
Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

1

Creating Video Games and Video Game Controllers
with Analog Pong and Processing

Photo by Juan Peña, sweet gaming by SparkFunʼs Customer Service

Learn how to create a video game and controller while learning basic
programming, Algebra, Trigonometry, Cartesian graphing methods, Serial
communication and analog sensor input. The skills and concepts covered
in this activity are a great introduction to the same skills you would need to
create embedded systems, graphical user interfaces and data logging
technology, as well as work with robotics, GPS and more. But this way
youʼre creating a game that you can play with your friends in the process!

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

2

Goals:

1. To get kids excited about Science, Technology, Engineering and
Mathematics through game and game controller creation.

2. Establish baseline computer programming skills including: Commenting,
constructive file saving methods, using variables, parsing variables out of
a delimited string (donʼt get scared on me now, this one is simpler than
you think), nested “if” statements, passing arguments to object instances
(ok, this sounds hard if youʼve never programmed before, but itʼs not),
creating functions and interactive graphics culminating in an individualized
game that the students can play.

3. Create two simple analog sensor circuits using voltage dividers as the
source of signal input. (I admit, thereʼs some electrical engineer talk in
here, but thatʼs good, right? Plus, itʼs fun and easy!)

4. Establish Serial Communication between two computers and parse out
data values from the communication. This skill is invaluable in all wireless
communication including GPS signal manipulation and, like I said, itʼs
more painless than you think.

5. Simulate very basic ball physics through the use of algebra, the Cartesian
coordinate system and trigonometry.

6. Add images to the game and fit the image size to the screen size.

7. Use an integer variable counter to track time and control game speed with
the counter.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

3

Common Core Math Standards:

6.RP - Understand the concept of a ratio and use ratio language to describe a ratio relationship
between two quantities.
6.NS - Understand that positive and negative numbers are used together to describe quantities
having opposite directions or values (e.g., temperature above/below zero, elevation above/below
sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to
represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS - Understand a rational number as a point on the number line. Extend number line
diagrams and coordinate axes familiar from previous grades to represent points on the line and in
the plane with negative number coordinates.
6.NS - Understand ordering and absolute value of rational numbers.
6.NS - Solve real-world and mathematical problems by graphing points in all four quadrants of
the coordinate plane. Include use of coordinates and absolute value to find distances between
points with the same first coordinate or the same second coordinate.
6.EE - Write and evaluate numerical expressions involving whole-number exponents.
6.EE - Write, read, and evaluate expressions in which letters stand for numbers.
6.EE - Evaluate expressions at specific values of their variables. Include expressions that arise
from formulas used in real-world problems.
6.EE - Understand solving an equation or inequality as a process of answering a question:
which values from a specified set, if any, make the equation or inequality true?
6.EE - Use variables to represent numbers and write expressions when solving a real-world or
mathematical problem; understand that a variable can represent an unknown number, or,
depending on the purpose at hand, any number in a specified set.
6.EE - Solve real-world and mathematical problems by writing and solving equations of the
form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers.
6.EE - Write an inequality of the form x > c or x < c to represent a constraint or condition in a
real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have
infinitely many solutions; represent solutions of such inequalities on number line diagrams.
6.EE - Use variables to represent two quantities in a real-world problem that change in
relationship to one another; write an equation to express one quantity, thought of as the
dependent variable, in terms of the other quantity, thought of as the independent variable.
Analyze the relationship between the dependent and independent variables using graphs and
tables, and relate these to the equation.
7.RP - Compute unit rates associated with ratios of fractions, including ratios of lengths, areas
and other quantities measured in like or different units.
7.RP - Recognize and represent proportional relationships between quantities.
7.RP - Use proportional relationships to solve multistep ratio and percent problems.
7.NS - Apply and extend previous understandings of addition and subtraction to add and
subtract rational numbers; represent addition and subtraction on a horizontal or vertical number
line diagram.
7.NS - Apply and extend previous understandings of multiplication and division and of fractions
to multiply and divide rational numbers.
7.NS - Solve real-world and mathematical problems involving the four operations with rational
numbers.
7.EE - Understand that rewriting an expression in different forms in a problem context can shed
light on the problem and how the quantities in it are related.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

4

7.EE - Solve multi-step real-life and mathematical problems posed with positive and negative
rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically.
Apply properties of operations to calculate with numbers in any form; convert between forms as
appropriate; and assess the reasonableness of answers using mental computation and
estimation strategies.
7.G - Know the formulas for the area and circumference of a circle and use them to solve
problems; give an informal derivation of the relationship between the circumference and area of a
circle.
7.G - Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-
step problem to write and solve simple equations for an unknown angle in a figure.
8.EE - Solve linear equations in one variable.
8.F - Understand that a function is a rule that assigns to each input exactly one output. The
graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
8.F - Construct a function to model a linear relationship between two quantities. Determine the
rate of change and initial value of the function from a description of a relationship or from two (x,
y) values, including reading these from a table or from a graph. Interpret the rate of change and
initial value of a linear function in terms of the situation it models, and in terms of its graph or a
table of values.
8.G - Describe the effect of dilations, translations, rotations, and reflections on two-dimensional
figures using coordinates.
8.G - Explain a proof of the Pythagorean Theorem and its converse.
8.G - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in
real-world and mathematical problems in two and three dimensions.
8.G - Apply the Pythagorean Theorem to find the distance between two points in a coordinate
system.
HSN-Q - Use units as a way to understand problems and to guide the solution of multi-step
problems; choose and interpret units consistently in formulas; choose and interpret the scale and
the origin in graphs and data displays.
HSN-VM - Solve problems involving velocity and other quantities that can be represented by
vectors.
HSN-VM - Add and subtract vectors.
HSA-CED - Create equations and inequalities in one variable and use them to solve
problems. Include equations arising from linear and quadratic functions, and simple rational and
exponential functions.
HSA-CED - Create equations in two or more variables to represent relationships between
quantities; graph equations on coordinate axes with labels and scales.
HSA-CED - Represent constraints by equations or inequalities, and by systems of equations
and/or inequalities, and interpret solutions as viable or nonviable options in a modeling
context. For example, represent inequalities describing nutritional and cost constraints on
combinations of different foods.
HSA-CED - Rearrange formulas to highlight a quantity of interest, using the same reasoning as
in solving equations. For example, rearrange Ohmʼs law V = IR to highlight resistance R.
HSA-REI - Explain each step in solving a simple equation as following from the equality of
numbers asserted at the previous step, starting from the assumption that the original equation
has a solution. Construct a viable argument to justify a solution method.
HSA-REI - Solve linear equations and inequalities in one variable, including equations with
coefficients represented by letters.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

5

HSF-IF - Understand that a function from one set (called the domain) to another set (called the
range) assigns to each element of the domain exactly one element of the range. If f is a function
and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x.
The graph of f is the graph of the equation y = f(x).
HSF-BF - Write a function that describes a relationship between two quantities.
HSF-BF - Write arithmetic and geometric sequences both recursively and with an explicit
formula, use them to model situations, and translate between the two forms.
HSF-LE - Recognize situations in which one quantity changes at a constant rate per unit
interval relative to another.
HSF-LE - Interpret the parameters in a linear or exponential function in terms of a context.
HSF-TF - Understand radian measure of an angle as the length of the arc on the unit circle
subtended by the angle.
HSF-TF - Explain how the unit circle in the coordinate plane enables the extension of
trigonometric functions to all real numbers, interpreted as radian measures of angles traversed
counterclockwise around the unit circle.
HSF-TF - Use inverse functions to solve trigonometric equations that arise in modeling
contexts; evaluate the solutions using technology, and interpret them in terms of the context.
HSG-SRT - Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in
applied problems.
HSG-C - Derive using similarity the fact that the length of the arc intercepted by an angle is
proportional to the radius, and define the radian measure of the angle as the constant of
proportionality; derive the formula for the area of a sector.
HSG-MG - Use geometric shapes, their measures, and their properties to describe objects
(e.g., modeling a tree trunk or a human torso as a cylinder).
HSG-MG - Apply geometric methods to solve design problems (e.g., designing an object or
structure to satisfy physical constraints or minimize cost; working with typographic grid systems
based on ratios).

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

6

Materials:

1. A computer with Arduino and Processing (32 Bit version) installed

2. An Arduino compatible microcontroller

3. A breadboard (sometimes called a prototyping board)

4. Two potentiometers (this is just a fancy name for a dial). If you donʼt have
two potentiometers, students can use any combination of two analog
sensors intended for use with the Arduino system (I will be showing how to
use a light sensor with a 10K Ω resistor as well).

5. Six jumper wires (any old wire will work as long as it can be plugged into
the breadboard). This number may vary depending on the analog sensor.
Some analog sensors may also require additional resistors.

6. For extra challenges - two buttons, two 10K Ω resistors (resistors are
optional), an additional potentiometer or analog sensor and at least nine
jumper wires.

