
SIK BINDER //11

SIK BINDER //12

2
Electrical

SIK BINDER //13

Electrical

SIK BINDER //14

Example of parallel circuit.
Two LEDs and a resistor.

Example of series
circuit. Three LEDs.

Battery (power source)

Terminal strips
(conducts horizontally -
“a” through “e”, and “f” through “j”)

Power supply connections
(conducts vertically - from top to bottom)

This line divides the board in
half. Electricity will not

conduct through this vertical

CHAPTER 2
Breadboard Basics

// How it works

One of the most important tools for electrical prototyping and
invention is the breadboard. It’s not a piece of bread that you
stick electronics into, it’s a piece of plastic with holes to place
wires into and copper connecting the holes so electricity can
get to all the pieces you are working with. But not all the
holes are connected! Above is a diagram and explanation of
how a breadboard works as well as examples of parallel and
series circuits. Not sure what parallel and series circuits are?
Don’t worry! The important thing is learning how to use the
breadboard so you can play around with some electronics.

The labels on the picture of this breadboard show you which
holes are connected and allow electricity to flow between
them without anything else connecting them. This is made
possible by strips of copper on the underside of the board.
The power supply connections have a + and – indicating how
to hook up your power source. The connections for the power
supply run up and down. The terminal strips are labeled “a”
through “j”, these connections run across the board, but are
broken down the middle. This cuts the connection across
the entire terminal area in half, giving you two unconnected
sections to work with.

SIK BINDER //15

 // Series
Series

// Parallel Parallel

Because the copper plating below the power supply
connections and the terminal connections conduct electricity
there are many different ways to hook up the same circuit
and make it work. All that matters is that the electricity can
flow through the entire circuit from power (+) to ground (-).

This is an example of the same two circuits from the previous
page hooked up in different ways that still work the same.
There are many differences between this picture and the
previous one. First of all, at the very top there is a wire
connecting the positive (+) power terminal on the left with
the positive (+) power terminal on the right. Now it is
possible to supply power to your circuits from either side
of the board. That’s why this example of a parallel circuit
has a red wire stretching all the way to the positive (+)
power terminal on the right side. What would you do if you
wanted to use the ground (-) power terminal on the right
side of the board?

Another thing that has changed in the parallel
circuit example is the position of the resistor. In the
previous image, the resistor went from the row with the
negative LED connections to the row below
with a wire connecting that f inal row to the
ground (-) power terminal. This is an example of tossing
out a wire because you can use the wires coming out of
components to plug directly into the power terminals. You
can do the same thing with your LEDs if you like, try it out.

Lastly, the positions of the LEDs have changed in both
examples. This is because it doesn’t matter where the LEDs
are positioned to the left or right (columns “a” through “e”),
as long as they are plugged into the correct rows (up and
down).

CHAPTER 2
Breadboard

Name:
Date:

SIK BINDER //16

Here are some quick questions to make sure you understand the breadboard:
1. Circle the power terminals below, make sure you get all
of them.

2. Draw wires to complete six LED circuits that will work.
Each circuit needs either a total of three LEDs or two LEDs
and a resistor. Use all power terminals at least once and
don’t forget to hook up your battery.

3. Inside the dotted lines draw lines to show where electricity
will conduct without plugging anything else in.

CHAPTER 2
Breadboard

Name:
Date:

SIK BINDER //17

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with
are either Analog or Digital. It is extremely important to
understand the difference between these two types of
signal and how to manipulate the information these signals
represent.

// Analog
A continuous stream of information with values
between and including 0% and 100%.

Humans perceive the world in analog. Everything
we see and hear is a continuous transmission of
information to our senses. The temperatures we perceive
are never 100% hot or 100% cold, they are constantly
changing between our ranges of acceptable temperatures.
This continuous stream is what defines analog data. Digital
information, the complementary concept to Analog, estimates
analog data using only ones and zeros.

In the world of Arduino an analog signal is simply a signal
that can be HIGH (on), LOW (off) or anything in between these
two states. This means an Analog signal has a voltage value
that can be anything between 0V and 5V (unless you mess
with the Analog Reference pin). Analog allows you to send
output or receive input about devices that run at percentages
as well as on and off. The RedBoard does this by sampling
the voltage signal sent to these pins and comparing it to a
voltage reference signal (5V). Depending on the voltage of
the Analog signal when compared to the Analog Reference
signal the RedBoard then assigns a numerical value to the
signal somewhere between 0 (0%) and 1023 (100%). The
digital system of the RedBoard can then use this number in
calculations and sketches.

