

Cambridge CMOS Sensors

is now

Member of the

ams Group

The technical content of this Cambridge CMOS Sensors (CCS) document is still valid.

Contact information:

Headquarters:

ams AG

Tobelbader Strasse 30

8141 Premstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

mailto:ams_sales@ams.com
http://www.ams.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

CCS811 Programming and Interfacing Guide

Introduction

This application note details the programming model and
recommended interfacing techniques for Cambridge CMOS Sensor’s
CCS811 digital gas sensor. It is intended for software developers who
will integrate the CCS811 device into an environment with another core
(such as a sensor hub, sensor aggregator, phone, tablet or digital
display product). It details how user software can interface to, control,
enable and disable the sensor.

CCS811 Device Hardware Overview

The CCS811 block diagram is shown below in Figure 1.

Figure 1: CCS 811 Device Block Diagram

The digital host interface utilizes the I2C bus. All signals prepended with
‘n’ are active low and optional, except nWAKE. If not used they can be
pulled high, it is strongly recommended that the nWAKE input signal is
controlled by a software configurable GPIO pin in power sensitive
applications. In applications where power is not a major concern it is
possible to tie nWAKE to ground.

Configuring and extracting samples from the CCS811 is accomplished
by the host issuing transactions on the I2C interface to specific
addresses on the CCS811. The sensor can operate in polling mode, or
can issue an interrupt on nINT when it has taken an eCO2 reading,
and/or when a threshold is reached.

Features

 IAQ Gas sensor

 Integrated MCU with ADC

 I2C digital interface

 Optimised low-power
modes

 Compact 2.7x4.0 mm LGA
package

 Proven technology
platform

Benefits

 On-board processing to
reduce requirement on
host processor

 Fast time-to-market

 Extended battery life

 Reduced component count

 Suitable for small form
factor designs

 Highly reliable solution

Applications

 IAQ monitoring for
Smartphones, accessories
and connected home
devices

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Programming Model

For flexibility and software driver maintenance simplification the CCS811 does not support direct addressing of
registers over the I2C bus. Instead it supports single byte mailboxes that behave as proxies for registers with
specific functionality and data sizes.

To access a register an I2C transaction must be issued with the target address on the CCS811 being equal to the
intended mailbox.

All I2C transactions must use the 7-bit address 0x5A (I2C _ADDR low) or 0x5B (I2C _ADDR high) when writing to
and reading from the CCS811. Table 1 shows the register map for CCS811.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 3 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Mailbox
ID

Proxy Register
Size (Bytes)

Proxy Register Name Direction Description

0x00 1 STATUS Read Status register

0x01 1 MEAS_MODE Read /
Write

Measure mode. Used to start the one of
the supported drive modes.

0x02 8 ALG_RESULT_DATA Read Algorithm result. The most significant 2
bytes are the eCO2 ppm, the 2 bytes of
second most significance are the TVOC
ppb.

0x03 2 RAW_DATA Read Raw data from the ADC reading. For more
information please contact your local
support representative.

0x05 4 ENV_DATA Write Environment data register for holding
ambient temperature and relative
humidity data from external sensor. Used
for dynamic compensation

0x06 4 NTC Read Negative thermal coefficient thermistor.
Provides the voltage across the reference
resistor and the voltage across the NTC
resistor – from which the ambient
temperature can be determined.

0x10 5 THRESHOLDS Write Threshold registers. The CCS811 supports a
low and high threshold with
programmable hysteresis. Crossing a
threshold in either direction results in the
nINT signal being asserted.

0x11 2 BASELINE Read /
Write

Encoded baseline value that can be read
and written by the application software.

0x20 1 HW_ID Read Hardware ID (value = 0x81).

0x21 1 HW_VERSION Read Hardware revision. Revision number of the
CCS811. For more information please see
the data sheet.

0x23 2 FW_Boot_Version Read Boot version number.

0x24 2 FW_App_Version Read Application code version number.

0xE0 1 ERROR_ID Read Error ID. When the status register reports
an error its source is located in this register

0xF4 0 APP_START Write Application start.

0xFF 4 SW_RESET Write Software reset. Writing the sequence 0x11,
0xE5, 0x72, 0x8A to this mailbox, resets
the CCS811 and places it in boot mode.

Table 1: Mailbox identifier and proxy functionality

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 4 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

 STATUS Register (0x00)

The following table details the bit fields contained in the status register.

7 6 5 4 3 2 1 0

FW_MODE - APP_VALID DATA_READY - ERROR

Table 2: Status Register

Table 3: Status Register Fields, describes the bit fields contained in the status register.