7. The Serial drivers, so Processing and Arduino can talk to each other (this
is covered later in this document).

8. And of course the Arduino and Processing Pong Code, available in a .zip
file at http://learn.sparkfun.com/curriculum/62.

The Arduino and Processing files you will find at the link above and a little
bit about these files:

analog_pong01.ino – Arduino code for use with a single analog sensor
analog_pong02.ino – Arduino code for use with two analog sensors
(use analog_pong02.ino if you just want Pong up and running)
analog_pong2_01.pde – Processing code for working through this
handout (non-functional without additional code)
analog_pong2_02.pde – Processing code after working through this
handout (use analog_pong2_02.pde if you just want Pong up and running)

Note - All the parts necessary to complete this activity, with the exception
of the computer and code, are included in the SparkFun Inventorʼs Kit.
https://www.sparkfun.com/products/12001

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

7

Suggested Questions Prior to Activity:

1. When was the first computer invented? What did the interface look like?

2. What was the first arcade game ever invented and when was it invented?

3. Why do you think it took so long for someone to make a game for
computers?

4. What is your favorite computer or video game? What type of game is it? Is
it a strategy game, a side scroller, a first-person shooter, a role-playing
game, or maybe a 3-D puzzle?

Pong, with Arduino and Processing:

You will be making Pong, which was invented by Allan Alcorn in 1972 for a
company called Atari. You will be using two software platforms called
Arduino and Processing to write code. You will also be creating your own
hardware controller interface for Pong so you can use dials, buttons and
sensors instead of just your keyboard to control the game. Before we get
started hereʼs a little background, some help with installing Processing and
general helpful hints about Processing (if youʼre already installed and
ready to go, skip to page 10):

What Processing is:
Processing is a Java-based programming environment that draws on
PostScript and OpenGL for 2-D and 3-D graphics, respectively.
Processing is a wonderful entry-level program that interfaces easily with
Arduino via Serial, making it a simple yet powerful environment.

Who created Processing:
Processing was conceived at MIT in 2001 by Casey Reas and Ben Fry.
Processing is a FLOSS project (Free, Libre, Open Source Software) with
millions of contributors all linked by the Processing website,
Processing.org. Processing has a system of software extensions called
“libraries”. This allows people to write code and extend the abilities of the
original software for various purposes. These “libraries,” including the
Arduino library, which is just one way to interface Arduino hardware with
your Processing sketches, are available on the website.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

8

Downloading and installing Processing:
Go to http://processing.org/download and select Linux, Mac or Windows
depending on what kind of machine you have.

For Linux:
Download the .tar.gz file to your home directory, then open a terminal
window and type:
Tar xvfz processing-xxxx.tgz
(replace xxxx with the rest of the fileʼs name, which is the version number)
This will create a folder named processing-1.5 or something similar. Then
change to that directory:
cd processing-xxxx
and run processing:
./processing

For Mac:
Double-click the .dmg file and drag the Processing icon from inside this file
to your applications folder, or any other location on your computer. Double
click the Processing icon to start Processing.

For Windows:
Double-click the .zip file and drag the folder inside labeled Processing to a
location on your hard drive. Double click the Processing icon to start
Processing.
If you are stuck, go to http://wiki.processing.org/index.php/Troubleshooting
for help.

9. In order to get Arduino and Processing talking to each other you will need
to install a library and possibly take a couple extra steps beyond that.
Luckily you can use this handy guide to help you out:
http://www.arduino.cc/playground/interfacing/processing
Make sure you or your IT people install this library before starting
this activity! You will want to make sure the changes allowed Serial
communication between Arduino and Processing. In order to do, this load
the file named “analog_pong01.ino” onto your Arduino board, close
Arduino and run the Processing sketch called “analog_pong2_01.pde.” If
you do not encounter an error message you are good to go.
You may also need to go to the website below for additional help if you get
the following error message:

http://www.sundh.com/blog/2011/05/get-processing-and-arduino-to-talk/

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

9

PROCESSING CHEAT SHEET

DATA TYPES
Primitive

boolean
byte
char
color

double
float

int
long

Composite

Array
ArrayList

HashMap
Object
String

XMLElement

Conversion
binary()

boolean()
byte()
char()
float()
hex()
int()
str()

unbinary()
unhex()

String Functions

join()
match()

matchAll()
nf()

nfc()
nfp()
nfs()

split()
splitTokens()

trim()

Array Functions
append()

arrayCopy()
concat()

expand()
reverse()
shorten()

sort()
splice()

subset()

Constants
HALF_PI

PI
QUARTER_PI

TWO_PI

Assign variables

= assign value to a variable
; statement terminator
, separates parameters in function

separates variables in declarations
separates variables in array

/*** Assign variables ***/
//Format is in variable_type variable_name;

int total;
//Then you can assign a value to it later

total = 0;
//Or, assign a value to it at the same time

int total = 0;
//Note: use one of the primitive data types

on the left

Structure: program structure
setup() defines initial enviroment

properties, screen size,
background before the draw()

draw() called after setup() & executes
code continuously inside its

block until program is stopped
or noLoop() is called.

size() size() must be first line in
setup() defines dimension of

display in units of pixels
noLoop() Stops Processing from executing

code within draw()
continuously

/*** Example ***/
void setup() {
 size(200, 200);
 background(0);
 fill(102);
}
void draw() {
 //Draw code here
 }

2D Primitives

point() draws a point
point(x, y)

point(x, y, z)//3D
line() draws a line

line(x1, y1, x2, y2)
line(x1, y1, z1, x2, y2, z2)//3D

rect() draws a rectangle
rect(x, y, width, height)

elipse() Draws an elipse
ellipse(x, y, width, height)

arc() draws an arc
arc(x, y, width, height, start, stop)

/*** Arc (portion of circle) ***/
//x & y = coords, width & height = size
//start + stop = starting and end points
(think angle in radians) of circle in π pie

LINK
arc(x, y, width, height, start, stop)

arc(100, 100, 50, 50, PI, 2*PI);//Sad Face
 arc(100, 100, 50, 50, 0, PI);//Happy Face
//Note: Play around with start and stop. Use
PIE constants or math operators PI/3 , .5*PI

Relational

== equality
> greater than
>= greater than or equal to
!= inequality
<= less than or equal to

/*** Example ***/
if(total == 100){
 //Then do this
}

Iteration
while executes statements while the

expression is true
for loop continues until the test

evaluates to false
/*** while Example ***/
while(total < 100){
 total++; //adds 1 to total
}

/*** for Example ***/
for(int i=0; i<100; i++;){
 //Do something here
}

Conditionals

if

 if statement evaluates to true
then execute code

else extension of if statement
executes if equals false

else if extension of if statement
executes if equals true

/*** if / else / else if ***/
if(total == 100){
 //total is equal to 100
}
else
if(total < 100){
 //total is smaller then 100
}
else{
 //total is bigger then 100
}

Coloring stuff

background() sets background color in RGB or
hexadecimal color

background(value1, value2,
value3)

background(hexadecimal_value)
fill() sets color for shape

fill(value1, value2, value3)
fill(hexadecimal_value)

stroke() sets color for shape
stroke(value1, value2, value3)

stroke(hexadecimal_value)
/*** Example ***/

//Note call fill or stroke before every shape you
are planning on using different colors on each

stroke(#CCCFFF);
fill(#FFFCCC);

rect(100,100,50,50);

CONTROL
Relational Operators

== (equality)
> (greater than)

>= (greater than or
equal to)

!= (inequality)
< (less than)

<= (less than or equal
to)

Iteration

for
while

Conditionals

break
case

?: (conditional)
continue

default
else

if
switch()

Logical Operators
&& (logical AND)

! (logical NOT)
|| (logical OR)

Cheat Sheet courtesy of Chrisdrogaris.com

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

10

A few things before we start:
Feel free to make the game more exciting or interactive at any time by
adding your own code. Just make sure of two things so you and your
teacher donʼt get confused:

1. Make sure you add comments whenever you add your own code. Try to
explain what you want the code to do, or go back and explain exactly what
the code does once you finish it. Comments do not affect code.

2. Make sure you save a different version each time you save. For example
maybe my first file is called Pong01.pde. The second time I save it I would
call it Pong02.pde. If Iʼm trying to change some colors in the game I might
want to call it Pong02_ColorChange.pde the next time I save it. This way if
I mess up my code I can always go back to a previous version and see
what I changed. Use descriptive names so you have an easier time
hunting through the different files as you build your game.

Example of file naming format in my Processing saved sketches folder

Before we really dive into code weʼre going to put the circuits together in
the next section.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

11

Creating Pong and the Game-Controlling Circuits:

Creating the Circuits:

1. First thingʼs first, letʼs make the two simple circuits that you will use to
control your game. You will be plugging these circuits into your
breadboard, but before we do that we need to find the parts that make the
circuits. There are a bunch of different circuits you can create to control
Pong. I have outlined two below, but you can use just about any analog
sensors that operate in a 0-5 volt range. The sensors I outline below are a
potentiometer (dial) and a light sensor. Here are the parts you will need to
put together each of the circuits:

For Potentiometer
Circuit:

For Light Sensor
Circuit:

For both Circuits:

One potentiometer
and five jumper
wires

One 10K Ω
resistor, one
light sensor
and five
jumper wires

Jumper wires
(You could do this with
three wires for each
circuit but this way is a
little less confusing.)