To receive Analog Input the Arduino uses Analog pins # 0
- # 5. These pins are designed for use with components
that output Analog information and can be used for Analog

Input. There is no setup necessary and to read them use
the command:
 analogRead(pinNumber);
where pinNumber is the Analog In pin to which the the Analog
component is connected. The analogRead command will
return a number including or between 0 and 1023.

The RedBoard also has the capability to output a digital signal
that acts as an Analog signal, this signal is called Pulse Width
Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 and
#11 have PWM capabilities. To output a PWM signal use
the command:
 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and
value is a number between 0 (0%) and 255 (100%). On
the Arduino UNO PWM pins are signified by a ~ sign. For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Examples of Analog:

Values: Temperature, volume level, speed, time, light, tide
level, the list goes on....
Sensors: Temperature sensor, Photoresistor, Microphone,
Turntable, Speedometer, etc....

Things to Remember about Analog:

Analog Input uses the Analog In pins, Analog Output uses
the PWM pins
To receive an Analog signal use:
 analogRead(pinNumber);
To be able to send a PWM signal use:
 analogWrite(pinNumber, value);
Analog Input values range from 0 to 1023 (1024 values
because it uses 10 bits, 210)
PWM Output values range from 0 to 255 (256 values because
it uses 8 bits, 28)

Analog

SIK BINDER //18

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with
are either Analog or Digital. It is extremely important to
understand the difference between these two types of
signal and how to manipulate the information these signals
represent.

// Digital
An electronic signal transmitted as binary code that can be
either the presence or absence of current, high and low
voltages or short pulses at a particular frequency.

Humans perceive the world in analog, but robots, computers
and circuits use Digital. A digital signal is a signal that has
only two states. These states can vary depending on the
signal, but simply defined the states are ON or OFF, never
in between.

Digital signals are used for everything with the exception of
Analog Input. Depending on the voltage of the Arduino the
ON or HIGH of the Digital signal will be equal to the system
voltage, while the OFF or LOW signal will always equal 0V.
This is a fancy way of saying that on a 5V RedBoard the HIGH
signals will be a little under 5V and on a 3.3V RedBoard the
HIGH signals will be a little under 3.3V.

To receive or send Digital signals the Arduino uses Digital
pins # 0 - # 13. You may also setup your Analog In pins to
act as Digital pins. To set up Analog In pins as Digital pins
use the command:
 pinMode(pinNumber, value);
where pinNumber is an Analog pin (A0 – A5) and value is
either INPUT or OUTPUT. To setup Digital pins use the same
command but reference a Digital pin for pinNumber instead
of an Analog In pin. Digital pins default as input, so really
you only need to set them to OUTPUT in pinMode. To read
these pins use the command:

 digitalRead(pinNumber);
where pinNumber is the Digital pin to which the Digital
component is connected. The digitalRead command will
return either a HIGH or a LOW signal. To send a Digital signal
to a pin use the command:
 digitalWrite(pinNumber, value);
where pinNumber is the number of the pin sending the signal
and value is either HIGH or LOW.

The RedBoard also has the capability to output a Digital signal
that acts as an Analog signal, this signal is called Pulse Width
Modulation (PWM). Digital Pins # 3, # 5, # 6, # 9, # 10 and
#11 have PWM capabilities. To output a PWM signal use
the command:
 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and
value is a number between 0 (0%) and 255 (100%). For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Examples of Digital:

Values: On/Off, Men’s room/Women’s room, pregnancy,
consciousness, the list goes on....
Sensors/Interfaces: Buttons, Switches, Relays,
CDs, etc....

Things to Remember about Digital:

Digital Input/Output uses the Digital pins, but Analog In pins
can be used as Digital
To receive a Digital signal use:
 digitalRead(pinNumber);
To be able to send a Digital signal use:
 digitalWrite(pinNumber, value);
Digital Input and Output are always either HIGH or LOW /
ON or OFF.

Digital

SIK BINDER //19

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the RedBoard works with are
either input or output. It is extremely important to understand
the difference between these two types of signal and how to
manipulate the information these signals represent.

// Input Signals
A signal entering an electrical system, in this case a micro-
controller. Input to the RedBoard pins can come in one of
two forms; Analog Input or Digital Input.