Bit(s) Field Description

7 FW_MODE 0: Firmware is in boot mode, this allows new firmware to be loaded

1: Firmware is in application mode. CCS811 is ready to take ADC measurements

6:5 - Reserved

4 APP_VALID 0: There is no application firmware loaded

1: There is valid application firmware loaded

3 DATA_READY 0: No new data samples are ready

1: A new data sample is ready in ALG_RESULT_DATA, this bit is cleared when
ALG_RESULT_DATA is read on the I2C interface

2:1 - Reserved

0 ERROR 0: No error has occurred on I2C or the sensor

1: There is an error on the I2C or sensor, the ERROR_ID register contains the source
of the error

Table 3: Status Register Fields

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 5 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Measure Mode Register (0x01)

Table 4: Measure Mode Register shows the bit fields contained in the measure mode register.

7 6:4 3 2 1 0

- DRIVE_MODE INTERRUPT THRESH -

Table 4: Measure Mode Register

The table below describes the bit fields contained in the measure mode register.

Bit(s) Field Description

7 - Reserved

6:4 DRIVE_MODE 000: Idle, measurements are disabled this is the lowest power mode

001: IAQ Mode 1 – A measurement is performed every second
010: IAQ Mode 2 – A measurement is performed every 10 seconds
011: IAQ Mode 3 – A measurement is performed every 60 seconds
100: IAQ Mode 4 – Raw Data Mode. A measurement is performed every 250ms for
external algorithms such as ethanol detection.
A new sample is placed in ALG_RESULT_DATA and RAW_DATA registers and the
DATA_READY bit in the STATUS register is set at the defined measurement interval.

3 INTERRUPT 0: Interrupt generation is disabled

1: The nINT signal is asserted (driven low) when a new sample is ready in
ALG_RESULT_DATA. The nINT signal will stop being driven low when
ALG_RESULT_DATA is read on the I2C interface.

2 THRESH 0: Interrupt mode operates as programmed in MEAS_MODE[INTERRUPT].

1: If MEAS_MODE[INTERRUPT] = 1, this bit ensures the CCS811 asserts the nINT
signal if the new ALG_RESULT_DATA eCO2 reading crosses one of the thresholds
(set in the THRESHOLDS register) by more than the hysteresis.

1:0 - Reserved

Table 5: Measure Mode Register Fields

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 6 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Error ID Register (0xE0)

Table 6: Error ID Register shows the bit fields contained in the Error ID register.

7:6 5 4 3 2 1 0

- HEATER
SUPPLY

HEATER
FAULT

MAX
RESISTANCE

MEASMODE
INVALID

READ_REG
INVALID

MSG
INVALID

Table 6: Error ID Register

Table 7: Error ID Register Causes and Actions describes the bit fields and recommended action contained in the
Error ID register, this register is non zero when STATUS[ERROR] = 1.

Error Potential Cause Recommended Action

MSG_INVALID The CCS811 received an I2C write
request addressed to this station
but with invalid mailbox ID or the
wrong size

Check Host is sending a correct sequence.

READ_REG_INVALID The CCS811 received an I2C read
request to a mailbox ID that is
invalid

Check Host is sending the intended sequence.

MEASMODE_INVALID The CCS811 received an I2C
request to write an unsupported
mode to MEAS_MODE

Check Host is writing a supported Mode.

MAX_RESISTANCE The MOX material is no longer
functioning as expected. Could be

 Damage

 Unusual environment (or may
have recently been in one)

 Heater not operating

Check for Heater Fault Flags
Ensure sensor is in a typical atmosphere and note any
environments that the sensor may have previously seen.

HEATER_FAULT Soldering, PCB issue or damage. Check Soldering. On an unpowered board there should
be approximately 38 ohms between pin 5 and 6.

HEATER_SUPPLY Soldering or PCB issue. Check Soldering. On an unpowered board there should
be approximately 38 ohms between pin 5 and 6.

Table 7: Error ID Register Causes and Actions

The ERROR_ID register will be cleared by the following events:

 The application software performs a read of the ERROR register on the I2C interface

 The application software performs the SW_RESET sequence by writing the appropriate code to the
SW_RESET mailbox

 A power on reset is issued

 The nRESET signal is asserted

It is possible that more than 1 error flag is set in this register, thus application software should check each bit
individually every time this register is read.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 7 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Examples

The following examples will use the pseudo code below to help illustrate the functionality and programming
flow required for the CCS811.