2. Now find your breadboard.
It may look like this:
Donʼt worry if it looks a little
different. The important thing
is that you can plug wires
and components into your
breadboard.
For more info on breadboards, go to
http://www.sparkfun.com/tutorials/202

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

12

3. First plug the potentiometer (dial) into the
breadboard. Make sure that the “leads” (the wires
sticking out of the potentiometer) are sticking into
the breadboard up and down, not sideways. This
means that the leads will be stuck into three
different rows and one single column. The leads will
not be stuck into three different columns and just
one row. If youʼre having trouble understanding this,
check out the image to the right.

4. Next, plug the
breadboard and
potentiometer into your
Arduino following the
image to the right. You
can use any color wire,
but it is general practice
to use a red wire for any
power connections and a
black (or similar dark
color) wire for any
ground connections. Use
any other color for the
communication line. Often engineers will use different color com lines for
each sensor to make it easier to tell the lines and sensor circuits apart.
The communication lines are the lines that send electrical values to the
Arduino microcontroller. In this case I used yellow for my communication
line. Make sure that the top lead on the component has a connection to
the 5V pin on the Arduino, a connection to Arduino A0 in the middle and a
connection from the bottom lead to the Arduino GND pin. The
potentiometer is not polarized, so you can actually switch the power wire
so it is connected to the bottom of the potentiometer, as long as you
switch the ground wire so it is connected to the top instead of the bottom
as well.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

13

5. Ok. Thatʼs one playerʼs controller
plugged in. If you have two
potentiometers feel free to use two of
them, but this next sensor is a little
trickier to plug in so Iʼve broken it down
into a couple steps. First plug the light sensor into your breadboard. Just
like the potentiometer, make sure you plug it in so the leads are stuck into
two different rows. To save space Iʼve only shown the bottom of the
breadboard, where I plugged in my light sensor.

6. Next plug the 10K Ω resistor into the
breadboard. Make sure that one side of
the resistor is plugged into the same row
as the upper light resistor lead. The
other side of the resistor should plug into
the breadboard even further up on the
breadboard, away from the light sensor.
Make sure you use the 10K Ω resistor
and not a 330 Ω resistor!

7. Now plug this sensor into the Arduino microcontroller using a power wire
(5V connection), a communication wire and a ground wire (GND
connection). This should look very similar to the way you plugged in the
potentiometer before. There are a few differences though; the
communication wire should plug into Arduino pin A1, since weʼve already
used pin A0 to plug in the potentiometer. Also this sensor circuit is
polarized, so you need to make sure that the power is connected to the
bottom lead of the light sensor and that the ground is connected to the top
lead of the resistor.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

14

8. Great! Youʼve built the circuits you need to control a simple two-player

game. Next weʼll talk about how these analog sensor circuits work. If you
want to get to the coding portion of this activity, feel free to skip to the next
section and come back later to learn about voltage dividers.

For additional help with creating these two circuits visit:

http://learn.sparkfun.com/products/2

And click on “Web quality guide” in the Documentation section:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

15

Creating the Circuits - Voltage Dividers:

1. In this section we will be discussing variable resistance analog sensors
and how they work. Specifically I will outline how the potentiometer, photo-
resistor (light sensor) and flex sensor operate.

The sensors you are using operate through a property called variable
resistance. This means that the electrical signal the Arduino receives from
the sensor depends on the resistance of a piece in the sensor. Depending
on the sensor, the resistance of that piece in turn depends on how far you
turn the knob (for a potentiometer), how much sunlight is hitting the sensor
or, in the case of a flex sensor, how far you are bending the sensor. The
action that activates the sensor causes the resistance inside the sensor to
vary, which is why it is called variable resistance.

The resistance depends on how There is less resistance when less light

 much you turn the dial hits the light sensor, more resistance
 when more light hits the sensor

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

16

There is less resistance when the flex sensor is straight and more
resistance the more the flex sensor is bent (note that this sensor only

bends in one direction)

2. For each of the analog sensors you are using there are three connections
which are standard for all variable resistance analog sensors. These three
connections are power (in this case 5V), the communication line and
ground. For some sensors, such as the photo-resistor and flex sensor, you
actually need to add a resistor (in this case you would use 10K resistors)
to the sensor circuit in order to create all three of those connections (More
on the additional resistor later). The reason for these three connections is
that all circuits need a connection to power and ground to allow electricity
to flow through the components in the circuit, and all sensor circuits need
a communication wire off of which you can pull readings. Without a
communication line, how would you ever know what the sensorʼs value is?

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

17

3. The analog sensorʼs communication line has two resistors on either side
(one closer to power and one closer to ground) in the electrical circuit. One
or two of these resistors is a variable resistor. In the case of the
potentiometer, both of the resistors are variable resistors, but for the
photoresistor and flex sensor the variable resistor is in the sensor, and the
resistance value of the 10K resistor stays the same.

Letʼs examine how the electricity behaves when it flows through a simple
voltage divider circuit. First, the electricity enters the circuit from the power
connection on the Arduino; in this case these values are 5V and 200 mA.
The first thing the electricity encounters is the variable resistance element
of the sensor. This impedes the ability of the electricity a little, but the
resistance of the sensor should never be enough to stop the flow of
current. Then the electricity has the option to keep traveling through the
circuit towards ground, or the electricity can travel along the
communication line back to the Arduino analog input pin. A portion of the
electricity does both of these things unless the sensor is either maxed out
or not reading any data at all, in which case all the electricity either goes to
the analog input pin, or it continues through the circuit to ground. The
electricity that continues through the sensor circuit and travels to ground
meets a little additional resistance from the second resistor in the circuit. In
the case of the photoresistor and flex sensor, you can actually see the
second resistor through which the electricity must travel.

Because there is resistance to both paths the electricity can travel, the
entirety of the electricity does not take one path or the other. Instead, it
takes both. (Unless the sensor is maxed out, in which case the electricity
does just take one path or the other.) Depending on the ratio of resistance
between the two resistors in the circuit, more or less electricity travels
through the communication line instead of the ground. The circuit
effectively divides the voltage by supplying two paths it can take, thatʼs
why itʼs called a “voltage divider.” This is how we get a reading off of most
analog sensors attached to the Arduino.

As Resistor 1ʼs resistance increases,
more of the electricity is converted to
heat and escapes into the air,
instead of traveling along the circuit
to the comm line and ground.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

18

4. There is an equation to help you figure out the two resistance values and
resulting voltage value. I know you just canʼt wait to get your hands on that
equation and plug some values in, so here it is:

Vout = Vin * (R2/(R1+R2))

Let’s break down those variables: Vout is the amount of voltage that we
read off of the communication line of the voltage divider (the whole point of
our voltage dividers). Vin is the amount of voltage you are supplying to the
circuit with your power connection. R1 is the first resistor value that the
electricity encounters when it is traveling from power to ground. R2 is the
second resistor value in the circuit; this is the resistor that is closer to
ground after the communication line connection.

Example of light sensor voltage divider circuit with equation variables labeled.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

19

Writing the Game Code:

Writing the Arduino code:

1. Open the file named “Analog_Pong01.ino.” The first two steps we will take
are creating a comment and saving the file with a different name so you
know itʼs yours. Comments are important because they help you figure out
what you were thinking when you wrote your code, keep track of variables,
take credit for your work, and help other people use your code.
Programmers often use commenting as a way to keep code visible but
keeping the code from affecting the program they are writing. If something
is going wrong, often programmers will comment lines of code they
suspect are creating errors until the error goes away. Then they know
which line or lines of code were creating the error (also called bugs).
Comments are displayed in Arduino as gray text, and they do not affect
your code. There are two different ways to make comments; the simplest
way is to write two slashes like this: //. This will allow you to make one
line of comments. Go ahead and make a comment with your name in it
just above the setup function. (The beginning of the setup function is the
part of the code that reads void setup () { .)

The other way to make comments is to create a block of comments
(multiple lines) by typing /* at the beginning of the block of comments and
then */ at the end. Everything between these lines will be commented
and will not affect your code. It is common practice to create a block of
comments at the top of your code to explain who wrote it and what it does.
Itʼs also good to give credit to anyone elseʼs code that you copied and
pasted; a lot of people borrow code it so it doesnʼt make your code any
less impressive.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

20

Now go to the File menu tab and choose Save As. This will save your file
with a different name. Itʼs important to save versions of your code as you
write it so that if you make a mistake you can go back and look at the code
that did work and compare it to the code that doesnʼt work now. Find the
folder where you will be saving your Arduino files and rename the file with
your initials in it and as version 02. For example I might call my new file
“Analog_Pong_LRC02”; donʼt worry about adding the .ino file extension to
the end of the file name. The file extension .ino is so that the computer
knows the file is an Arduino file and Arduino adds it onto the end of the
files automatically.

