Using servos with an Arduino
Learning Objectives

• Be able to identify characteristics that distinguish a servo and a DC motor
• Be able to describe the difference a conventional servo and a continuous rotation servo
• Be able to use the Arduino Servo library to control servo position
References

Information on Arduino Servo library:
 http://www.arduino.cc/playground/Learning/SingleServoExample

Additional descriptions of servos
 http://makeprojects.com/Wiki/Servos
 http://www.seattlerobotics.org/guide/servos.html
What is a servo?

A servo-motor is an actuator with a built-in feedback mechanism that responds to a control signal by moving to and holding a position, or by moving at a continuous speed.
DC Motors and Servos

DC Motor
• Motion is continuous
• Speed controlled by applied voltage

Servo
• Capable of holding a position
• Speed controlled by delay between position updates
• Hybrid of motor, gears and controller.
Conventional and Continuous Rotation

Two types of servos

Continuous rotation
- Can rotate all the way around in either direction

Standard
- Can only rotate 180 degrees

Pulse tells servo:
- Which way to spin & how fast to spin
- Which position to hold
Control signal is a pulse train

Pulse frequency is fixed
Typical: 20 ms

Pulse width determines position
Typical: 1 ms to 2 ms
Servo components

1. Small DC motor
2. Gearbox with small plastic gears to reduce the RPM and increase output torque
3. Special electronics to interpret a pulse signal and deliver power to the motor
Servo from the Sparkfun kit

The micro servo from the Sparkfun Inventor’s kit is a conventional servo, i.e. the control signal results in moving the shaft to an angular position.
Arduino Servo library handles the details

- Must connect servos on pin 9 or pin 10
- From the Arduino web site:

 “…use of the library disables analogWrite() (PWM) functionality on pins 9 and 10, whether or not there is a Servo on those pins”

Three components of the Servo Library

- Create the servo object
  ```
  Servo my_servo_object;
  ```

- Attach the object
  ```
  my_servo_object.attach(servo_pin);
  ```

- Send control signal
  ```
  my_servo_object.write(pos);
  ```

Name of the object is like a variable name.

attach and write are pre-defined methods that act on the servo object.
Modified version of the sweep function

```cpp
// File: sweep_variable_wait

// Modified version of Sweep by BARRAGAN <http://barraganstudio.com>
// Use variable dtwait to make the speed of sweep apparent

#include <Servo.h>   // Make code in Servo.h available to this sketch

Servo myservo;       // Create servo object called "myservo"
int servo_pin=9;     // The servo must be attached to pin 9 or pin 10

void setup()
{
  myservo.attach(servo_pin);   // attaches the servo pin to myservo object
}

void loop()
{
  int pos = 0;                  // variable to store the servo position
  int dtwait=15;                // duration of wait at the end of each step

  for(pos = 0; pos < 180; pos += 1) {
    myservo.write(pos);   // Move to position in variable 'pos'
    delay(dtwait);        // wait dtwait for the servo to reach the position
  }

  for(pos = 180; pos>=1; pos -= 1) {
    myservo.write(pos);   // Move to position in variable 'pos'
    delay(dtwait);        // wait dtwait for the servo to reach the position
  }
}
```

Experiment

• What happens when you adjust dtwait?
• Can adjust the sweep angle?
 – Make new variable to define end angle of the loop
• Open the Knob demo from the Arduino IDE
 – Connect a potentiometer to an analog input
 – Use the potentiometer to control the servo position