#define STATUS_REG 0x00

#define MEAS_MODE_REG 0x01

#define ALG_RESULT_DATA 0x02

#define ENV_DATA 0x05

#define NTC_REG 0x06

#define THRESHOLDS 0x10

#define BASELINE 0x11

#define HW_ID_REG 0x20

#define ERROR_ID_REG 0xE0

#define APP_START_REG 0xF4

#define SW_RESET 0xFF

#define CCS_811_ADDRESS 0x5A

#define GPIO_WAKE 0x5

#define DRIVE_MODE_IDLE 0x0

#define DRIVE_MODE_1SEC 0x10

#define DRIVE_MODE_10SEC 0x20

#define DRIVE_MODE_60SEC 0x30

#define INTERRUPT_DRIVEN 0x8

#define THRESHOLDS_ENABLED 0x4

u8 i2c_buff[8];

bool wake_gpio_enabled = true;

void i2c_write(u8 address, u8 register, u8 *tx_data_ptr, u8 length);

void i2c_read(u8 address, u8 *rx_data_ptr, u8 length);

void gpio_write(u8 gpio_id, u8 level);

The pseudo code utilizes a global array, i2c_buff, to hold the data to be transmitted and the data received. For
illustrative purposes it is assumed that read transactions do not automatically perform a set-up write before the
read. Some environments abstract this in their API. The I2C function prototypes are fairly self-explanatory:

 u8 address: this argument is the value of the CCS811 address (CCS_811_ADDRESS)

 u8 register: this argument is the mailbox ID

 u8 length: this argument is the number of bytes to write/read not including address and register

 u8 rx_data_ptr/tx_data_ptr: pointer to a buffer where the called function will access the data to be
written to the CCS811 or store the data read from the CCS811, i2c_buff in most of the following
examples

The gpio_write function is used by the host to write GPIO outputs (input to CCS811) to a logic high or logic low
level. Its arguments are described below:

 u8 gpio_id: GPIO number to be written to logic high or low

 u8 level: zero for logic low, and one for logic high

See Handling nWAKE Using a GPIO for more information on how this can be used.

For simplicity, the examples do not show any error handling of the physical layer such as I2C aborts and
timeouts.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 8 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

CCS811 I2C Data Byte Ordering

When reading or writing more than one byte the user must be aware of the order of the bytes used by the
CCS811. The CCS811 assumes that the most significant byte of the scalar is present on the I2C before bytes of
lesser significance. For example reading a 16-bit scalar with the value 0x11AA, the byte with value 0x11 would
appear on the bus before the byte with value 0xAA.

I2C Write Transactions

The host must perform I2C write transactions to enable and configure the sensor in the intended operation
mode. When writing to a mailbox, for example the MEAS_MODE register with a 1s drive mode and interrupts
enabled, the user software would behave in a similar fashion to the following code example:

i2c_buff[0] = DRIVE_MODE_1SEC | INTERRUPT_DRIVEN;

i2c_write(CCS_811_ADDRESS, MEAS_MODE_REG, i2c_buff, 1);

If this transaction is viewed on a protocol analyzer it will look something similar to Figure 2:

Figure 2: I2C Write Transaction to MEAS_MODE, 1 Second Drive Mode, Interrupts Enabled

Note that the I2C address occupies the most significant 7 bits of the first byte transmitted. The least significant
bit indicates write or read with a logic 0 or a logic 1 value respectively. This is a write hence why the value of this
byte is 0xB4 (i.e. 0x5A << 1 = 0xB4). The next byte on the line is the mailbox ID for MEAS_MODE, and finally the
data, 0x18 (DRIVE_MODE = 1s, Interrupt enable), that is written to the MEAS_MODE mailbox’s register.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 9 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

I2C Read Transactions

I2C read transactions must be preceded with a set-up write to enable the target mailbox for the read. This is best
illustrated by an example. Let’s assume that the user is required to read the STATUS register, the code flow
would look like the following:

i2c_write(CCS_811_ADDRESS, STATUS_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

Viewing this on a protocol analyzer:

Figure 3: I2C Read Transaction to STATUS

Figure 3 shows setup write to mailbox 0x00 ensures that thereafter all read transactions target the status
register. Note the size of the write data in this instance is zero bytes, and as such the i2c_buff array does not
need to be written with any data. The read command contains the size of the data in this mailbox’s register, in
this case 1 byte. The i2c_read function will store to i2c_buff[0] the value of the status register i.e. 0x98. User
software can then react accordingly to the values of the fields in the status register.

Hardware ID (0x20) Register Handling

The hardware ID register, sometimes referred to as the ‘Who Am I’ register, can be read during CCS811
initialization to ensure that the device is indeed a CCS811. When this mailbox is the target of a read its proxy
register will return the value 0x81. To read this register the host software would perform the following:

i2c_write(CCS_811_ADDRESS, HW_ID_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

if(i2c_buff[0] != 0x81)

 return ERROR_NOT_A_CCS811;

...