2. Next we need to add a line of code that saves the value of the second
analog sensors as an integer variable. There is a line of code that is
almost exactly what we need already in the code. Feel free to copy and
paste that code to the correct space. If you do this, make sure you change
the copied code to save the value of the sensor on Arduino pin A1, instead
of A0. Then make sure that this value is being save to a different variable,
otherwise you will overwrite your old value and run into some confusing
issues. Because the variable name “leftPaddle” is already taken, the
most obvious choice for this second variable name would be
“rightPaddle.” The “, DEC” portion of the code simply tells Arduino to
communicate this value as a base ten number, because thatʼs how
humans think.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

21

3. Now youʼve got a variable named something like “rightPaddle,” but we
need Arduino to print the line out over the Serial line so that your computer
can receive it and use it in Processing. To do that we need to use a
Serial.println() command. This is almost the same as the line of
code used to print out the leftPaddle variable, but look closely: itʼs not
quite the same. When you print out rightPaddle you will need to use
Serial.println instead of Serial.print. This is because
Serial.println sends a carriage return at the end of the serial
communication. A carriage return is exactly like hitting the “return” button
after typing the variable value. Why do we have to do this? We have to
use Serial.println because the Processing sketch is going to be
listening for that carriage return in order to know that all of the sensor
values have been sent, and the next sensor value is going to be the first
sensor all over again. So go ahead and copy the Serial.print line of
code and paste it below the rightPaddle variable line. Make sure you
change the “print” to “println” and make sure youʼre sending
rightPaddle instead of leftPaddle.

Hereʼs my resulting code from the last two steps:

4. Ok. Youʼve changed a little bit of the code, so guess what? You need to
save it. Make sure you change the number at the end of the file name to
03 instead of 02. After youʼve saved the file, plug your Arduino into your
computer and upload the sketch to the Arduino.

Having trouble uploading? Make sure youʼve got the right board and com
port selected. To check these go to Tools in the menu tab and select
either “Board” to change the board type, or “Serial Port” to select your com
port.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

22

5. Now before we move on, open your Serial Monitor (found underneath the
Tools tab in the menu) and watch the values of your variables change as
you play with the sensors. What is the highest and lowest these numbers
will reach? Write them down for future reference.

The rest of this section is dedicated to explaining the rest of the code on
the Arduino. Feel free to skip ahead to the next section (Writing the
Processing code) and come back to learn about Serial communication
later.

Serial Communication Handshake, Arduino:

There are really only two parts to this handshake other than actually
sending the data (which we already did using Serial.print and
Serial.println). These two parts establish the Serial communication
rate in the setup function, and make Arduino wait for a return signal from
Processing so it knows when to start sending data.

The first portion establishes Serial communication at a Baud rate of 9600.
Baud means “symbols per second” or “pulses per second.” The reason the
Baud rate is important is because Arduino needs to communicate at the
same rate that Processing listens, otherwise they wonʼt understand each
other. The command that establishes Serial communication is
Serial.begin with the Baud rate inside the parenthesis.

You can use a different Baud rate (300, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 38400, 57600, or 115200) but there are strengths and
weaknesses to using a higher Baud rate. The higher the Baud rate, the
quicker Processing will receive sensor data, but the more processing
power it takes up. So itʼs a give and take relationship; for most purposes at
the introductory level a Baud rate of 9600 will work just fine.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

23

The second part of the Arduino side of this Serial handshake is the
establishContact function. The establishContact function is a
while loop that keeps the Arduino from sending data until it has heard
from Processing. To do this the Arduino uses the command
Serial.available(). Serial.available checks the Arduinoʼs
Serial communication buffer (a buffer is where incoming or outgoing data
is temporarily stored) to see if Processing has sent any data to the Arduino
yet. If the Arduino has not heard anything from Processing it continues to
send the data “hello”. This is because, as you will see, Processing is
waiting to hear “hello” from Arduino before it sends any data back to the
Arduino. Itʼs a little complicated, but itʼs kind of like when you get your
friendʼs attention before actually starting a conversation. If you just started
straight into your conversation while your friend wasnʼt listening then a lot
of the data would be lost, right? Itʼs the same with Serial communication
Arduino and Processing.

Once Arduino hears any Serial communication, the amount of information
in the Serial buffer will be larger than zero. Then Arduino will exit the
while loop and start sending sensor data.

So thatʼs one side of Serial communication, this is a really simple example, but it
represents the basic code you need to send data back and forth between Arduino
and Processing. There are other, more complicated “handshakes,” but this is a
great place to start. This will also work for many other Serial communication
setups other than just Arduino and Processing.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

24

Writing the Processing code:

First thingʼs first: make sure that you have closed Arduino. Processing will
not receive the correct Serial data if Arduinoʼs Serial Monitor is open.
Sometimes youʼll run into issues even if Arduinoʼs Serial Monitor isnʼt open,
so itʼs best to just close Arduino.

Ok. Now we are going to work on the Processing code. This is where the
actual game will be displayed. To get you started weʼve included most of
the code in the sketch already, but you will need to add some code to
make it work, as well as some after that if you want to make the game
better. To start, open the folder named analog_pong2_01.pde; it should
look something like this:

Obviously it will look different if you are using a Windows or Linux machine.

The files you are looking at are the various parts of the Pong game. The
file called analog_pong2_01.pde is the main file that contains everything
else. The other files are created when a programmer makes a new tab
inside of a Processing sketch. These files contain other “objects” that get
used inside the main portion of code. Later on you will create an “instance”
of the Ball “object.” For now just double click on the file called
analog_pong2_01.pde. This will open the file in Processing. If you are
having trouble opening the file make sure you have Processing (and the
latest version of Java) installed. If you donʼt have Processing installed you
can find it here: http://processing.org/download/.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

25

Important! Make sure that you download the 32 bit version of Processing
and not the 64 bit version. Serial Communication will not work with the 64
bit version. If you need to change your Processing version from 64 to 32
bit you can switch it inside of Preferences:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

26

1. The first thing we have to do is add some code to make the Processing
sketch “parse” out the data values that Processing received from the
Arduino. In the serialEvent handler (the function that handles Serial
events), the first thing the Processing sketch does is put all the data up
until the carriage return (which is represented by ‘\n’) in a “string”
variable. A string variable is a fancy programming way to represent a
string of characters, which can be a word, a sentence or in this case, a
bunch of sensor data. Hereʼs the code that makes Processing do that:

So now we have a string variable called myString with our sensor data in
it. But there are two different sensor data pieces in that string! Remember?
Luckily, the values are delimited (a fancy way to say that they are divided
by a marker) with a comma so we can easily split them apart. To do this
you will need to add some code in the “else” portion inside of the
serialEvent handler. Put the code where the comment reads “add
parsing sensor into array code here.”

 Type this line of code:

 int sensors[] = int(split(myString,','));

The first part of the code (int sensors[]) makes an array of integers
called sensors. An array is a way to store multiple pieces of information -
itʼs kind of like a bunch of mailboxes. You put data into each space in the
array and then you can access them if you know where you put them. This
array holds two integers: the first and second sensor variables that we got
over Serial communication. Weʼll go over accessing the data in the arrays
later.

On the other side of the equal sign is the data we are putting into the array.
In this case we are using the “split” function to split up the string, called
myString, each time we see a delimiter. In this case the delimiter is a
comma, but really we could put anything inside of the single quotation
marks (for example we could use a ʻ!ʼ) and split would split the string up
into different portions each time it saw the new delimiter (each time it sees
a ʻ!ʼ).

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

27

The “int” just after the equal sign simply means that Processing should
treat each value that gets parsed out (using the split function) as an
integer.

Feel free to highlight “split,” right click on it with your mouse and select
“Find in Reference.” This will find the split function in the Processing
Help File, and will give you more information about how the function works,
some example code, and even other functions that are similar to split.
Any function that shows up in orange text is a “reserved” word, which
means that Processing already knows about it and you can look it up in
the reference.

If you uncomment (delete the ʻ//ʼ) the three lines below the comment that
says “//print out the values you got:” you will be able to see
the values that you parsed out when you press Processingʼs Run button
(itʼs in the upper left corner and it looks like a play button). The values will
show up in the black console area below where you write your code.
Leave these lines uncommented and use them to troubleshoot your code
and sensors if you run into errors.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

28

2. Now scroll down a little farther to find these lines of code:

The first of these three lines of code (comment lines donʼt count as code)
take the data from the first place in the sensors array (remember,
computers start counting at zero) and assign its value to the variable
“leftPaddlePost.”

The second line reassigns the value from the integer variable
leftPaddlePos to the “float” variable lpp. We need to do this so that
the paddle moves smoothly instead of jumping a little each time.

The last uncommented line remaps lpp to a large range. Originally the
sensor value of the leftPaddlePos only went up to 1023. But what if the
screen on which you want to play Pong is larger (or smaller) than 1023
pixels? Thatʼs why we need to remap the value. The “map” function does
some simple algebra and stretches the first value in the parenthesis (ppl)
from wherever it lies between the next two values in the parenthesis (0
and 255) to where it would lie relationally between the last two values (1
and height). “height” is a reserved word that Processing sees as the
height of the window as represented by the number of game pixels.