Analog Input enters your RedBoard through the Analog In
pins # 0 - # 5. These signals originate from analog sensors
and interface devices. These analog sensors and devices use
voltage levels to communicate their information instead of
a simple yes (HIGH) or no (LOW). For this reason you cannot
use a digital pin as an input pin for these devices. Analog
Input pins are used only for receiving Analog signals. It is only
possible to read the Analog Input pins so there is no command
necessary in the setup() function to prepare these pins for
input. To read the Analog Input pins use the command:
 analogRead(pinNumber);
where pinNumber is the Analog Input pin number. This
function will return an Analog Input reading between 0 and
1023. A reading of zero corresponds to 0 Volts and a reading
of 1023 corresponds to 5 Volts. These voltage values are
emitted by the analog sensors and interfaces. If you have an
Analog Input that could exceed Vcc + .5V you may change
the voltage that 1023 corresponds to by using the Aref pin.
This pin sets the maximum voltage parameter your Analog
Input pins can read. The Aref pin's preset value is 5V.

Digital Input can enter your RedBoard through any of the
Digital Pins # 0 - # 13. Digital Input signals are either HIGH
(On, 5V) or LOW (Off, 0V). Because the Digital pins can be

used either as input or output you will need to prepare the
RedBoard to use these pins as inputs in your setup()function.
To do this type the command:
 pinMode(pinNumber, INPUT);
inside the curly brackets of the setup() function where
pinNumber is the Digital pin number you wish to declare as
an input. You can change the pinMode in the loop()function
if you need to switch a pin back and forth between input and
output, but it is usually set in the setup()function and left
untouched in the loop()function. To read the Digital pins set
as inputs use the command:
 digitalRead(pinNumber);
where pinNumber is the Digital Input pin number.

Input can come from many different devices, but each
device's signal will be either Analog or Digital, it is up to
the user to figure out which kind of input is needed. Hook
up the hardware and then type the correct code to properly
use these signals.

Things to Remember about Input:

Input is either Analog or Digital, make sure to use the correct
pins depending on type.
To take an Input reading use analogRead(pinNumber); (for
analog)
Or digitalRead(pinNumber); (for digital)
Digital Input needs a pinMode command such as
pinMode(pinNumber, INPUT);
Analog Input varies from 0 to 1023
Digital Input is always either HIGH or LOW

Examples of Input:

Push Buttons, Potentiometers, Photoresistors, Flex Sensors

Input

SIK BINDER //20

CHAPTER 2
Analog and Digital

Name:
Date:

All of the electrical signals that the Arduino works with are
either input or output. It is extremely important to understand
the difference between these two types of signal and how to
manipulate the information these signals represent.

// Output Signals
A signal exiting an electrical system, in this case a micro-
controller.

Output to the RedBoard pins is always Digital, however there
are two different types of Digital Output; regular Digital Output
and Pulse Width Modulation Output (PWM). Output is only
possible with Digital pins # 0 - # 13. The Digital pins are
preset as Output pins, so unless the pin was used as an Input
in the same sketch, there is no reason to use the pinMode
command to set the pin as an Output. Should a situation
arise where it is necessary to reset a Digital pin to Output
from Input use the command:
 pinMode(pinNumber, OUTPUT);
where pinNumber is the Digital pin number set as Output. To
send a Digital Output signal use the command:
 digitalWrite(pinNumber, value);
where pinNumber is the Digital pin that is outputting the
signal and value is the signal. When outputting a Digital signal
value can be either HIGH (On) or LOW (Off).

Digital Pins # 3, # 5, # 6, # 9, # 10 and #11 have PWM
capabilities. This means you can Output the Digital equivalent
of an Analog signal using these pins. To Output a PWM signal
use the command:
 analogWrite(pinNumber, value);
where pinNumber is a Digital Pin with PWM capabilities and

value is a number between 0 (0%) and 255 (100%). For
more information on PWM see the PWM worksheets or S.I.K.
circuit 12.

Output can be sent to many different devices, but it is up to
the user to figure out which kind of Output signal is needed,
hook up the hardware and then type the correct code to
properly use these signals.

Things to remember about Output:

Output is always Digital
There are two kinds of Output: regular Digital or PWM (Pulse
Width Modulation)
To be able to send an Output signal use:
 analogWrite(pinNumber, value); (for analog) or
digitalWrite(pinNumber, value); (for digital)
Output pin mode is set using the pinMode command:
pinMode(pinNumber, OUTPUT);
Regular Digital Output is always either HIGH or LOW
PWM Output varies from 0 to 255

Examples of Output:

Light Emitting Diodes (LED's), Piezoelectric Speakers,
Servo Motors

Output

SIK BINDER //21

CHAPTER 2
Programming Concepts, Input/Output Activity

Purpose: Group activity teaching the concepts of input
and output as used in Arduino Programming and Physical
Computing. Text formatted like this denotes actual Arduino
code.