The setup write to the mailbox HW_ID precedes the actual read of its proxy register. The read is 1 byte in length
and it must return 0x81 to the i2c_buff array, otherwise the device will not be configured by the host’s software.
The resultant transactions on I2C would appear as shown in the protocol analyzer screenshot in Figure 4 below:

Figure 4: I2C Read Transaction to HW_ID

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 0 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

APP_START (0xF4) Handling

The mailbox ID 0xF4, APP_START, is used to transition the CCS811 state from boot to application mode. Note
that the size of the proxy register for this mailbox is zero bytes. Therefore to trigger this state transition a setup
write with no data is all that is required. A typical flow can be viewed below:

i2c_write(CCS_811_ADDRESS, STATUS_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

if(!(i2c_buff[0] & 0x10))

 return ERROR_NO_VALID_APP;

i2c_write(CCS_811_ADDRESS, APP_START_REG, i2c_buff, 0);

Firstly the status register is read and the APP_VALID flag is checked. If this is not set then an error condition is
returned and valid application firmware should be downloaded to the CCS811. If there is valid firmware present
then the setup write to the APP_START mailbox will transition the CCS811 state from boot to application mode.
The logic analyzer capture illustrates the state of the sensor before the application has been started:

Figure 5: Status Register Prior To APP_START Setup Write

Figure 5 shows the status register has returned the value 0x10, which indicates that a valid app is present but
the sensor is still in boot mode. The next transaction on the I2C bus is a setup write to mailbox 0xF4, note the
size is zero as the APP_START mailbox has no underlying register. Subsequent reads of the status register return
the value 0x90, i.e. there is a valid application and the sensor is in application mode. The DATA_READY flag will
remain zero until a valid drive mode is written to the MEAS_MODE register.

For information on downloading firmware to the CCS811 please see CC-000922-AN Performing an Application
code binary file download.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 1 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Host Software Polling Mode

One mode of operation for the sensor is polling mode. In this mode the host software is required to cyclically
read data from the sensor at the same period as the programmed drive mode. A timer interrupt on the host
application can be used to read the sensor’s eCO2 and TVOC values. A typical flow for this can be seen below:

u8 *timer_routine_read_data(){

i2c_write(CCS_811_ADDRESS, STATUS_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

if(i2c_buff & 0x8) // check if data ready

{

i2c_write(CCS_811_ADDRESS, ALG_RESULT_DATA, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 4);

}

return i2c_buff;

}

The status register is read to see if data is ready. If data is ready the eCO2 and TVOC results are read by
performing a 4 byte data read to ALG_RESULT_DATA. The software can then process the data according to the
eCO2 and TVOC results in the i2c_buff location. The protocol analyzer would show a plot similar to Figure 6:

Figure 6: Polling Mode for CCS811 Data Samples

Basically a set-up write and a subsequent read of 1byte to mailbox 0x0 to check the status for data ready. This
is followed by a setup write to mailbox 0x2 and a 4 byte read. The data would be stored in i2c_buff as follows:

 i2c_buff[0] = 0x01

 i2c_buff[1] = 0x90

 i2c_buff[2] = 0x00

 i2c_buff[3] = 0x32

Note that i2c_buff[0] and i2c_buff[1] values should be converted to a 16 bit type field with the value 0x0190
(decimal 400), this is the current eCO2 reading from the sensor. Similarly the bytes values in i2c_buff[2] and
i2c_buff[3] should be converted to a 16 bit value 0x0032 that is the TVOC, in this case decimal 50.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 2 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

This example assumes 4 bytes of data is read from ALG_RESULT_DATA. It is possible to read up to eight bytes
from ALG_RESULT_DATA. The format of this is shown in Table 8: ALG_RESULT_DATA Format.

Byte: 0:1 2:3 4 5 6:7

Parameter: ECO2 TVOC STATUS ERROR_ID RAW_DATA

Table 8: ALG_RESULT_DATA Format

The user can define a structure to hold this data as follows:
typedef struct {

 u16 eco2;

 u16 tvoc;

 u8 status;

 u8 error_id;

 u16 raw_data;

} ccs811_measurement_t;

The base address of this structure can be cast to a char pointer and supplied as the address that the i2c_read
routine deposits the data read from the sensor. Alternatively data can be copied to this structure from the
current i2c_buff. Care must always be taken with processor endianness when accessing data written to the
i2c_buff by the i2c_read function.