You should have noticed by now that your paddle slides off the bottom
edge of the game window when you crank the potentiometer all the way
up. This is because the values in this last line of code are not quite right;
you will need to change one of the values in the code, but which one?
Remember that your Arduino analog sensor values go up to 1023.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

29

3. Next you need to recreate the three lines of code for the right paddle. Iʼm
not going to help you too much with this one, other than to tell you that the
sensor value is stored in the array here: sensors[1], and that the variables
rightPaddlePos and rpp have already been declared for you. If you do
it correctly you should be able to control both paddles, each with a
different sensor.

If you are having trouble keeping the right paddle on the screen, or itʼs not
moving far enough up and down the screen, you can either uncomment
one of the alternative lines for rpp or try playing with the values in your
own map function. You should be able to see the highest and lowest
values that your sensor will give you in either the Arduino Serial Monitor or
in the Processing console. Just remember to close Arduino before running
your Processing sketch; you canʼt run two different software applications
listening to the same Serial communication.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

30

Here is what the portion of my code that parses out Serial data looks like
now:

4. So you can control the paddles, but thereʼs no ball bouncing the screen
yet. Not too much fun, huh? Well, itʼs time to complete the game with a
ball. Go to the bottom of the setup function and look for the comment that
reads “//add new instance of ball object called Pong
here.” Either delete that comment, or create a blank line below it inside
of the setup function and type the following code:
pong = new Ball ();

Hereʼs what my code looks like now that Iʼve added that line:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

31

Now we need to figure out what “arguments” we need to pass to the Ball
object, to figure this out click on the tab labeled Ball. Arguments are
values that the code in the object header explicitly asks for. This is how
you pass information to the objects you create and use. Often these
arguments will be pieces of information that vary in some way through out
the code.

The arguments are listed inside the parenthesis to the right of the word
Ball, right at the bottom of the image above. They are listed first by
variable type and then by name. The values are delimited with commas.
There are a total of seven arguments that this Ball object needs to be
passed. Below is a brief list of what each argument means and what
values you should pass to the Pong instance. (Remember, thatʼs back in
the analog_pong2_01 tab. Also, if youʼve been doing this right your tab
should be called analog_pong2LRC_03 or something like that, because
youʼve been saving out versions of your code.) We will go into some of
these variables in depth later.

ibSize: This is the initial size of the ball in pixels, set it to 15
ixpos: This is the initial x position of the ball, set it to width/2
iypos: This is the initial y position of the ball, set it to height/2
ixspeed: This is the initial speed of the ball on the x axis, set it to 8
iyspeed: This is the initial speed of the ball on the y axis, set it to 2
ixdir: This is the initial direction of the ball on the x axis, set it to 1
iydir: This is the initial direction of the ball on the y axis, set it to 1

Hereʼs what that last line in your setup function should look like if youʼve
done it right:

pong = new Ball(15, width/2, height/2, 8, 2, 1, 1);

You should run the Processing sketch now to see how the game plays
with these values. After youʼve played your game for a while close the
game window and start changing the arguments you pass to the Ball
object. Each time you change a number, run the Processing sketch again
to see how it changes the play of the game.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

32

What does this tell you about how Processing uses x and y to draw pixels in the
window? Where does it start graphing? In the middle of the game screen, or at
one of the corners? If you change the second argument number to zero, where
does the ball appear when you start the game? What about the third number?

How do the fourth, fifth, sixth and seventh argument numbers correlate to
the angle of the ballʼs trajectory when you play the game?
If I want the ball to start out traveling toward the left hand player what
argument do I have to change? What if I want it to be aimed more at the
top of the window than the bottom, what argument do I change then?

Try using “Find in Reference” to figure out how to use the random function
and then use the random function at least twice to make the ball head at a
random angle when you start the game.

Once youʼve figured out how these arguments work change them back to
the initial values and continue on to the next steps to make the game
better.

5. Thatʼs cool and all, but it only works the first time you start your game
right? Look inside the Ball object code to find where it resets xpos, ypos,
xdir and ydir. There are three places these variables are reset. One is
for after player one scores, one is for after player two scores, and the last
is for when the game resets. Replace these twelve numbers (four
variables, three different places) with numbers (or random functions) of
your choosing.

6. This next step is really, really easy in comparison to what you just did.
Now weʼre going to change the size of the game window. To do this simply
change the numbers of the size function, which can be found inside the
setup function. Currently the width is set to 1000 and the height is set to
600.

These numbers represent the width (x) and height (y) of the game window
in pixels. Try to make the game window the same proportions as a tennis
court by changing the numbers 1000 and 600.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

33

7. Ready for something a little tougher? Next weʼre going to add some Start
Game and Game Over screens. Iʼve included two images to use called
Pong_Start and Pong_End, but feel free to make better images.
Programming these screens is going to take a bunch of different steps.
The first step is importing the image files. To do this select Add File from
the Sketch menu and find the files you wish to add to your Sketch.

Processing plays well with the following image file types: .jpg, .png and .gif.
Processing also likes raster and vector images (these last two are math-
based image types instead of pixel image types, meaning they will not
distort when scaled). If everything goes well you should see a message
that reads “One file added to the sketch” below the area where you write
code.

This means Processing has automatically created a folder called Data
inside your Sketch folder with the image file inside of the Data folder. You
can also drag and drop images and fonts (you will also need to import
fonts to use them) into this folder as an alternative way to complete this
first step of adding files. After you have completed this step for both
images check your Sketch folder and make sure Processing has created a
data folder with your files in it.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

34

8. Next you will create an object to store the first Pong_Start image. You will
create this object to inside the setup function. You need to create the
object so Processing has a place to store the image. To create your image
object, type this line above your setup function:

PImage pStart;

An object is like a variable but it contains more information and functions,
and itʼs for a Class, donʼt worry about Classes right now, youʼll get into
classes later if you pursue programming. The object name can be
anything you like (I named mine pStart) as long as it makes sense to
you. But the Class, PImage, needs to be the same whenever you are
using an imported image. Make sure you type this line above the setup
function because you want to be able to use this variable anywhere in your
sketch. If you wrote it inside the setup function or the draw function you
would only be able to use it inside those functions.

Go back and do this step again for the Pong_End image. Remember to
name this second object something different (I named mine pEnd).

Now you have two instances of objects from the PImage Class (PImage
stands for Processing Image) in which you can store the information that
are your actual images. Next, you have to assign the data files to the
objects you created. To do this you will assign the image data file to the
pStart and pEnd objects (or whatever you named it if you didnʼt use pStart
and pEnd) using the loadImage function as typed below. Make sure to
include quotation marks around the image data file names as well as the
file extensions (.jpg, .png, or .gif). The file names are also case sensitive,
so make sure you type them exactly as they appear in the folder. Type this
code in the setup function.

pStart = loadImage (“Pong_Start.png”);
pEnd = loadImage (“Pong_End.png”);

Hereʼs what the lines I added to my code look like:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

35

9. Sweet, youʼve got the image files imported and youʼre almost ready to
place them in the game. But first we need to write a little code so the game
knows to pause while displaying the screens and wait for the player to
press a button before continuing.

To do this we need to create a variable, an if statement, and add a little
code to the keyPressed handler (the keyPressed handler can be found
at the bottom of the main analog_pong2 tab).

One thing at a time though. First, create a boolean variable named
started (or whatever makes sense to you) and assign it a value of false
(or zero) just above the setup function. Hereʼs what that line of code
looks like:

boolean started = false;

Next we need to add an if statement at the very end of the draw loop that
displays the Start screen as long as the value of the variable started is
false (also represented as zero). Make sure you put the if statement at
the end of the draw loop because otherwise Processing will draw the
image but then draw game graphics over it. Hereʼs what that empty if
statement looks like (weʼll put more code inside the if statement in a
second); make sure you use two equal signs and not just one:

if (started == false) {

}

Okay, youʼre almost ready to actually draw the image in your Processing
Window. To do this you just need to type one more line using the image
function. The image function has three parameters or variables: the image
object you just created, x position and y position. Type the following line,
and substitute the x and y positions where you wish your image to display
for the variables x and y. Remember that these variables indicate where
the upper left corner of your image will start. Place this line of code inside
the if statement you just created:

image (pStart, x, y);

To control the size of the image simply add two more variables after x and
y for the width and height of the image. If you leave width and height out of
the function, or just give them a value of 0, the image will draw itself at the
size of the original picture in the data file you imported.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

36

You can use the width and height variables instead of numbers, and
the screen will resize itself depending on the numbers you put in the size
function. The variables width and height are global variables that are
always equal to the width and height of your canvas window. Donʼt make
Processing draw the image larger than the original file unless you are okay
with image distortion (or you are using a vector file format like .svg).