Materials: Three to five different sized balls and a white/
chalk board big enough so the whole room can see it.

Vocabulary to be explained prior to activity:

input: A pin mode that intakes information.
output: A pin mode that sends information.
digitalRead: Command used to get a HIGH or LOW value
from a digital input pin.
analogRead: Command used to get a value between or
including 0 and 1023 from an analog input pin.
digitalWrite: Command used to send a HIGH or LOW value
to an output pin.
analogWrite: Command used to send a PWM value to an
output pin simulating an analog output.
PWM: A value between 0 and 255 representing a digital
signal simulating an analog output. Used with analogWrite.
HIGH: Electrical signal present (5V for Uno). Also ON or True
in boolean logic.
LOW: No electrical signal present (0V). Also OFF or False in
boolean logic.

Preparation: Divide the class in quarters, assign each group
the following names: Sensors, Input Pins, Output Pins, and
Output Components. Arrange the groups in lines in this order
about ten to twenty feet apart (or farther if the students are
older). The students at the front of each line are Code, their
job is to write the Arduino code corresponding to the signal
received by their team on the chalk board or white board.
Distribute the balls so that each student in the Sensor line
has at least one of each size. The smallest balls (tennis or
bouncy balls) represent the smallest signal a sensor can send
to the RedBoard, LOW. The largest balls represent the largest
signal a sensor can send, HIGH. The ball or balls of medium
size represent PWM values depending on size.

Activity: To start the activity ask the Code student in the
Sensor line to tell the class what kind of sensors the Sensor
line represents (photoresistor, potentiometer, flex sensor,
etc...) and write on the board what the sensor value is. The
sensor value corresponds to the sensor type. For example,
if the sensor type is photoresistor then “sunny day” might
be written to signal a HIGH signal or “really cloudy” might
be written to signal a smaller PWM value.

Each student in the Sensor line then throws the corresponding
sized ball to a student in the Input Pin line. Once all the Input
Pins have caught their “signals” the Code student in the Input
Pin line writes the analogRead or digitalRead value they think
corresponds to the signal.

Once the analogRead value has been written on the board
the Input Pin line throws the balls to the Output Pin line. The
Code student in that line writes the analogWrite or digitalWrite
value they think corresponds to the signal on the board and
the balls are thrown to the Output Components.

Once all the Output Components catch their balls the Code
student tells the class what type of output component
the Output Component line represents and the Output
Components strike a pose depending on the signal they
received. In the example below poses for LEDs and Servos
are shown, but students should be encouraged to make up
their own output poses or actions. For example, to represent
a HIGH value with motor component outputs students might
run in place as fast as they can.

Once the Output Component line has finished, the balls
are thrown back to the Sensor line, the Code students are
replaced by another student in their line and the process
starts over. Once every student has had a chance to be the
Code student the lines should switch so eventually everyone
has a chance to play each part of the input/output process.

This version of the input/output activity is the simplest form of
the activity. If students are comfortable with this version and
want more of a challenge there are many ways to complicate
the activity.

Give the Output line a set of balls as well as the Sensor line
and place a piece of code between the Input and Output lines.
The code should be a map command switching the Output
signal. For example use:
 map(signal, 0, 1023, 255, 0);
so that the Output line must throw a large ball (HIGH signal)
when the Input line receives a small ball (LOW signal). You
can then switch this code through out the game.

Get rid of the Code students and have the Sensor line choose
which ball they will throw. Each student can yell out what
their line's value equals depending on the size of the ball
they catch. This version is a little more fun but will also be
a little more chaotic.

SIK BINDER //22

Once all the Output Components catch their balls the Code
student tells the class what type of output component
the Output Component line represents and the Output
Components strike a pose depending on the signal they
received. In the example below poses for LEDs and Servos
are shown, but students should be encouraged to make up
their own output poses or actions. For example, to represent
a HIGH value with motor component outputs students might
run in place as fast as they can.

Once the Output Component line has finished, the balls
are thrown back to the Sensor line, the Code students are
replaced by another student in their line and the process
starts over. Once every student has had a chance to be the
Code student the lines should switch so eventually everyone
has a chance to play each part of the input/output process.

This version of the input/output activity is the simplest form of
the activity. If students are comfortable with this version and
want more of a challenge there are many ways to complicate
the activity.

Give the Output line a set of balls as well as the Sensor line
and place a piece of code between the Input and Output lines.
The code should be a map command switching the Output
signal. For example use:

map(signal, 0, 1023, 255, 0);
so that the Output line must throw a large ball (HIGH signal)
when the Input line receives a small ball (LOW signal). You
can then switch this code through out the game.