Reading Data On Interrupt Thresholds Disabled

The nINT signal is driven low by the CCS811 whenever new data is ready and the MEAS_MODE[INTERRUPT] bit
is set. The host’s CCS811 driver can provide a callback, to the host application’s O/S, which is registered to the
GPIO signal connected to the nINT output signal. When the nINT is asserted the callback is called which then
reads the ALG_RESULT_DATA from the CCS811:

u8 *ccs811_read_data_callback(){

i2c_write(CCS_811_ADDRESS, ALG_RESULT_DATA, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 4);

return i2c_buff;

}

There is no need to check data ready in this case. The issuing of the interrupt indicates that new data samples
are ready. The protocol analyzer would show a similar I2C transaction flow as Figure 7:

Figure 7: Interrupt Triggering a Read of CCS811 Data Samples

The nINT line is asserted by the CCS811, a short time thereafter the host application calls the callback which
performs a setup write to mailbox 0x2, ALG_RESULT_DATA. Next the callback routine performs a 4 byte read,
which results in the eCO2 and TVOC readings to be stored into the i2c_buff location.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 3 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Reading Data On Threshold Interrupt

It is possible to program CCS811 such that the nINT signal generates an interrupt when an eCO2 reading crosses
the low or high threshold in either direction. The firmware will only trigger the interrupt if the threshold is
breached by more than a programmable hysteresis value.

typedef struct __packed{

 u16 thresh_low;

 u16 thresh_high;

 u8 thresh_hyst;

}threshold_reg;

...

threshold_reg thresh_reg = {1000, 2200, 50};

temp_ptr = (uint8_t *)&thresh_reg->thresh_low;

i2c_write(CCS_811_ADDRESS, THRESHOLDS, temp_ptr, 5);

...

i2c_buff[0] = DRIVE_MODE_1SEC | INTERRUPT_DRIVEN | THRESHOLDS_ENABLED;

i2c_write(CCS_811_ADDRESS, MEAS_MODE_REG, i2c_buff, 1);

Before enabling the drive mode the user must program the desired low and high threshold value in the
THRESHOLDS’ registers. This can be achieved by defining and declaring the structure threshold_reg shown
above. It can be used to hold the values of the threshold registers. The structure’s base can be cast to a pointer
to char, it then can be the tx_data_ptr argument in the i2c_write function call.

The default values in the CCS811 threshold registers are as follows, if the application always uses these values
there is no requirement to write to the threshold registers:

 LOW_THRESHOLD = 1500ppm

 HIGH_THRESHOLD = 2500ppm

 HYSTERESIS = 50ppm

If only one threshold is required the low and high threshold can be configured to the same value. It is possible
to change the threshold registers on the fly.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 4 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Handling nWAKE Using a GPIO

There are 2 methods for handling the nWAKE:

1. Pull low and therefore always asserted*
2. Use a GPIO and control assertion and deassertion dynamically

When the active low nWAKE signal is asserted the CCS811 integrated processor is active and will handle requests
on the I2C interface. When this pin is logic high the CCS811 enters sleep mode and all I2C requests are ignored.
Therefore when this signal is dynamically controlled by a GPIO it can efficiently control CCS811 power
consumption. Pulling nWAKE permanently low is not recommended in power sensitive applications.

if(wake_gpio_enabled)

gpio_write(GPIO_WAKE, 0); // enable wake

i2c_write(CCS_811_ADDRESS, STATUS_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

if(i2c_buff & 0x8) // check if data ready

{

i2c_write(CCS_811_ADDRESS, ALG_RESULT_DATA, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 4);

}

if(wake_gpio_enabled)

gpio_write(GPIO_WAKE, 1); // disable wake

Firstly nWAKE is enabled by writing logic level zero to the GPIO, note the code checks if this signal is currently
controlled by a GPIO. If no GPIO is available then nWAKE must be pulled low. The status register is then read to
see if data is ready.

When data is ready the eCO2 and TVOC results are read by performing a read to ALG_RESULT_DATA. Finally
nWAKE is disabled. The software can then process the data according to the eCO2 and TVOC results in the
i2c_buff location.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 5 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Disabling the CCS811

In order to disable the sensor and place in the lowest possible power consumption mode (while still connected
to the supply voltage VDD), the following can used:

if(wake_gpio_enabled)

gpio_write(GPIO_WAKE, 0); // enable wake

i2c_buff[0] = DRIVE_MODE_IDLE;

i2c_write(CCS_811_ADDRESS, MEAS_MODE_REG, i2c_buff, 1);

if(wake_gpio_enabled)

gpio_write(GPIO_WAKE, 1); // disable wake

Basically the driver code should disable the readings from the sensor by placing the drive mode in MEAS_MODE
in the idle state. The nWAKE signal can then be placed in its inactive state, thus no I2C commands will be
processed. To ‘re-awaken’ the sensor nWAKE should be asserted and the appropriate drive mode including
interrupt, if used, should be written to the MEAS_MODE register.

