#### Using servos with an Arduino



# Learning Objectives

- Be able to identify characteristics that distinguish a servo and a DC motor
- Be able to describe the difference a conventional servo and a continuous rotation servo
- Be able to use the Arduino Servo library to control servo position

### References

Information on Arduino Servo library: http://www.arduino.cc/en/Reference/Servo http://www.arduino.cc/playground/Learning/SingleServoExample

Additional descriptions of servos http://makeprojects.com/Wiki/Servos http://www.seattlerobotics.org/guide/servos.html

## What is a servo?

A servo-motor is an actuator with a built-in feedback mechanism that responds to a control signal by moving to and holding a position, or by moving at a continuous speed.

#### **DC Motors and Servos**

DC Motor

- Motion is continuous
- Speed controlled by applied voltage

Servo

- Capable of holding a position
- Speed controlled by delay between position updates
- Hybrid of motor, gears and controller.

#### **Conventional and Continuous Rotation**



continuous rotation can rotate all the way around in either direction



can only rotate 180 degrees

standard



pulse tells servo which way to spin & how fast to spin pulse tells servo which position to hold

## Control signal is a pulse train





Pulse frequency is fixed Typical: 20 ms

Pulse width determines position Typical: 1ms to 2 ms

### Servo components

- 1. Small DC motor
- 2. Gearbox with small plastic gears to reduce the RPM and increase output torque
- 3. Special electronics to interpret a pulse signal and deliver power to the motor



## Servo from the Sparkfun kit

The micro servo from the Sparkfun Inventor's kit is a conventional servo, i.e. the control signal results in moving the shaft to an angular position.



#### Arduino Servo library handles the details

- Must connect servos on pin 9 or pin 10
- From the Aduino web site:

"...use of the library disables analogWrite() (PWM) functionality on pins 9 and 10, whether or not there is a Servo on those pins"

http://www.arduino.cc/en/Reference/Servo

#### Arduino Servo library handles the details

- Three components of the Servo Library
  - Create the servo object
     Servo my\_servo\_object;
     Attach the object attach (servo\_pin);
     Send control signal my\_servo\_object.write (pos);

#### Modified version of the sweep function

```
// File: sweep variable wait
11
// Modified version of Sweep by BARRAGAN <http://barraganstudio.com>
// Use variable dtwait to make the speed of sweep aparent
#include <Servo.h>
                   // Make code in Servo.h available to this sketch
Servo myservo;
                   // Create servo object called "myservo"
int servo pin=9;
                   // The servo must be attached to pin 9 or pin 10
void setup()
{
 myservo.attach(servo pin); // attaches the servo pin to myservo object
}
void loop()
{
 int pos = 0; // variable to store the servo position
 int dtwait=15;
                     // duration of wait at the end of each step
 for (pos = 0; pos < 180; pos += 1) {
   myservo.write(pos);
                                  // Move to position in variable 'pos'
   delay(dtwait);
                                // wait dtwait for the servo to reach the position
  }
 for(pos = 180; pos>=1; pos -= 1) {
   myservo.write(pos);
                                 // Move to position in variable 'pos'
   delay(dtwait);
                               // wait dtwait for the servo to reach the position
  }
}
```

## Experiment

- What happens when you adjust dtwait?
- Can adjust the sweep angle?
  - Make new variable to define end angle of the loop
- Open the Knob demo from the Arduino IDE
  - Connect a potentiometer to an analog input
  - Use the potentiometer to control the servo position