Hereʼs what the code we just added looks like in my sketch at this point:

We are almost done with the Start screen. The last thing we need is some
code inside of the keyPressed handler that sets started equal to true
(or 1) if a button is pressed while started is equal to false. We also need
to make sure that the other code inside the keyPressed handler only
happens if the variable started is true. Here is the keyPressed handler
with those two if statements added to it:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

37

The keyPressed handler is a function that is called anytime the user
presses a key on the keyboard and it can be found at the bottom of the
main analog_pong2 sketch. It is similar to the serialEvent handler
because it is a piece of code that will interrupt almost everything else
when the event it is designed to handle occurs. While loops are an
exception to this rule, because the computer never reaches the end of the
draw loop where the serialEvent and other event handlers execute. If we
used a while loop instead of an if statement to display the Start screen,
Processing would stay stuck inside the while loop because it would
never update the variable started. The pong.keyPressed function can
be found inside the Ball class.

10. Thatʼs the Start screen, now letʼs do the End screen. This will be a lot
easier, all you have to do is find the showGUI function in the GUI tab and
enter two lines of code. Hereʼs the code we will be changing:

Can you guess where we need to add the line of code that displays the
image of our End screen? Remember that we want to be able to see the
text that says “Player 2 WINS!!!” but we donʼt really care about the text
that says “Press ʻRʼ for New Game” (because it already says the same
thing on the End Game screen).

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

38

Display the End Game image before Processing writes the text about
which player won so that the text gets written over top of the image. We
donʼt want to see the text about pressing ʻRʼ for a new game, so simply
comment it out. You will need to change the x and y positioning of the text
declaring the winner so that itʼs not in the middle of everything. Go ahead
and do that before moving on to the next step.

11. You may have noticed while playing this version of Pong that the angle of
the ball doesnʼt change a whole lot. In real Pong, the angle of the ball
bounce is affected by where the ball hits the paddle. This aspect makes
the game much more interesting; letʼs change the hit test code so that the
ball bounces differently off the paddle. Like most aspects of game coding
there are many different ways to do this. The first step is to think about
what we want to happen. If you donʼt know exactly what you want to have
happen it is difficult to define it with code. We know we want the angle of
ballʼs trajectory to change depending on where it hits the paddle, but how
exactly do we want it to change? Iʼve outlined a couple options in the
following pages, but you should feel free to pursue your own options.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

39

A. If the ball hits the middle of the paddle it does not change its angle. If the
ball hits the upper portion of the paddle its angle is changed so it is
headed more towards the top of the screen, and if the ball hits the lower
portion of the paddle its angle is changed so it is headed more towards the
bottom of the screen.

B. Another option that is very similar (but a little harder) to the above option is
that the ball bounces as described above, but the ballʼs angle change is
greater the farther away from the center of the paddle the ball hits. This
option still needs a center area of the paddle that does not affect the ballʼs
trajectory.

C. A third option is that it is not actually the point on the paddle that affects
the ballʼs bounce, but the speed and direction the paddle is moving when it
makes contact with the ball. This approach is probably the hardest of the
three outlined, as well as the most realistic. In order to code this option
you would need to use two variables instead of one: the direction the
paddle is moving and the speed at which the paddle is moving. To do this
you would need to remember the paddleʼs last position and compare it to
the paddleʼs current position. Either that or you could keep track of the
playerʼs last sensor reading and compare it to the most current sensor
reading.

Iʼm going to pursue the second of these three options and take you
through the process of writing pseudo-code as well as the actual code, so
you can get a feel for the problem solving process involved in coding.

First off, I know exactly how I want my ball and paddle to interact, but Iʼm
not sure where I need to put the code or how much I need the angle to
change. Weʼll worry about figuring out the code first (using place holder
numbers to affect the ballʼs bounce), then weʼll worry about where the
code goes. Only after weʼve got something that works the way we want
will we worry about changing the values that affect the angle of the ballʼs
bounce. I know it sounds complicated, but stick with me.

Letʼs write out what we want to have happen in pseudo-code first. For
those of you not familiar with pseudo-code, it is simply a way to represent
code as a mix of code and normal writing so that humans have an easier
time thinking about what we are trying to make the computer do. Hereʼs
how I would think about our paddle and ball problem in pseudo-code:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

40

//start pseudo-code

find the total speed of the ball by calculating using
the x and y variables;

if (the ball hits the right paddle) {
figure out where the ball hit the paddle and change
the ball’s angle using the total speed variable;
make the ball bounce off the paddle;
}

if (the ball hits the left paddle) {
figure out where the ball hit the paddle and change
the ball’s angle using the total speed variable;
make the ball bounce off the paddle;
}

//end pseudo-code

There are two things Iʼd like to clear up at this point. First, yes, weʼre going
to delete (or at least comment out) the current hit test. Iʼm doing this
simply because itʼs easier to break up the code for beginners. If you can
write an addition to the existing hit test that makes it function like the
pseudo-code outlined above, go for it. Just make sure you comment your
code, because I can almost guarantee itʼs going to get confusing.

Also – if you look at the code we are already working with you will notice
that the code does not use an angle to decide how the ball is bouncing, it
uses a Cartesian graphing system. (This is just a fancy way to say that it
uses an X and Y coordinate-based system.) So we will need to be able to
either use the existing X and Y system, or convert the X and Y system to
an angle value, change the ballʼs trajectory angle and then convert that
new angle back to the original X and Y system to change the ballʼs
trajectory. This is the reason for the first line of the pseudo-code I outlined.
We need to do some math to figure out the ballʼs trajectory angle and
speed (when these are combined it is known as a vector) before we can
change the X and Y speed values in the code.

12. Next up letʼs write the actual code represented by the pseudo-code. As
with most code there are a couple different ways to do this and mine only
represents one of those ways. Feel free to write your code another way.
The cool thing is that there is no right answer; your code either works or it
doesnʼt! (And if the code doesnʼt work that doesnʼt mean that itʼs wrong, it
might just mean that you have to do some more work on it.)

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

41

Our first move will be to delete or comment out the existing hit test. Luckily
this will keep us from scratching our heads too much when we are trying to
figure out where the new code needs to be inserted. See if you can find
these first seven (nine with comments) lines of code inside of the update
function (itʼs in the Ball tab). Comment them out like this:

void update () {

 xpos = xpos + (xspeed * xdir);
 ypos = ypos + (yspeed * ydir);

/*

if ((xpos > rightPaddle.xPos - bSize &&
xpos < width - bSize &&
ypos < rpp + rightPaddle.pHeight/2 - bSize &&
ypos > rpp - rightPaddle.pHeight/2 - bSize) ||
//above is checking right paddle
//below is checking left paddle
(xpos < leftPaddle.xPos + bSize && xpos < 0 +
bSize &&
ypos < lpp + leftPaddle.pHeight/2 - bSize &&
ypos > lpp - leftPaddle.pHeight/2 - bSize))

{

 xdir *= -1; //change ball direction
}

*/

What I did in my code was create a total of five different functions that we
will use to control the hit test and how the ball bounces after the hit test.
You may not have created functions before, but itʼs actually pretty easy.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

42

Scroll down to the bottom of the Ball tab and write the following lines of
code. These lines are called function “headers.” These function headers
are just the beginning, and we will fill them in later. But before we do that I
will explain exactly what functions are and what these specific functions
will be doing before we continue.

So letʼs talk about functions and function headers before we talk about
what each one of these functions will actually do in our code.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

43

A function is a way to keep your code separated into different pieces. It
also allows you to use the same pieces of code over and over again at
different points without having to retype them. Often a programmer will
even use the same piece of code on different pieces of data. Ideally a
function will complete one task and one task only. Usually it has a
descriptive name that makes it easier to figure out exactly what your code
is doing when the function is called.

In Processing the function header is made up of four parts. The first part is
the data type that a function may send back to the main portion of code.
Here is an example of a function header, for a function named
myFunction, that returns an integer:

(Donʼt worry about this code, donʼt add myFunction to anything, this is just an example.)

But what does “void” mean? All the functions we are creating right now
start with void, right? void simply means that the function will not return
any values. This is why the functions we are creating all start with void,
because they donʼt send or return any variable values. These functions will
reassign certain variableʼs values, but they wonʼt actually return any
values.

The second part of the function is the name of the function. Just like a
variable, this name can be anything as long as it contains no spaces. You
can name it spatula, stopTime or even whatADumbName4AFunction.
Just make sure that the name describes what the function does so that
people know how to use it. The example function above is named
myFunction.

The third part of a function is the parenthesis after the name and anything
inside the parenthesis. So far all our functions have had nothing inside the
parenthesis, but if the functions were expecting Processing to send, or
“pass” them some information, they would have the variable type and the
name of the variable (as it is used inside the function, not necessarily what
the variable that is being “passed” is named) inside these parenthesis.
You could even “pass” a function multiple variables. This would make it
necessary to list both variable types along with the variable names as they
are used inside the function, only with a comma between the two so
Processing can tell them apart. Hereʼs an example of the myFunction
header that is expecting you to send it two integers:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

44

I could have sent it a Boolean and an integer or any other combination of
data types. You already “passed” the Ball function multiple variables in
step #4, as well as a couple other places. This shouldnʼt come as a
complete surprise to you.

The fourth part of a function header is the curly brackets that contain all
the function code that comes after the header. Youʼve seen these a lot and
youʼve probably become familiar with how much of a pain they can be.
The important thing to understand is that when you see one curly bracket
going this way { you will always need another curly bracket facing the
other way: }. Think of the curly brackets like the bread in a sandwich;
whenever you have one piece of bread on one side of the sandwich you
will also need a piece of bread on the other side of the sandwich. Just
make sure you eat your code sandwich one byte at a time. Iʼm sorry, I
promise thatʼs the only bad joke in this activity.

Hereʼs a list of the five functions we are creating and what they will do:

calcRadius will calculate the vector of the ballʼs trajectory for use in later
functions. I named the function calcRadius because the vector is also
referred to as the radius.

rPadHitTest tests to see if the ball hit the right paddle using the X and Y
coordinates of both the ball and the paddle. If the ball and paddle hit, this
function will call the rPadAngle function.

lPadHitTest tests to see if the ball hit the left paddle using the X and Y
coordinates of both the ball and the paddle. If the ball and paddle hit, this
function will call the lPadAngle function.

rPadAngle changes the xspeed and yspeed of the ball, depending on
where the ball hit the right paddle, while keeping the radius, or vector, of
the ball constant (so it doesnʼt speed up or slow down in the process).

lPadAngle changes the xspeed and yspeed of the ball, depending on
where the ball hit the left paddle, while keeping the radius, or vector, of the
ball constant (so it doesnʼt speed up or slow down in the process).

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

45

13. Ok. Now weʼve got to do some math. No… wait, please donʼt leave! In
order to make any video game thatʼs any fun at all, sooner or later youʼre
going to have to do some math. In fact, youʼve been doing math all along,
we just never told you before now. But know weʼre going to do a little
trigonometry, so you may want to brush up on trig (at least understand
Sine, Cosine and the difference between radians and degrees), or figure
out a different way to write this code if you really donʼt like trigonometry.

Hereʼs the problem: Right now we have four different variables that control
the direction (or angle) of the ballʼs trajectory. Those variables are xdir,
ydir, xspeed and yspeed. We donʼt care about xdir and ydir since
the code already changes these for us. But, if we just change yspeed,
depending on where the ball hits the paddle we will wind up with a change
in the ballʼs overall speed. You can do math so that yspeed doesnʼt pick
up too much, but that also means that the ballʼs angle wonʼt change all
that much either. In order to make sure that doesnʼt happen, we need to
change both xspeed and yspeed so the overall angle changes the way
we want, but the overall speed doesnʼt. That way would involve a little
guesstimation, so we might as well do the math to convert the resulting
vector of xspeed and yspeed to radians, change it a little in the direction
we want and then convert the resulting radian value back to the xspeed
and yspeed values. Are you still with me? Dang, I guess that means I
actually have to do the math, huh?

Here is what we know (this is basic trigonometry, which despite what you
may think, is actually very useful in a whole bunch of different situations):

float x = cos(radians(angle)) * radius;

We also know:

float y = sin(radians(angle)) * radius;

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

46

Weʼre solving for the angle and we know everything else in the equation,
so the trick is to isolate the angle. It doesnʼt matter whether itʼs displayed
in radians or degrees.

First I figured out the value of radius, which we need to keep constant so
the ball doesnʼt move any faster than it did before. This radius variable
actually represents the speed that the ball travels. In fact the radius is a
vector if you want to get into even more math. To figure out the radius
value I used the Pythagorean theorem; a^2 + b^2 = c^2, where c is the
value (radius) we are solving for. With my initial values of 8 (for x) and 2
for (y) my math looks like this:

8^2 + 2^2 = c^2 or 64 + 4 = c^2 or 68 = c^2 or √68 = c or 8.25 = c

Remember though, your values may be different or may change through
out the game. (In fact weʼre going to make them change later on.) So you
should create a new variable called something like “bRadius” and solve
for your particular radius inside the Pong code. Make sure that you declare
the “bRadius” variable inside of your Ball object with a line like this:

class Ball {
float bRadius; //add this line to create your variable

The function you would use to solve for a square root in Processing is
sqrt(). Remember, you can easily use “reference” to figure out exactly
how to use the square root function. Iʼm not going to help you create the
“bRadius” variable but I will show you what your function should look like
now:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

47

The pow function is used to raise a number to a power. The abs()
function is used to find the absolute value of a number. The absolute value
of a number simply means that if the number is a negative number it is
turned into a positive number and if it is a positive number it stays a
positive number. By now you should feel comfortable using reference to
figure out how these functions work if you have additional questions.

Now we have all the variables we need in order to solve for the angle of
our equation. Iʼm going to go through this process with the X value in order
to find our initial angle value, but I could just as easily use the Y value and
the slightly different equation to find the same angle. Anyway, hereʼs how I
juggled the equation we started with in order to solve for the angle value.

acos (8/bRadius) = radians (angle)

This equation is in pseudo-code at this point because, although I am using
the acos function to reverse the cos function (cosine), there are no
variable types or semicolons, and Iʼm using a single equal sign instead of
two. Also be aware that the answer to this equation will be in radians.
Radians are simply a different way to represent degrees, with values from
zero to 2π (or about 2.68) instead of zero to 360. Hereʼs my answer in
radians:

acos (8/bRadius) = 0.24680881

or if you prefer degrees:

degrees = 0.24680881 / 2π * 360 or 0.24680881 / 2π * 360 = 140°

By now you may have forgotten exactly what it is we are trying to do.
Remember that this angle we just solved for is the current angle of the
ballʼs trajectory before it hits a paddle. Once we have calculate this
variable we can use itʼs value later on in our other functions.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

48

14. Next letʼs work on those hit tests. Luckily we can work on creating the right
paddle hit test first, then copy and paste it and change a couple things so
it works for the left paddle as well.

First we need a line of code (called a “condition” because it checks to see
if the variables meet the condition) that will check the x position of the ball
against the x position of the right paddle. We need to make sure that the x
position of the ball is greater than the left edge of the right paddle. Hereʼs
what that line of code looks like:

xpos > rightPaddle.xPos – rightPaddle.pWidth/2 – bSize/2

Then we need to check to see if the ball is above the bottom of the paddle.

ypos < rpp + rightPaddle.pHeight/2 + bSize/2

Lastly we will need to check to see if the ball is below the top of the paddle.
Iʼm going to let you try to figure this one out on your own. (Hint, itʼs a lot
like the last line of code I gave you.)

Put all three of these lines of code inside the conditional (the parenthesis)
of an if statement. Use an “and” operator to link these three conditions.
In Processing (and most programming languages) the “and” symbol is &&.
This means Processing requires all three of the conditions to be true in
order to allow the code inside each if statementʼs curly brackets to
execute. This way we know that the ball is somewhere in the same X and
Y area as the paddle, and we are ready to change the ballʼs trajectory
angle and make it bounce.

Weʼll deal with changing the actual angle in a second, for now call the
function rPadAngle like this (Make sure youʼre doing this inside of the
rPadHitTest() function.):

rPadAngle ();

Later on inside the rPadAngle() function we will do some more math
and change the actual angle of the ball.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

49

The very last thing we have to do is change the xdir value of the ball so
that it actually changes direction as if it were bouncing. Thatʼs pretty easy
compared to the math weʼve been doing. All you have do is assign xdir
equal to the value of xdir multiplied by negative one. That may sound a
little tricky. There are two different lines of code you could use to
accomplish this:

xdir = xdir * -1;

or

xdir *= -1;

All right, this was a long step, but what did you expect? Hit tests are some
of the more difficult aspects of game coding. Hereʼs what my
rPadHitTest() looks like now:

Iʼm not going to help you figure out how to change this code so that it
works for the left paddle, but if you run into trouble try drawing a diagram
of how this hit test works and comparing that to how you want your left hit
test to work.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

50

15. Now that we are almost done with our new hit test functions we can put
them into our update() function. In order to do this simple write the
following three lines of code inside of update(), below the code you
previously commented out.

16. We are so close to having a hit test that changes the angle of the ballʼs
trajectory. If you want to play the game now, go ahead. It should function
exactly like it did before we changed the hit test. Just make sure you save
out a different version first in case you messed any of the code up in the
process!

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

51

You back? Great. Weʼre going to change the angle of the ballʼs trajectory
now by writing some code in our rPadAngle() function. Big surprise!
The first thing we need to do is declare a new variable that we will use to
store and change the ballʼs angle value. The variable type should be a
float, because weʼre going to run into decimals doing math so an integer
type variable just wonʼt work. I called my variable bAngle (short for ball
angle) but as you know by now you can call your variable whatever you
want. I declared the variable inside of the Ball class because Iʼm only
going to be using it in the Ball code.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

52

Before we can use this variable we need to make a couple if statements
that check to see where on the paddle the ball is hitting. I want to leave a
20 pixel space in the middle of the paddle where the ballʼs trajectory is not
affected, but I do want the upper and lower portions of the paddle to
change the ballʼs trajectory. Before we worry about changing the angle of
the ball we need to use the two if statements to decide if the angle will
change so the ball is headed more towards the top or the bottom of the
game window. Hereʼs what that looks like:

Your two if statements inside the lPadAngle() function should be
almost the same, you just need to change one variable.