Another method of disabling the sensor is by writing the reset unlock sequence to the SW_RESET mailbox. This
sequence is shown in the code example below (nWAKE handling not shown for simplicity):

u8 soft_reset_code[] = {0x11, 0xE5, 0x72, 0x8A};

i2c_write(CCS_811_ADDRESS, SW_RESET, soft_reset_code, 4);

This will reset the CCS811 and place it in boot mode, ready to be reprogrammed.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 6 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

CCS811 Timing Considerations

The CCS811 data sheet, CC-000619-DS, lists a number of timing parameters that the programmer must adhere
to. Failure to meet these timings may result in initialization failure. The CCS811 may also return NAK on I2C
transactions.

A typical flow in a system is to perform an I2C setup write followed by very quickly thereafter an I2C read. The
code for this will similar to the following:

i2c_write(CCS_811_ADDRESS, STATUS_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 1);

void i2c_write(ARGS){

gpio_write(GPIO_WAKE, 0); // enable wake

...

I2C_WRITE_HW_REG();

...

gpio_write(GPIO_WAKE, 1); // disable wake

}

void i2c_read(ARGS){

gpio_write(GPIO_WAKE, 0); // enable wake

...

I2C_READ_HW_REG();

...

gpio_write(GPIO_WAKE, 1); // disable wake

}

The above shows a setup write to the STATUS register followed by a single byte read. Note that the I2C read and
write functions each enable and disable nWAKE. This is done as close as possible to the physical I2C transaction
in order achieve the least power consumption. However the timing in the data sheet needs to be adhered to.
For example TAWAKE is defined as 50µs, to ensure this is met then after the enabling nWAKE a delay of at least
50µs must be provided by the software. Let’s assume we have a routine, wait(DELAY_US), capable of providing
delays in increments of microseconds:

void i2c_XXXXX(ARGS){ // XXXXX = read or write

gpio_write(GPIO_WAKE, 0); // enable wake

wait(50); // ensure TAWAKE

...

I2C_XXXXX_HW_REG();

...

gpio_write(GPIO_WAKE, 1); // disable wake

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 7 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

TDWAKE is 20µs, this is the minimum deassertion time of the nWAKE signal (if it is deasserted) between back to
back I2C transactions to the CCS811. This timing could be violated if the i2c_write routine desserts nWAKE and
subsequently the i2c_read routine asserts wake too quickly. To ensure this timing parameter is not violated a
delay is required after de-asserting nWAKE as follows:

void i2c_XXXXX(ARGS){ // XXXXX = read or write

wait(20); // ensure TDWAKE

gpio_write(GPIO_WAKE, 0); // enable wake

wait(50); // ensure TAWAKE

...

I2C_XXXXX_HW_REG();

...

gpio_write(GPIO_WAKE, 1); // disable wake

It can either be placed before the nWAKE assertion or directly after the deassertion on nWAKE in the I2C routines.
In a similar manner after pulsing nRESET or writing to the SW_RESET or after a power on, the timing parameters
TSTART and TRESET must not be violated by the driver.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 8 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Handling Environment Parameters in ENV_DATA (0x05)

The CCS811 supports compensation for relative humidity and ambient temperature. The ENV_DATA registers
can be updated with the temperature and humidity (TH) values on each cycle.

To avoid floating point operations a typical TH sensor will represent a value a few orders of magnitude greater.
For example a humidity reading of 42.348% will be stored in a sensor’s H result register as 42348. The CCS811
supports a 7 bit field for humidity and a 9 bit fraction followed by a 7 bit temperature field and corresponding 9
bit fraction.

Byte 0 Byte 1 Byte 2 Byte 3

Humidity High Byte Humidity Low Byte Temperature High
Byte

Temperature Low Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Humidity % Humidity % Fraction Temp + 25°C Temp + 25°C Fraction
Table 9: Environment Register Fields and Byte Order

The data format of the TH sensor must be mapped to the ENV_DATA format shown in Table 9: Environment
Register Fields and Byte Order. To place humidity value at the start of the I2C buffer, i2c_buff, the user can create
a routine similar to the following:

i2c_buff[0] = ((RH % 1000) / 100) > 7 ? (RH/1000 + 1)<<1 : (RH/1000)<<1;

i2c_buff[1] = 0;

if(((RH % 1000) / 100) > 2 && (((RH % 1000) / 100) < 8))

{

i2c_buff[0] |= 1;

}

This routine accepts one argument: the humidity reading from the TH sensor. In this case it is 3 orders of
magnitude greater than the actual reading expressed as a percentage. Currently the CCS811 supports fractional
values in increments of 0.5, resultantly only the most significant bit of the fraction field needs to be set.

Firstly the 7 bit humidity value is written to i2c_buff[0]. This is achieved using the ternary operator to check if
the remainder (modulo 1000) is 0.8 or 0.9 in which case the RH value is rounded up, otherwise RH/1000 is
written to the 7 bit humidity field represented in i2c_buff[0].

