensor);
 Serial.print(lightSensorVal, DEC);

4. Before you upload, comment out the lines for the handshake and check your serial
monitor to make sure the sensor values are being sent correctly.

IMPORTANT: Every photocell is a little different and gets different values depending on
the conditions (sunny vs. cloudy, indoor vs. outdoor, etc.). As you look at the serial
monitor, make a note of the high and low values youʼre getting – weʼll need this later in
the Processing sketch.

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Make sure to uncomment the handshake code and re-upload your code before moving
on.

Thatʼs it for the Arduino part! On to our Processing code!

Step 3: Processing

Now we have to change a few things in our Processing code. Weʼll have the extra trim
pot control the size of our stylus, and the photocell will control the transparency.

1. Copy and Paste your ʻSimonSketchʼ Processing code into a new sketch called
ʻSimonSketchProʼ (or whatever you like).

2. Letʼs start writing our class. You can start a class at the bottom of your current code,
but you may find it cleaner to create a new tab (under the tab menu) and name it after
your class, in this case SimonCursor.

3. In this case, our class is going to take care of the values from our four sensors to
control the X position, Y position, size of the cursor, and its transparency. So letʼs
declare our class and its attributes:

class SimonCursor {

 float x;
 float y;
 float siz;
 float light;

}

4. After the ʻfloat light;ʼ line, we need to add a constructor. This is a statement that
prepares the object for use upon its creation, by setting up the parameters that align
with the variables we just declared. Basically itʼs a method with the same name as your
class, and a dummy variable for each attribute your object possesses. It may look a little
strange, but itʼs necessary:

SimonCursor (float _x, float _y, float _siz, float _light) {
 x = _x;
 y = _y;

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 siz = _siz;
 light = _light;
 }

Notice the underscores – these differentiate the variables in our constructor method
from those in our class (even though weʼre assigning them to each other).

5. Next weʼre going to crate a render() method to draw our cursor with the position and
size that weʼve passed in:

 void render() {
 ellipse(x,y,siz,siz);
 }

6. Finally, weʼre going to move our entire changeColor method into our new class – just
copy and paste the entire method in, after the render() method. Donʼt forget the last
curly bracket (}) to close out our class.

7. Weʼre done with writing our class – now we need to go back into the main Processing
sketch and change our code to make use of our new class and to read in the new
values from our two new sensors.

8. Back in our SimonSketchPro tab,we need to declare our SimonCursor object from our
new class and create a few more global variables for our new sensor values coming in
(new code in bold):

SimonCursor myCursor;
int leftPot;
int rightPot;
float sizePot = 0;
int lightSensor = 0;

9. We also need to define variables to keep track of the new dimensions we want to
control: size and light (new code in bold):

float x = width/2;
float y = height/2;
float siz; // (size is a protected term in processing, hence ‘siz’)
float light;

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10. Nowʼs the time to put in the high and low values you recorded from your photocell:

// our high and low photocell values
int high = 550;
int low = 150;

11. Next, skip down to your serialEvent() method. Weʼll need to find a place for the
extra sensor values coming in (new code in bold):

leftPot = sensors[0];
rightPot = sensors[1];
sizePot = sensors[2];
lightSensor = sensors[3];

12. As before, weʼll have to convert the sensor values to floats so we can map them to
the range of values we want (new code in bold):

y = (float)leftPot;
x = (float)rightPot;
siz = (float)sizePot;
light =(float)lightSensor;
y = map(y, 0, 1023, 0, height);
x = map(x, 0, 1023, 0, width);
siz = map(siz, 0, 1023, 2, 50);
light = map(light, low, high, 0, 255); //note the high and low values
println("X: " + x + " " + "Y: " + y + " " + "Size: " + siz + " " + "Light: "
+ light);

13. Now we get to make use of our new cursor object – weʼll create a new SimonCursor
object called ʻmyCursorʼ, and pass it in all the variables it expects (x,y,size, light):

myCursor = new SimonCursor(x,y,siz,light);

14. Weʼve also got to tell it to draw itself now that it has all the values it needs:

myCursor.render();

15. Since our normal sensor array size is going to be bigger (always reading 4 sensors
instead of 2), we have to adjust our code for determining when to change colors and
when to enter erase mode – and since we moved our changeColor method into our new
class weʼve got to call that method as part of our myCursor object:

Intro to Processing / Tweaking Simon
SparkFun Electronics Summer Semester

	

	

©	
 2011	
 SparkFun	
 Electronics,	
 Inc.	
 SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun	
 Electronics	
 Summer	
 Semester	
 is	
 a	
 trademark	
 of	
 SparkFun	
 Electronics,	
 Inc.	
 All	
 other	
 trademarks	
 contained	
 herein	
 are	
 the	
 property	
 of	
 their	
 respective	
 owners.	
 	

SparkFun	
 Electronics	
 Summer	
 Semester	
 Educational	
 Material	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

if (sensors.length > 4) {
 int colorC = sensors[4];
 myCursor.changeColor(colorC);
}

if (sensors.length > 5) { //if you press 2 buttons, set to erase mode
 fill(255);
 stroke(255);
}

9. The last change is incorporating the photocell value into our changeColor() method
back in our Class tab, to control the alpha value (transparency) of our colors (new code
in Bold):

void changeColor(int colorC) {
 //match the color to the button press
 switch (colorC) {
 case 2: //yellow
 stroke(255, 255, 0, light);
 fill(255, 255, 0, light);
 break;
 case 6: //red
 stroke(255, 0, 0, light);
 fill(255, 0, 0, light);
 break;
 case 9: //green
 stroke(0, 255, 0, light);
 fill(0, 255, 0, light);
 break;
 case 12: //blue
 stroke(0, 0, 255, light);
 fill(0, 0, 255, light);
 break;
 default:
 stroke(0, 0, 255, light);
 }
}

Youʼre finished! Try running your new Simon Sketch code – note that the more you
cover the photocell when changing colors (thatʼs when we send the photocell value to
the changeColor method), the more transparent your drawing will be.