Now we are ready to change the actual bAngle variable that we use to
keep track of the ballʼs trajectory. In order to do that we will need to use
the map function to make the ballʼs distance from the middle of the paddle
(except itʼs not quite the center, because we want a 10 pixel “dead” space
in the middle of the paddle) correspond to a range of degrees that we want
the ballʼs angle to change by. This sounds a little complicated so Iʼll break
it down for you. Hereʼs the entire line of code weʼll put in the first if
statement:

bAngle = bAngle - (map(abs(rpp - 10 - ypos), 0, 50, 0, 15));

The map portion of this code takes the difference in distance between the
middle of the paddle (rpp) with an offset of 10 pixels (minus 10) and the
ballʼs y position (ypos) and first turns it into a positive number (this isnʼt
strictly necessary, but it is if you want to copy, paste and change this
code) using the abs function. Then we simply map that value from the
range of zero to 50 down to zero to 15. This is because we want the angle
to change by a maximum of 15º when it hits the very edge of the paddle. If
you want a larger angle change when the ball hits the side of the paddle,
you simply have to change the last number in this map() function.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

53

17. Now weʼre ready to plug our equations that change xspeed and yspeed
into the code. These are the pieces that actually change how the ball
functions, the rest was legwork so we could get to these pieces of code at
the right time with the right variable values. In order to do that weʼve got to
go back to our trigonometry skills using Cosine and Sine. Add the
following lines of code in the rPadAngle function, below the map function
you just added:

xspeed = cos (radians(bAngle)) * bRadius;
yspeed = sin (radians(bAngle)) * bRadius;

Luckily you can tweak the code a little, save your code, run the Processing
sketch, see how it works and then continue to work on the code if you
need to. The key concept is to just change a little bit of the code at a time
so you can tell how it changed the game play of your Processing sketch.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

54

18. Finally, copy and paste the code from inside the first if statementʼs
parenthesis to inside the second if statements parenthesis. You will need
to change the code a little to make it work with the lower section of the
paddle instead of the upper. Make sure you change the code that checks
the ballʼs distance from the center of the paddle, and the code that
changes the angle. Save your code (youʼve been saving different versions
of your code this whole time, right?) and press the Run button to see if
everything works. Remember, this will only change how your right paddle
operates. Testing is the best part of game coding; you have to play your
game a bunch to make sure nothing is broken. If something is broken,
note exactly how the game play is broken so you have a better idea of
where to look in your code. If you need help there is an image of my code
below. Make sure your code works exactly how you want it to before
moving on to the next step.

I put println(bAngle) commands in my code so I could see the
amount that this code changes bAngle every time the ball hits the right
paddle. Feel free to put those commands in or leave them out.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

55

19. Go ahead and copy and paste the code from inside the rPadAngle()
function to the lPadAngle(). In order to repurpose this code from right to
left you will need to change a total of six things in the lPadAngle() code
after you copy and paste it in order to make it work properly with the left
paddle. I felt bad for you so I highlighted the changes made between the
two functions in the code below:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

56

20. By now you may have noticed that there is a slight issue with the paddle
code. Sometimes when the ball hits the very edge of the paddle it gets
kind of stuck inside the paddle. Thatʼs no good. Sometimes you write code
that almost works how you want, but there is an issue that you need to fix
like this. In this case we can simply reset the x position of the ball to the
front of the paddle after they hit. To do that just add the following line of
code inside the last two curly brackets of the rPadAngle and lPadAngle
functions:

xpos = rightPaddle.xpos + rightPaddle.pWidth/2 + bSize/2;

Hereʼs what the code looks like in with my left paddle functions:

You will need to change four parts of this code to make it work with the left
paddle. Iʼm going to let you try and figure out those changes on your own.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

57

21. This next addition should be pretty easy in comparison to changing the

bounce of the ball off the paddles. Weʼre going to make a counter that
keeps track of time passed in the game. Then weʼre going to use that
counter to speed up the game as time passes. Counters are incredibly
useful in all kinds of programming; whether itʼs a game, a robot or a piece
of social media, itʼs probably got at least one counter in the code.

Like most of the additions weʼve been making to our Pong game, this one
needs a variable. You can call it whatever you want, just make sure the
variable is an integer equal to zero that gets declared before setup in the
main section of code.

I named my variable timePlayed.

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

58

22. Now we need to make the timer variable count up by one every time
Processing runs through the draw loop. To do this, scroll down to the end
of the draw loop and add the following code:

This line of code may seem a little confusing to some of you; this is
because it is a shorthand form of code. Programmers often need to add
the number one to a variable so they developed this shorthand for it. You
can also write timePlayed = timePlayed + 1; but this way is faster.
Also, make sure that you put this code just before the last curly bracket of
the draw loop, otherwise your counter will only count up some of the time.

If youʼre really fancy, you can look up millis() and use that to make
your counter add time, just make sure you still use a variable like
timePlayed because eventually the players will want to reset the game,
and there is no way to reset the values you get from millis().

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

59

23. Now comes the tricky part. We want the variable timePlayed to affect
the speed of the ball, and there are a couple different ways to do that.
There is one way that involves creating a new variable (surprise!) and
affecting that variable with timePlayed in order to change the vector of
the ball. If youʼre bored, go ahead and do that instead of following along
with the rest of this step. Thereʼs also an easier way to do it that involves
simply adding a little to X and Y each time the ball bounces off the paddles.
But weʼre going to take the middle path for now by simply adding a fraction
of timePlayed each time Processing runs through the draw loop. In
order to do this add this line below where you incremented your
timePlayed variable:

pong.bRadius = pong.bRadius + (timePlayed * .001);

You can try multiplying timePlayed by a different number than .001 if
you want more or less of a challenge in your game play.

Hereʼs what my code looks like now with that line added:

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

60

Lastly, we have to reset the timePlayed variable each time one of the
players wins. However, you need to be careful exactly where this happens
because what if the game is finished and there is a period of time between
games? The ball would be bouncing really fast right at the beginning of the
game, right?

This is what writing code is all about, creating something that sort of works
and then making it better. Well, that and error messages. Donʼt freak out
when you see error messages, they mean youʼre doing real coding and
eventually you will come to rely on them to help you code.

Hereʼs where I reset my counter and ball speed variables (because
otherwise the second and third game would be very, very fast) in the Ball
objectʼs reset function, but there are a whole bunch of different places
and ways you could do this:

There are tons of different ways you could use the timePlayed variable;
how else would you use it?

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

61

Blam. You just completed Pong using Arduino and Processing. Take a
minute to play your version of Pong against someone. Show off your
amazing reflexes and sweet coding skills. Stomp all Pong opposition. It is
your game after all; you probably got really good at it while you tested your
code!

At this point you should feel free to customize your game. Check out some
basic graphical functions for Processing here:
http://processing.org/learning/color/
And
http://processing.org/learning/pixels/

Material by Linz Craig, Ben Leduc-Mills
Edited by Chelsea Moll, Linz Craig

Design by Amanda Clark, Linz Craig

© 2012 SparkFun Electronics, Inc. SparkFun Electronics Educational Materials are Licensed under Creative Commons Attribution -ShareAlike, CC BY-SA
SparkFun Electronics is a trademark of SparkFun Electronics, Inc. All other trademarks contained herein are the property of their respective owners.
SparkFun Electronics Open Source Educational Material

62

Reflective Questions:

1. Nice! You just built a simple game and a simple game controller. What
was your favorite part?

2. What was the most challenging part?

3. What other sensors could you use in place of the potentiometer?

4. How could you turn the breadboard into something that is more stable that
you could use as a video game controller?

Challenges (these are tough!):

1. Can you replace one of the analog sensors with two buttons? This could
probably be done easiest by creating a new function (or two), which
checks to see if the buttons have been pressed, and then changes an
integer variable up or down depending on which button has been pressed.
Make sure this variable can only go as high as 1023 and as low as 0.

2. What are some other changes you could make to the game that depend
on a button or keyboard press? How about changing the color of the
players or background? What about adding a dial and a button so that you
can control which aspect of the game you are changing the color of each
time you press the button? Donʼt forget to add some text so the user
knows which part of the game is being changed!

3. Can you change the ballʼs code so the faster the paddle is moving the
faster the ball bounces off it? How about changing the action of the ball
and paddleʼs bounce so that the angle is created using the speed of the
paddle and the portion of the paddle hit?

4. For a really tough challenge: Can you make the game for four players,
with two teams and two paddles on each side of the court? How about four
players with four different teams, one on each side of the screen?