The driver then sets the fractional part. It does this by checking if the remainder (most significant digit after the
decimal point) yields a value between 0.3 and 0.7 inclusive. If so then the most significant bit of the fraction is
set.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 1 9 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

In a similar manner a routine for placing the temperature value into i2c_buff can be generated as follows.

TEMP += 25000;

i2c_buff[2] = ((TEMP % 1000) / 100) > 7 ? (TEMP/1000 + 1)<<1 : (TEMP/1000)<<1;

i2c_buff[3] = 0;

if(((TEMP % 1000) / 100) > 2 && (((TEMP % 1000) / 100) < 8))

{

i2c_buff[2] |= 1;

}

The bolded code takes care of the data sheet requirement that current temp value plus 25 is written to the
ENV_DATA’s temperature register. To program ENV_DATA The user code would therefore look similar to the
following:

u32 TEMP, RH;

read_temp_hum_sensor(TEMP, RH);

ccs811_temp_hum_convert(TEMP, RH);

i2c_write(CCS_811_ADDRESS, ENV_DATA, i2c_buff, 4);

The ccs811_temp_hum_convert combines the 2 examples shown above to render the values extracted from the
RH into the format required by the CCS811’s ENV_DATA registers (stored in i2c_buff). After this the user can
program the ENV_DATA to the sensor in the normal manner using the i2c_write routine.

If the application supports temperature or humidity compensation, but not both, the data sheet’s default value
must written to the register corresponding to the unsupported environment parameter. The user must not write
zero to the unsupported temperature or humidity field of the ENV_DATA register.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 0 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Using NTC (0x06) To Calculate Temperature

The CCS811 AUX pin connects an external signal to an ADC within the CCS811. A voltage divider circuit with an
NTC thermistor can therefore be used, this allows the user to calculate the ambient temperature.

Figure 8: NTC Example Circuit

The format of the NTC register is shown below.

Byte 0 Byte 1 Byte 2 Byte 3

Voltage across RREF (mV) Voltage across RNTC (mV)

High Byte Low Byte High Byte Low Byte

Table 10: NTC Register Byte Order

The NTC register can be read over I2C using code similar to the following example:

i2c_write(CCS_811_ADDRESS, NTC_REG, i2c_buff, 0);

i2c_read(CCS_811_ADDRESS, i2c_buff, 4);

Basically a setup write then a read of 4 bytes to the NTC mailbox. The ADC on the AUX pin samples voltage on
this pin. The values returned in i2c_buff can then be used to calculate resistance of the thermistor. The equation
for determining this resistance is:

RNTC = VNTC x RREF / VREF.

Please see CC-000925-AN Connecting an NTC Thermistor to the CCS811 for detailed information on calculating
the temperature from the voltage values read from the NTC mailbox.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 1 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Handling the BASELINE register (0x11)

The BASELINE register can be used to ensure that the CCS811 operates in a stable and consistent manner after
each power on, regardless of the ambient air quality (e.g. if the sensor is started in ‘dirty’ air). To use this
mechanism the application software must read and store the BASELINE register when the ambient air is fresh.

The BASELINE register value is meaningless to the host application as it is encoded to a format used by the
CCS811. The application software need only read this value and store it locally. It is not mandatory to write to
this register, the CCS811 will configure and manage its baseline autonomously. The BASELINE register can be
read and its value stored as follows:

u8 baseline_reg[2]; // storage for baseline value in clean air

if(air_is_clean(eCO2, CO2)){

i2c_write(CCS_811_ADDRESS, BASELINE, baseline_reg, 0);

i2c_read(CCS_811_ADDRESS, baseline_reg, 4);

}

The applications determines if the air is fresh. If so it performs a setup write to BASELINE then a read of 2 bytes
into an array storage parameter baseline_reg. The baseline_reg parameter is therefore available to the user to
write back to the BASELINE register:

i2c_write(CCS_811_ADDRESS, BASELINE, baseline_reg, 2);

This writes the 2 bytes stored in baseline_reg to the BASELINE register on the CCS811, setting the CCS811
baseline to its resistance in clean air. It will typically be written after each power on of the CCS811 after the
sensor has stabilized. The BASELINE register can only be written when the CCS811 MEAS_MODE[DRIVE_MODE]
is not in the idle state.