Get rid of the Code students and have the Sensor line choose
which ball they will throw. Each student can yell out what
their line's value equals depending on the size of the ball
they catch. This version is a little more fun but will also be
a little more chaotic.

CHAPTER 2
Programming Concepts, Input/Output Activity

Activity
}

Code

Sensors Input Pins Output Pins Output Components

SMALL

MEDIUM-SMALL

MEDIUM

MEDIUM-LARGE

LARGE

// LOW

// HIGH

// PWM VALUE 1

// PWM VALUE 2

// PWM VALUE 3

Additional thoughts: This is a great activity just prior to
computer lab time. Instead of having kids bouncing off the
monitors they will be calmer and ready to sit still applying the

concepts they just solidified through physical activity. This is
great for kinesthetic learners in particular.

SIK BINDER //23

For the most part in computer language one
means ON and zero means OFF. This keeps things
nice and simple, but what if you want to turn
something halfway ON so that it is not all the
way ON and not all the way OFF? You can't just
use a decimal because digital technology only
understands ones and zeros. For this reason some
of the pins on your Arduino are labeled PWM or
Pulse Width Modulation pins. This means you can
send a bunch of ones and zeros real quick and the
Arduino board will read these ones and zeros as an
average somewhere between one and zero. The
red line in the diagrams represent the average.
See tables to the right.

Luckily a lot of the work has been done for
you so you don't have to figure out the actual
patterns of ones and zeros. All you have to do is
pick a number between 0 and 255 and type the
command analogWrite. The number zero means
the pin is set fully off, the number 255 means the
pin is set fully on, and all other numbers set the
pin to values between ON (100% or 255) and OFF
(0% or 0). You can use PWM on any pin labeled
PWM and do not need to set the pin mode before
sending an analogWrite command.

How do you think a PWM signal will affect each of these
components compared to a 1 or a 0?

LED:

Motor:

Piezo:

CHAPTER 2
PWM

Name:
Date:

Draw a line through these two charts to show where you believe the PWM
value should be.

There are many concepts outside of electrical engineering that are similar
to Pulse Width Modulation. Can you list at least three and explain what is
being modulated?

PWM signal at 25% PWM signal at 50%

PWM signal rising from 25% - 75%PWM signal at 75%

SIK BINDER //24

Below are five different PWM windows. A PWM signal is simply a bunch of PWM windows one after another.
Some are missing labels and some are missing diagrams. Please fill in the blanks on the middle three.

Below are three different metaphors for a PWM window and a PWM signal. Write the physical item that
represents the window and the item or items that represents the signal. Then estimate the PWM percent.

GG G

High (ON)
Low (OFF)

PWM percent 0%
(No wave)

PWM percentage PWM percent 50%
(Draw in window)

PWM percent 75%
(Draw in window)

PWM percent 100%
(No wave)

Window:

Signal percentage: Signal percentage: Signal percentage:

Window: Window:

CHAPTER 2
PWM

Name:
Date:

Computers and microprocessors only understand two things,
ON and OFF. These are represented in a few different ways.
There is ON and OFF, One and Zero, or HIGH and LOW. Ones
and Zeros are used in the computer language Binary, HIGH
and LOW are used with electricity, ON and OFF are plain old
human speak.

But what if we want to turn something digital less
than 100% ON? Then we use something called PWM,
or Pulse Width Modulation. The way your Arduino
microprocessor does this is by turning the electricity on
a PWM pin ON and then OFF very quickly. The longer the
electricity is ON the closer the PWM value is to 100%. This is
very useful for controlling a bunch of stuff. For example: the
brightness of a light bulb, volume of sound, or the speed of a
motor. These are very basic examples, what else might
you need to control that is not only ON or OFF? Explain
at least two examples.

A microprocessor creates a PWM signal by using a built in
clock. The microprocessor measures a certain amount of time
(also called a window or a period) and turns the PWM pin ON
(or HIGH) for the first part of this window and then OFF (or
LOW) near the end of the window. The window is filled up
with a different length ON (or HIGH) signal depending on the
PWM value. If the PWM value is 50% then the PWM signal
is ON (or HIGH) for half of the window. If the PWM value is
25% then the PWM signal is ON (or HIGH) for a quarter of
the window. The only time the window will not have a LOW
value is if the PWM signal is turned completely ON the whole
time and therefore equal to 100% ON. The opposite is true
as well, if the PWM signal is set to 0% or OFF, then there
will not be any HIGH value at the beginning of the window.
Explain in your own words what a PWM window is.