Due to the long term drift of MOX sensors it is recommended that new clean baselines are stored periodically.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 2 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Host Processor Endianness

The endianness of the host processor needs to be known in order to process the eCO2 and TVOC values. Taking
the previous example above where i2c_buff is loaded with:

 i2c_buff[0] = 0x01

 i2c_buff[1] = 0x90

 i2c_buff[2] = 0x00

 i2c_buff[3] = 0x32

Where eCO2 = 0x0190 and TVOC = 0x32. If we assume that the i2c_buff is located at physical address 0x1000 in
the host CPU’s memory map, the memory will be written as shown in Figure 9 by the i2c_read function:

Address 0x1000 0x1001 0x1002 0x1003

Data 0x01 0x90 0x00 0x32

Figure 9: Big Endian Storage of I2C Read Data

A CPU with a little endian memory storage policy for data will not be able to access these values directly. A
conversion/accessor function must be used that handles the endianness conversion from big endian to little
endian. Some operating systems, e.g. Linux, support these endianness aware accessor functions and will apply
the appropriate endianness formatting based on the size of the scalar being accessed.

If no such functions are available in an environment, the software driver must perform this by either using c
code or inline assembly directives that utilize endianness accelerated swap opcodes. For example to ensure that
a CPU register is given the correct value of the eCO2 reading the following can be used:

 eco2_data = ((uint16_t)i2c_buf[0] << 8) | ((uint32_t)i2c_buf[1] << 0));

If the user’s CPU supports endianness swapping assembly instructions then it is more efficient to use these.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 3 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Initialization Flow

The initialization flow is detailed below:

Figure 10: Initialization Flow Diagram

The CCS811 powers-up in boot mode. The user software should check if a read of the HW_ID returns the
expected response 0x81. If so then the STATUS should be checked to ensure there is a valid firmware image
present. Then a setup write to APP_START will transition the sensor from boot mode to firmware mode. After
this the STATUS register should be checked to ensure that the firmware is valid and that the sensor is now in
firmware and therefore ready to start taking and processing samples from the ADC. If any checks fail then an
error handle routine can be called to place the sensor and sensor’s driver state to a non-operational mode.

Next the user software can initialize the desired drive mode and interrupt signal (nINT) configuration. Thereafter
the user software can move it state to the process data state where it reads and processes samples of
eCO2/TVOC from the sensor. Not shown above is that in some applications a timeout should be used on
STATUS[DATA_READY] and/or nINT. If these are not asserted within a specific time window then an error state
can be declared and the user software can react in an application specific manner.

http://www.ccmoss.com/

CC-000803-AN revision: 6

CCS811 Programming and Interfacing Guide

P a g e | 2 4 © Cambridge CMOS Sensors Ltd, Deanland House, Cowley Road, Cambridge, CB4 0DL, UK

Confidential http://www.ccmoss.com Date Issued: 25 May 2016

Document Reference Description

CC-000619-DS Datasheet for CCS811

CC-000774-AN Assembly guidelines for CCS811

CC-000783-AN Mechanical considerations for CCS811

CC-000922-AN Performing an Application code binary file download

CC-000925-AN Connecting an NTC Thermistor to the CCS811

The contents of this document are subject to change without notice. CCS products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life

support equipment, nor in applications where failure or malfunction of an CCS product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. CCS accepts no liability for inclusion and/or use of CCS products in such equipment or applications and therefore such inclusion and/or use, is at the customer’s own risk. As any

devices operated at high temperature have inherently a certain rate of failure, it is therefore necessary to protect against injury, damage or loss from such failures by incorporating appropriate

safety measures

Abbreviation Description

ADC Analogue To Digital Converter

CCS Cambridge CMOS Sensors

CMOS Complementary Metal Oxide Semiconductor

eCO2 Equivalent Carbon Dioxide

I2C Inter-Integrated Circuit

MOX Metal Oxide

NTC Negative Thermal Coefficient

PPM Parts per Million

PPB Parts per Billion

TH Temperature Humidity

TVOC Total Volatile Organic Compound

Abbreviations

References

http://www.ccmoss.com/

	Introduction
	CCS811 Device Hardware Overview
	Programming Model
	STATUS Register (0x00)
	Measure Mode Register (0x01)
	Error ID Register (0xE0)
	Examples
	For simplicity, the examples do not show any error handling of the physical layer such as I2C aborts and timeouts. CCS811 I2C Data Byte Ordering
	I2C Write Transactions
	I2C Read Transactions
	Hardware ID (0x20) Register Handling
	APP_START (0xF4) Handling
	Host Software Polling Mode
	Reading Data On Interrupt Thresholds Disabled
	Reading Data On Threshold Interrupt
	Handling nWAKE Using a GPIO
	Disabling the CCS811
	CCS811 Timing Considerations
	Handling Environment Parameters in ENV_DATA (0x05)
	Using NTC (0x06) To Calculate Temperature
	Handling the BASELINE register (0x11)
	Host Processor Endianness
	Initialization Flow
	The initialization flow is detailed below:

