
G H I E l e c t r o n i c s

EMX SoM User Manual
Rev. 0.02 December 16, 2014 User Manual

EMX Module Top EMX Module Bottom

Document Information

Information Description

Abstract This document covers information about the EMX Module,
specifications, tutorials and references.

GHI Electronics,LLC EMX SoM User Manual

Rev. 0.02 Page 2 of 69 www.GHIElectronics.com

Revision History

Rev No. Date Modification

Rev. 0.02 12/16/14 Misc typos, etc.

Rev. 0.01 8/27/14 Preliminary version

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Table of Contents

Table of Contents
1.Introduction...4

1.1.The .NET Micro Framework..4
1.2.GHI Electronics and NETMF...5
1.3.EMX Module Key Features...6
1.4.Example Applications..6

2.The Hardware...7
2.1.LPC2478 Microcontroller...7
2.2.SDRAM..7
2.3.FLASH...7

3.Pin-Out Description...8
3.1.Pin-out Table..8

4.EMX on boot up..13
4.1.Boot Mode Pins...13
4.2.GHI Boot Loader vs. TinyBooter vs. EMX Firmware
(NETMF/TinyCLR)...15
4.3.The Loader and Firmware Debug Access Interface..........15

5.The GHI Boot Loader..16
5.1.The Commands...16
5.2.Updating TinyBooter..16

Updating TinyBooter using FEZ Config.............................17
Updating EMX Manually..18
Loading using XMODEM...18

5.3.TinyBooter...21
5.4.TinyCLR (firmware) Update Using FEZ Config.................22
5.5.Firmware Update Using MFDeploy...................................23

6.NETMF TinyCLR (firmware)...26
6.1.Assemblies Version Matching...26
6.2.Deploying to the Emulator...27
6.3.Deploying to the EMX Module...28
6.4.Targeting Different Versions of the Framework.................30

7.The Libraries...31
7.1.Finding NETMF Library Documentation............................32
7.2.Loading Assemblies...33
7.3.Important Information for the Following Examples............34
7.4.Digital Inputs/Outputs (GPIO)..34

Outputs..35
Inputs...37
Interrupt Pins...38

7.5. Analog Inputs/Outputs..39
7.6.PWM..39
7.7.Signal Generator...40

7.8.Signal Capture...41
7.9.Serial Port (UART)...42
7.10.SPI...43
7.11.I2C...44
7.12.CAN...45
7.13.One-wire..46
7.14.Graphics..47

Fonts..48
Glide..48
Touch Screen..49

7.15.USB Host...50
7.16.Accessing Files and Folders...51

SD/MMC Memory..53
USB Mass Storage..53

7.17.Secure Networking (TCP/IP)...53
The Extensions..53
MAC address setting...53
IP address (DHCP or static):...54
Ethernet...55
Wireless LAN WiFi..56

7.18.PPP..57
7.19.USB Client (Device) ..57
7.20.Extended Weak References (EWR)................................59
7.21.Real Time Clock..59
7.22.Watchdog...61
7.23.Power Control..61
7.24.In-Field Update..63
7.25.SQLite Database...63

8.Advanced use of the Microprocessor ..65
8.1.Register...65
8.2.AddressSpace...65
8.3.Battery RAM..65
8.4.Runtime Loadable Procedure..66

9.design Consideration..67
Required Pins..67
Interrupt Pins...67
...67

10.Soldering EMX..68
Legal Notice...69

Licensing..69
Disclaimer..69

EMX Module Page 3 of 69 www.ghielectronics.com

GHI Electronics,LLC EMX SoM User Manual

Introduction

1. Introduction
The EMX Module is a powerful, yet low-cost, surface-mount System on Module (SoM)
running the .NET Micro Framework software, which enables the SoM to be programmed from
Microsoft's Visual Studio, by simply using a USB cable. Programming in a modern managed
language, such as C# and Visual Basic, allows developers to accomplish much more work in
less time by taking advantage of the extensive built-in libraries for networking, file systems,
graphical interfaces and many peripherals.

With just power and some connectors, developers can utilize the EMX Module to bring the
latest technologies to any products. There are no additional licensing or fees and all the
development tools and SDKs are provided freely.

1.1. The .NET Micro Framework

Inspired by its full .NET Framework, Microsoft developed a lightweight version called .NET
Micro Framework (NETMF).

NETMF focuses on the specific requirements of resource-constrained embedded systems.
Development, debugging and deployment is conveniently performed using Microsoft's
powerful Visual Studio tools, all through standard USB cable.

Programming is done in C# or Visual Basic. This includes libraries to cover sockets for
networking, modern memory management with garbage collector and multitasking services.
In addition to supporting standard .NET features, NETMF has embedded extensions
supporting:

● General Purpose IO (GPIO with interrupt handling

● Analog input/output

● Standard buses such I2C, SPI, USB, Serial (UART)

● PWM

● Networking

● File System

● Display graphics, supporting images, fonts and controls.

Rev. 0.02 Page 4 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Introduction

1.2. GHI Electronics and NETMF

For years, GHI Electronics has been the lead Microsoft partner on .NET Micro Framework
(NETMF). The core NETMF was also extended with new exclusive libraries for an additional
functionality, such as database, USB Host and WiFi.

One of the important extensions by GHI Electronics is Runtime Loadable Procedures (RLP),
allowing native code (Assembly/C) to be compiled and loaded right from withing managed
code (C#/Visual Basic) to handle time critical and processor intensive tasks. IT can also be
used to add new native extensions to the system.

As for networking, WiFi and PPP libraries are added by GHI Electronics to the NETMF core.
Combined with Ethernet and the other managed services, it is a complete toolbox for the
internet of things.

All the mentioned features are loaded and tested on the EMX Module. GHI Electronics
continuously maintains, upgrades and solves any of the issues on the EMX Module firmware,
to provide regular and free releases. Users can simply load the new software on the EMX
Module using USB or Serial, and even use the in-field-update feature. This feature allows the
upgrade to be done through any of the available interface, including file system and
networking.

Rev. 0.02 Page 5 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Introduction

1.3. EMX Module Key Features

● .NET Micro Framework
● 72 Mhz 32-bit ARM7
● 16 MB RAM
● 4.5 MB FLASH
● Embedded LCD controller
● 76 GPIO Pins
● 43 Interrupt Inputs
● 2 SPI
● I2C
● 4 UART
● 2 CAN Channels
● 7 10-Bit Analog Input
● 10-Bit Analog Output
● 4Bit SD/MMC Memory card interface
● 6 PWM
● Power 200 / 160 / 40 mA
● -40ºC to +85ºC Operational
● RoHS Lead Free
● 45.75 x 39.4 x 4.4 mm

● TCP/IP Stack (.NET sockets)
● SSL secure networking
● WiFi
● PPP
● USB Host & Client
● Graphics (image, font and controls)
● SQLite database
● File System (SD and USB Sticks)
● Native extensions RLP

1.4. Example Applications

● Vending machines, POS Terminals
● Measurement tools and testers
● Networked sensors
● Robotics
● Central alarm system
● Smart appliances
● Industrial automation devices
● Designs with intensive processing or time-critical routines (using RLP)
● GPS navigation
● Medical instrument (with a color touch screen display).

Rev. 0.02 Page 6 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Hardware

2. The Hardware
The EMX Module core components includes the processor, 4.5MB flash, and 16MB RAM.

The small, 38.1 x 26.7 x 3.55 mm (only 1 x 1.5 inches), module contains everything needed to
run a complex embedded-system in a cost-effective and flexible solution. All needed is a 3.3V
power source and some connections to take advantage of the EMX Module's long list of
available features.

2.1. LPC2478 Microcontroller

The LPC2478 microcontroller in the EMX Module is an 72Mhz, 32Bit, ARM7. The LPC2478
contains a memory acceleration interface with 128Bit internal FLASH memory. This lets the
processor core run with zero wait states. Comparing to executing code from 16Bit external
FLASH we see over 10 times the execution speed. The internal FLASH is 0.5MB that is used
to run the complete .NET Micro Framework core very efficiently. Also, the processor includes
an RTC that can operate while while the processor is off. The EMX Module already has the
needed circuitry to run the RTC. Users only need to add a battery or a super capacitor to
VBAT pin.

The LPC2478 has a wide range of peripherals that adds a lot of functions and features to
EMX such as PWM, GPIO, LCD Controller, USB HC, etc.

The NETMF core libraries, combined with the GHI Electronics extensions, provide a long list
of methods to access the available peripherals.

2.2. SDRAM

16MB of SDRAM comes standard with the EMX Module.

2.3. FLASH

4.5MB of external flash is available on the EMX Module. The fast zero-wait-state internal
0.5MB is used to execute the core services of the system to achieve the highest possible
performance. The remaining 4MB of external memory is used to hold more extensions and to
store the user's end application. About 1MB of the external FLASH is used for boot loader,
system assemblies and other internal GHI resources. About 3MB is reserved for deployed
managed applications, including resources. 256KB is reserved for two EWR (Extended Week
References) regions, each region being 128KB and one of them is reserved for CLR use.

One of GHI's extensions allows applications to be updated in field, even remotely.

Rev. 0.02 Page 7 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Pin-Out Description

3. Pin-Out Description
Many signals on the EMX Module are multiplexed to offer multiple functions on a single pin.
Developers can decide on the pin functionality through the provided libraries. These are some
important facts pertaining to the available pins:

● Pins with GPIO feature default to inputs with internal weak pull-up resistors

● GPIO pins are 3.3V levels but 5V tolerant

● Pins with analog feature are not 5V tolerant when the analog function is used

● Only GPIO pins on ports 0 and 2 are interrupt capable

● Advanced details on all pins can be found in the LPC2478 datasheet

Most signals on EMX are multiplexed to offer more than one function for every pin. It is up to
the developer to select which one of the functions to use. GHI drivers and .NET Micro
Framework does checking to make sure the user is not trying to use two functions on the
same pin. The developer should still understand what functions are multiplexed so there is no
conflict. For example, analog channel 3 (ADC3) and the analog output (AOUT) are on the
same pin IO7.

3.1. Pin-out Table

No. LPC2478

H/W Name

EMX IO 2nd Feature EMX Module

Pin Description

1 3.3V Connect to 3.3 volt source.

2 GND Connect to Ground.

3 P0.4 IO0* CAN2/

Boot control

RD CAN Channel 2 Data Receive pin (In). TinyBooter/Firmware Control (with 7, and 53)

4 P0.5 IO1* CAN2 TD CAN Channel 2 Data Transmit pin (Out).

5 P0.3 IO2 * COM1 Serial port (UART) RXD receive signal (In) for COM1.

6 P0.2 IO3* COM1 Serial port (UART) TXD transmit signal (Out) for COM1.

7 P2.5 IO4* Boot Control General purpose digital I/O. TinyBooter/Firmware Control (with 3, and 53)

8 P0.24 IO5* ADC1/
Touch_Y_UP

ADC1 (10Bit Analog to Digital Input)

or Touch Screen Y-axis Up analog signal.

Rev. 0.02 Page 8 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Pin-Out Description

No. LPC2478

H/W Name

EMX IO 2nd Feature EMX Module

Pin Description

1 3.3V Connect to 3.3 volt source.

9 P0.25 IO6* ADC2/

COM4

ADC2 (10Bit Analog to Digital Input)

or Serial port (UART) TXD transmit signal (Out) for COM4.

10 P0.26 IO7* ADC3/ DAC/

COM4

ADC3 (10Bit Analog to Digital Input) or DAC (Digital to Analog Output)

or Serial port (UART) RXD receive signal (In) for COM4.

11 P0.23 IO8* ADC0/
Touch_X_Lef

t

ADC0 (10Bit Analog to Digital Input)

or Touch Screen X-axis Left analog signal.

12 P4.29 IO9 N/A General purpose digital I/O

13 P4.28 IO10

14 P0.28 IO11* I2C (open drain pin) I2C Interface SCL

15 P0.27 IO12* I2C (open drain pin) I2C Interface SDA

16 P3.16 IO13 PWM0 PWM0 (Pulse Width Modulation Output) LPC2478 PWM Timer 0.

17 P3.24 IO14 PWM1 PWM1 (Pulse Width Modulation Output) LPC2478 PWM Timer 1.

18 P3.25 IO15 N/A General purpose digital I/O

19 P1.19 IO16 N/A General purpose digital I/O

20 P2.21 IO17* N/A General purpose digital I/O

21 P0.11 IO18* N/A General purpose digital I/O

22 P2.22 IO19* N/A General purpose digital I/O

23 P0.1 IO20* CAN1 TD CAN Channel 1 Data Transmit pin (Out)

24 P0.10 IO21* N/A General purpose digital I/O.

25 P0.0 IO22* CAN1 RD CAN Channel 1 Data Receive pin (In)

26 P1.30 N/A USB_VBUS1 USB device power detect signal. Connect to power pin on USB device.

27 P2.10 IO23* N/A General purpose digital I/O

28 RTC_VBAT Connect to 3.3 volt backup battery to keep the real-time clock running.

29 USBD- USB Host Feature USB negative data line of the USB hosting feature.

30 USBD+ USB Host Feature USB positive data line of the USB hosting feature.

31 P0.12 IO45* ADC6 ADC6 (10Bit Analog to Digital Input).

32 P0.13 IO46* ADC7 ADC7 (10Bit Analog to Digital Input).

33 P1.31 IO47 ADC5 ADC5 (10Bit Analog to Digital Input).

34 3.3V Connect to 3.3 volt source.

35 P3.27 IO48 PWM4 PWM4 (Pulse Width Modulation Output) LPC2478 PWM Timer 1.

36 GND Connect to Ground.

37 3.3V Connect to 3.3 volt source.

Rev. 0.02 Page 9 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Pin-Out Description

No. LPC2478

H/W Name

EMX IO 2nd Feature EMX Module

Pin Description

1 3.3V Connect to 3.3 volt source.

38 N/C Not Connected.

39 P3.26 IO49 PWM3 PWM3 (Pulse Width Modulation Output) LPC2478 PWM Timer 1.

40 P3.17 IO50 PWM2 PWM2 (Pulse Width Modulation Output) LPC2478 PWM Timer 0.

41 USBD- device USB negative data line of the USB debugging interface and for the USB client feature.

42 USBD+ device USB positive data line of the USB debugging interface and for the USB client feature.

43 Ethernet RD- Ethernet receive data minus.
Recommended Ethernet connector is
J0011D01BNL.

Ethernet PHY is not needed since it is
embedded in EMX hardware.

44 Ethernet RD+ Ethernet receive data plus.

45 Ethernet TD- Ethernet transmit data minus.

46 Ethernet TD+ Ethernet transmit data plus.

47 P0.18 IO24* SPI1 SPI master bus interface MOSI signal (Master Out Slave In) for SPI1.

48 P0.17 IO25* SPI1 SPI master bus interface MISO signal (Master In Slave Out) for SPI1.

49 P0.16 IO26* N/A General purpose digital I/O.

50 P0.15 IO27* SPI1 SPI master bus interface SCK signal (Clock)for SPI1.

51 P4.23 IO28 COM3 Serial port (UART) RXD receive signal (In) for COM3.

52 P4.22 IO29 COM3 Serial port (UART) TXD transmit signal (Out) for COM3.

53 P2.11 IO30* Boot Control General purpose digital I/O. TinyBooter/Firmware Control (with 7, and 3)

54 P3.30 IO31 COM2 Serial port (UART) RTS hardware handshaking signal for COM2.

55 P2.1 IO32* COM2 Serial port (UART) RXD receive signal (IN) for COM2.

56 P0.6 IO33* N/A General purpose digital I/O.

57 P3.18 IO34 COM2 Serial port (UART) CTS hardware handshaking signal for COM2.

58 P0.7 IO35* SPI2 SPI master bus interface SCK signal (Clock)for SPI2.

59 P0.9 IO36* SPI2 SPI master bus interface MOSI signal (Master Out Slave In) for SPI2.

60 P2.0 IO37* COM2 Serial port (UART) TXD transmit signal (Out) for COM2.

61 P0.8 IO38* SPI2 SPI master bus interface MISO signal (Master In Slave Out) for SPI2.

62 P1.12 IO39 SD_DAT3 SD card 4Bit data bus, data line no. 3.

63 P1.11 IO40 SD_DAT2 SD card 4Bit data bus, data line no. 2.

64 P1.7 IO41 SD_DAT1 SD card 4Bit data bus, data line no. 1.

65 P1.2 IO42 SD_CLK SD card 4Bit data bus, clock line.

66 P1.6 IO43 SD_DAT0 SD card 4Bit data bus, data line no. 0.

67 P1.3 IO44 SD_CMD SD card 4Bit data bus, command line.

68 SD_PWR SD memory power (connect directly to SD socket power pin).

69 GND Connect to Ground.

Rev. 0.02 Page 10 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Pin-Out Description

No. LPC2478

H/W Name

EMX IO 2nd Feature EMX Module

Pin Description

1 3.3V Connect to 3.3 volt source.

70 RESET# Hardware reset signal, Reset state is on Low.

T1 P2.12 IO69* LCD R0 TFT Display, Red signal bit 0.

T2 P2.6 IO65* LCD R1 TFT Display, Red signal bit 1.

T3 P2.7 IO66* LCD R2 TFT Display, Red signal bit 2.

T4 P2.8 IO67* LCD R3 TFT Display, Red signal bit 3.

T5 P2.9 IO68* LCD R4 TFT Display, Red signal bit 4.

T6 P1.20 IO51 LCD G0 TFT Display, Green signal bit 0.

T7 P1.21 IO52 LCD G1 TFT Display, Green signal bit 1.

T8 P1.22 IO53 LCD G2 TFT Display, Green signal bit 2.

T9 P1.23 IO54 LCD G3 TFT Display, Green signal bit 3.

T10 P1.24 IO55 LCD G4 TFT Display, Green signal bit 4.

T11 P1.25 IO56 LCD G5 TFT Display, Green signal bit 5.

T12 P2.13 IO70* LCD B0 TFT Display, Blue signal bit 0.

T13 P1.26 IO57 LCD B1 TFT Display, Blue signal bit 1.

T14 P1.27 IO58 LCD B2 TFT Display, Blue signal bit 2.

T15 P1.28 IO59 LCD B3 TFT Display, Blue signal bit 3.

T16 P1.29 IO60 LCD B4 TFT Display, Blue signal bit 4.

T17 P2.2 IO61* LCD CLK TFT Display, Clock.

T18 P2.4 IO63* LCD EN TFT Display, Enable.

T19 P2.5 IO64* LCD

H-Sync

TFT Display, Horizontal sync.

T20 P2.3 IO62* LCD

V-Sync

TFT Display, Vertical sync.

J1 ALARM The alarm pin is an RTC controlled output. This is a 1.8 V pin.

J2 P3.23 IO71 LMODE General purpose digital I/O is used to choose the access interface for EMX between USB
(Low) or COM1(High or not connected) on startup (refer to EMX access interface section).

J3 P2.23 IO72* T_X_Right Touch Screen X-axis Right digital output signal.

J4 P3.31 IO73 T_Y_Down Touch Screen Y-axis Down digital output signal.

J5 P3.29 IO74 PWM5 PWM5 (Pulse Width Modulation Output) LPC2478 PWM Timer 1 .

J6 P4.31 IO75 N/A General purpose digital I/O

J7 JTAG TMS JTAG TMS signal.

J8 JTAG TCK JTAG TCK signal.

Rev. 0.02 Page 11 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Pin-Out Description

No. LPC2478

H/W Name

EMX IO 2nd Feature EMX Module

Pin Description

1 3.3V Connect to 3.3 volt source.

J9 JTAG TDO JTAG TDO signal.

J10 JTAG TRST JTAG TRST signal.

J11 JTAG RTCK JTAG RTCK signal.

J12 JTAG TDI JTAG TDI signal.

J13 Ethernet Speed Connect to Ethernet Connector Speed LED.

High = 100 Mbps

Low = 10 Mbps

J14 Ethernet Link Connect to Ethernet Connector Link LED.

High = Ethernet activity.

J15 GND Connect to Ground.

* Interrupt capable input.

Rev. 0.02 Page 12 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

EMX on boot up

4. EMX On Boot Up
Software run on the EMX Module is divided into different components:

● The GHI Boot loader – initializes memories and executes TinyBooter. It is also used to
update TinyBooter.

● TinyBooter – does set-up for, and then, loads the firmware (TinyCLR, NETMF core,
and GHI extensions). It is also used to update the NETMF firmware and its system
configurations.

● TinyCLR and NETMF (the firmware) -- interprets and executes the managed
application. It is used for other functions such as loading and/or debugging the
managed application.

● The managed application (C# - Visual Basic) – developed by customers.

● Optional: Native RLP routines (C and/or assembly, described in the Runtime Loadable
Procedure section); developed by customers.

If the boot mode pins, 7 and 3, are left floating (internal pull up), or pulled high externally, the
default boot-up sequence executes as the following (see also, the flow-chart further below):

● The GHI boot loader initializes Flash and RAM memory and looks for a valid
TinyBooter and passes execution to it.

● TinyBooter prepares the EMX hardware resources required by the NETMF Core
environment and passes execution to NETMF TinyCLR.

● If a valid end-user embedded application exists, it gets executed.

4.1. Boot Mode Pins

Default start-up execution can be changed using two control pins, they are active low and
have internal weak pull up resistors:

Pin 7 Pin 3 Pin 53 Effect
High or

unconnected
High or

unconnected
High or

unconnected
Default, execute all levels

Low Low Low
Execute Boot Loader but do not execute

TinyBooter

Low Low
High or

unconnected
Execute the Boot Loader and TinyBooter

but do not execute NETMF TinyCLR

Rev. 0.02 Page 13 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

EMX on boot up

The following flow chart clearly explains the boot up sequence:

Rev. 0.02 Page 14 of 69 www.GHIElectronics.com

Application program exits

Execute application program

Valid application code?

Access EMX firmware

Valid EMX firmware
(TinyCLR?)

Access TinyBooter

Valid TinyBooter?

Access GHI Boot Loader

Are 7 and 3
Low? And 53 High?

EMX Boot-Up Sequence
Flow Chart

No

No

Yes

No

7, 3, 53 low?

Yes

Stay in EMX firmware and wait
 for an action through Visual C# or other

deployment and/or control tool.
Application loader and debugger level.

Stay in TinyBooter and Update
Firmware with FEZ Config.

 or MFDeploy.

Wait for GHI boot loader; update
TinyBooter with FEZ Config
or through terminal service

program.

System Power Up

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

EMX on boot up

4.2. GHI Boot Loader vs. TinyBooter vs. EMX Firmware
(NETMF/TinyCLR)

The table below gives greater detail of the characteristics of each level of execution.

GHI Boot Loader TinyBooter NETMF TinyCLR (firmware)

Used to update EMX
TinyBooter or for low level
EMX flash maintenance.

Used to update the EMX
firmware (NETMF TinyCLR)
and to update system
configurations such as
networking settings.

Used to deploy, execute and
debug the managed NETMF
application code. In other
words, it plays the role of a
virtual machine.

Emergency use or when GHI
releases a new TinyBooter.

Sometimes used. Always used.

Pre-burned into the EMX
Module's flash memory. Can't
be updated.

Replaceable using FEZ
Config or the GHI Boot
Loader

Replaceable; for example,
under control of TinyBooter

Controlled through simple text
commands and X-modem.
Any terminal, such as
teraterm or hyper terminal,
can be used.

Controlled through MFDeploy
or FEZ Config tools.

Runs the user application and
accepts commands from
Visual Studio for debugging
purposes.

When applying updates, the lowest level software should be updated first. For example, if
both the firmware (TinyCLR) and TinyBooter need updates, TinyBooter should be updated
first.

4.3. The Loader and Firmware Debug Access Interface

The communication between a PC and the EMX Module can be done using a USB port or a
serial port (COM1). This interface can be used for updating, deploying or debugging the
software components.

The LMODE Pin is used to select USB vs serial (UART). When LMODE is high or left floating
(internal weak pull up resistor) the system will run in serial mode using COM1; when pulled,
low (10 K resister), USB is used.

When USB is selected, the drivers needed on the PC are included in the GHI SDK. Two
different drivers are available. The first one is a virtual COM driver used by the GHI loader.
The second one is used by TinyBooter and NETMF TinyCLR.

Rev. 0.02 Page 15 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

5. The GHI Boot Loader
The EMX Boot Loader software is pre-loaded and locked on the EMX Module. It is used to
update TinyBooter and can be used to do a complete erase all flash memory. The GHI boot
loader is rarely needed but it is recommended to keep access available in all project designs.

The GHI boot loader accepts simple commands sent with the help of a terminal service
software, such as TeraTerm or Hyper Terminal. A command character is sent and the boot
loader performs an action; results are returned in a human friendly format followed by a "BL"
indicating that the boot loader is ready for the next command. All commands and responses
use ASCII encoded characters.

The EMX on boot up section provides the required information on how to choose the access
interface and how to access the GHI boot loader.

5.1. The Commands

Command Description Notes

V Returns the GHI Loader
version number.

Format X.XX
e.g. 1.06

H Returns the hardware
version

Format X11 e.g. EMX 1.1

E Erases the Flash memory Confirm erase by sending Y or any other character to abort.
This command erases TinyBooter, the EMX firmware and the user's
application.

X Loads the new
TinyBooter file

Updating TinyBooter section explains this command process in more
detail.

R Runs firmware. Exits the GHI boot loader mode and runs TinyBooter.

B Changes the baud rate to
921600

User needs to change the baud rate on the terminal service
accordingly. Available on serial access interface only.

Notes:
● Commands are not followed by pressing the “ENTER” key. The single command letter is sent to the

EMX Module; which immediately begins executing the command.
● The Boot loader commands are case sensitive.

5.2. Updating TinyBooter

GHI Electronics' SDK includes FEZ Config, a Windows program that can be used to update
all software components of the EMX Module; as well as, system settings (configuration
parameters). Although FEZ Config is recommended as the tool to use, the same process
can be performed manually using an ASCII terminal program. The next section shows how

Rev. 0.02 Page 16 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

use GHI's FEZ Config. The manual procedure is described in the section titled “Updating
EMX Manually.”

Updating TinyBooter using FEZ Config.

The following procedures' images are from version 2.0.2.0 of FEZ Config running on
Windows 8.01. The images may vary with other versions.

The first step is to interface the EMX with the PC. This is best done using the USB pins,
and the appropriate cable.

Launch FEZ Config. Under “Device” make sure “USB” is selected and EMX is the device.

Now follow the menu: Advanced>Loader (TinyBooter) Update>EMX Module

Make sure the version shown is correct. Then leave other fields with their defaults and click
on “Next” Answer any dialog questions. The program will flash the module and display it's
progress.

Rev. 0.02 Page 17 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

NOTE: When finished updating tinyBooter, FEZ Config will automatically update TinyCLR as
needed.

Updating EMX Manually

FEZ Config is the recommended tool for updating TinyBooter on the module. This section
describes a manual process. The only advantage of performing flashing this way is that it
allows updates from any device with a serial connection; independent of operating system.

Depending on the state of the LMODE Pin (see The Loader and Firmware Debug Access
Interface section), the GHI Boot loader will use the USB or the serial interface. When using
USB, it requires a virtual serial interface driver on the USB Host. For Windows, this means the
GHI boot loader on the will appear as a serial device. It should be noted that the serial pins on
are TTL level, a RS232 level converter is needed to wire the serial pins to a PC's serial port.

Serial communications parameters are: 152000 baud, 8-bit data, with one stop bit and no
parity.

Loading using XMODEM

The GHI boot loader uses the XMODEM protocol to receive the TinyBooter file.

In this example, a serial program running on a PC is used to show the transfer.

Once the appropriate serial port on the PC is opened, a user can start sending commands,
such as entering V to see the boot loader version number.

Loading new firmware is simple; but it requires a terminal that supports XMODEM file transfer.
XMODEM has many versions, GHI boot loader requires:

● 1K transfers,

● 16Bit CRC error checking.

Rev. 0.02 Page 18 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

Instructions for updating TinyBooter (commands to the GHI Boot loader are case sensitive):

1. Boot the EMX using the Pin configuration described in the Boot Mode Pins section to
start the Boot loader's command/control interface. Access the boot loader using
TeraTerm (or other terminal program). With Tera Term use the Setup>serial
port... menu to adjust UART parameters.

2. To confirm the GHI boot loader is active and responding enter V to see the version
number. The data sent to the GHI boot loader is not echoed to the sender. This means
that no V will appear on the terminal; the boot loader will transmit the version number,
followed by “BL” (which is an indication it is ready to receive another command.

3. Erase the flash memory using E command then press Y to confirm (this will take
several seconds).

4. Initiate transfer by typing X; this tells the Boot loader to wait for the transmission of
data from the terminal program. After the X command is entered, the GHI Boot loader
will start sending back the “C” character continuously. This “C” is an indicator that tells
XMODEM a device is waiting for data. Once the “C” character appears on the terminal
window, select XMODEM transfer and point the software to the firmware file
"Loader.ghi” as shown below:

If using TeraTerm: In the menu, select File > Transfer > XMODEM > Send...

Next, select the file containing TinyBooter, “Loader.ghi,” from the “C:\Program Files(x86)\GHI
Electronics” folder; make sure to use the “Loader.ghi” file specified under an “EMX“ subfolder,
and make sure to select the 1K option in TeraTerm.

Rev. 0.02 Page 19 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

Updating the firmware may take a few seconds. Once loading has finished, Exit the terminal
program and reset the EMX Module.

Rev. 0.02 Page 20 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

5.3. TinyBooter

TinyBooter has two functions;

1. by default it executes the NETMF TinyCLR firmware,

2. the other function of TinyBooter is to load new firmware (TinyCLR). Whenever GHI
Electronics releases new firmware TinyBooter is used to load it.

The EMX on boot up chapter provides the pin configuration required to choose an access
interface and how to invoke TinyBooter.

When preparing to install new firmware, it is important to make sure that the version of
TinyBooter supports the new TinyCLR. This is done using the “Check for device update” in
FEZ Config. Version numbers of both TinyBooter and TinyCLR are always listed in the current
GHI Electronics' SDK Release Notes. Release Notes are installed with the SDK; they may
also be viewed online by following the GHI SDK Library links to the SDK.

If TinyBooter needs to be updated , do it before updating TinyCLR. See Updating TinyBooter
using FEZ Config. (NOTE: if tinyBooter was just used to update with FEZ Config then
TinyCLR was updated, and this chapter can be skipped.

NOTE: TinyCLR can also be updated using In-Field Update.

Rev. 0.02 Page 21 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/support/netmf/sdks

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

5.4. TinyCLR (firmware) Update Using FEZ Config

1. Connect the EMX Module to the PC.

2. Launch FEZ Config and click on “Check device for update” button. This will show the
version numbers on the PC and what is loaded on the EMX Module. (see picture
above)

3. To proceed with updating TinyCLR, click on the “Firmware Updater” tab on the left and
follow the instructions.

4. After FEZ Config selects the firmware and the default configuration files, click “Next”

Rev. 0.02 Page 22 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

5. If this dialog appears, Click “OK” to proceed

6. As the update occurs, the steps and progress are shown. When it is finished, the
module is ready to be flashed with NETMF applications.

5.5. Firmware Update Using MFDeploy

It is strongly recommended to use GHI Electronics' FEZ Config tool for updating the EMX
Module. This section describes the use of MFDeploy to update the EMX firmware.

1. Set the pins as described in Boot Mode Pins to enter TinyBooter. This is optional as

Rev. 0.02 Page 23 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

EMX will automatically switch to TinyBooter as necessary.

2. Run MFDeploy and select “USB” or “Serial” from the Device list, the available devices
or COM ports appear in the drop down list.

3. Add the EMX firmware files to MFDeploy's “Image File” by clicking on “Browse” (next
to the “Image File” text box). The firmware files can be found under “GHI Electronics” in
the “Programs (x86)” folder; inside the directory that corresponds to the SDK being

used, go to “firmwares\EMX”. Select all of the firmware hex files at once.

4. Start deploying the firmware by pressing “Deploy”.

Rev. 0.02 Page 24 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The GHI Boot Loader

5. Loading the files takes a little while. Upon completion, the firmware (TinyCLR) will
execute. Double check the version number to make sure the correct firmware is
loaded.

6. Loading new firmware will not erase the deployed managed application. To erase the
managed application click Erase.

Rev. 0.02 Page 25 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

NETMF TinyCLR (firmware)

6. NETMF TinyCLR (firmware)
The Firmware is the main piece of embedded software running on the EMX Module. It is what
interprets and runs the user's managed application and it is what Microsoft's Visual Studio
use to deploy, hook-into and debug the managed application. As explained in Boot Mode Pins
section, hardware interfaces between TinyCLR and the host development system is either
USB or Serial. In this chapter the examples use the USB interface.

If necessary, the module's firmware can be updated as described in the TinyBooter chapter.

6.1. Assemblies Version Matching

The firmware includes extensions added by GHI Electronics. These extensions are often
improved and further extended. If the managed application (C# or Visual Basic) uses any of
the GHI specific extensions, care must be taken when a new SDK is installed.

This is due to the fact that the existing Visual Studio projects will include a local copy of the
assemblies supplied by the old SDK; during compilation of the application, the extensions
may not match what is found.

Additionally, the assemblies themselves are compiled for use with specific SDK versions.

For example where an application was previously compiled with 4.2, then the 4.3 SDK is
installed; even if a successful compilation occurs (no extension conflicts were found), then the
deployment process will begin to load 4.2 assemblies; this will cause loading errors when
compiling for 4.3. This will not harm the EMX Module. Visual Studio's Output panel will
contain something like:

there is further discussions of assemblies in the Loading Assemblies section of chapter 7.

Rev. 0.02 Page 26 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

NETMF TinyCLR (firmware)

6.2. Deploying to the Emulator

Once the latest SDK is installed and the EMX Module is loaded with the latest TinyBooter and
NETMF TinyCLR then using Visual Studio to load/debug C# and Visual Basic applications is
very easy. If not installed yet, the latest SDK should be downloaded and installed on the
development machine. See www.ghielectronics.com/support/netmf to install the latest SDK.

When done, Visual Studio can be started to create a new Micro Framework project Console
Application.

C# is selected in this example but Visual Basic would be very similar. Run the code as is by
pressing F5 or clicking the start button. This should open up the emulator and run the
program. This program prints “Hello World” on the output window, not on the screen. If the
output window is not visible, it can be opened from the “VIEW” top menu. When running, the
emulator shows a simulated device. The output window of Visual Studio will be full of
messages... from loading assemblies (libraries) on power up to loading the application, to the
actual “Hello World!.”

Rev. 0.02 Page 27 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/
http://www.ghielectronics.com/support/netmf

GHI Electronics,LLC EMX SoM User Manual

NETMF TinyCLR (firmware)

Open the program Program.cs (it was created automatically by Visual Studio):

Change the program to the following.

using System;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 Debug.Print("* Amazing! *");
 }

}

Press F5. The output window will now show something similar to:

6.3. Deploying to the EMX Module

Loading to the actual hardware device is exactly the same as loading to the emulator. The
only difference is in targeting the EMX instead of the emulator. This is done by going to the
project properties:

Rev. 0.02 Page 28 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

NETMF TinyCLR (firmware)

In this example, the EMX Module is connected to the PC using the USB interface (see The
Loader and Firmware Debug Access Interface section). To deploy the application to the

module select USB for “Transport.”

Running the application (F5 key) will load the program on the EMX Module and run it. The
output window of Visual Studio will still show very similar messages but they are now coming
from the EMX Module directly.

If necessary, the deployed program can use the full power of the Visual Studio debugger;
including, stepping through lines, inspecting variables, setting breakpoints, etc.

Rev. 0.02 Page 29 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

NETMF TinyCLR (firmware)

6.4. Targeting Different Versions of the Framework

There are times when it may be useful to compile and deploy applications for an older version
of the SDK. For example, if there is a module with older firmware and there is an older
application that needs to be deployed. GHI Electronics and Microsoft makes this easy by
shipping the previous version of the framework as part of the current package. Under Project
Properties, use the Application panel to target the desired version:

Rev. 0.02 Page 30 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7. The Libraries
Similar to the full desktop .NET, NETMF includes many services to help in modern application
development. One example would be threading. This is typically very difficult to deal with on
embedded systems, but thanks to NETMF, this is very easy and works as well as it does on a
desktop application.

using System;
using System.Threading;
using Microsoft.SPOT;

public class Program
{
 // We will print a counter every 1 second
 static int Count=0;
 static void CounterThread()
 {
 while (true)// Infinite loop
 {
 Thread.Sleep(1000);// Wait for 1 second
 Count++;// Increment the count
 Debug.Print("Count = " + Count);// Print the count
 }
 }
 // **
 static void Main()
 {
 //Create a second thread, main is automatically a thread
 Thread EasyThread = new Thread(CounterThread);
 EasyThread.Start();// Run the Counter Thread

 // We can now do anything we like
 // We will print Hi once every 2 seconds
 while (true)// Infinite loop
 {
 Debug.Print("Hi");
 Thread.Sleep(2000);
 }
 }
}

Rev. 0.02 Page 31 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

The output will look similar to this:

Hi
Count = 1
Hi
Count = 2
Count = 3
Hi
Count = 4
Count = 5
Hi
Count = 6

7.1. Finding NETMF Library Documentation

This chapter is not meant to be a full tutorial on the use of NETMF. It contains a survey of the
main facilities to aid newcomers to NETMF. The main support page for NETMF includes links
to the library reference documentation (NETMF APIs).

Because NETMF is a subset of the full .NET platform, services such as file input/output and
Networking are very close, and sometimes identical, to the full .NET Framework. The internet
is a great source of .NET examples code that often can be used in a NETMF program with no
changes!

Rev. 0.02 Page 32 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/support/netmf

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.2. Loading Assemblies

In an earlier example, the threading libraries were used. This was done by identifying the
namespace via the statement:

using System.Threading;

The compiled code for classes in the Threading library are part of the mscorlib assembly
(DLL).

To use other libraries, the proper assembly file (DLL) must be added to the project. Such as in
adding the Microsoft.SPOT.Hardware to use a GPIO pin. Assembly files used by a project are
managed as “References” in Visual Studio:

Important note: The emulator will only work with the Microsoft assemblies. GHI Electronics'
libraries will not run on the emulator.

Rev. 0.02 Page 33 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.3. Important Information for the Following Examples

• To aid in portability, a number of NETMF embedded interfaces can be referenced with
generic names. Those names are mapped internally to the specific processor.
Alternatively, and probably more convenient, processor specific names can be used.
The convenience comes when matching names to processor pins and schematics. For
instance, the generic NETMF name Cpu.Pin.GPIO_Pin0, may be referenced as EMX.P0_6 .

Other examples are sited.

• The examples are not meant to refer to a particular EMX circuit.

7.4. Digital Inputs/Outputs (GPIO)

GPIO (General Purpose Input Output) are used to set a specific pin high or low states when
the pin is used as an output. On the other hand, when the pin is an input, the pin can be used
to detect a high or low state on the pin. High means there is voltage on the pin, which is
referred to as “true” in programming. Low means there is no voltage on the pin, which is
referred to as “false”. Pins can also be enabled with an internal weak pull-up or pull-down
resistor.

Rev. 0.02 Page 34 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Outputs

Here is a blink LED example.

using System;
using System.Threading;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(Cpu.Pin.GPIO_Pin0, true);
 while (true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);

 }
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

The example above blinks an LED every one second (on for 500ms and off for another
500ms); however, it is not clear what pin on EMX will be controlled. Instead of using the
generic Cpu.Pin.GPIO_Pin0 name, the actual EMX name can be found in the GHI.Pins
assembly. This example uses the actual EMX pin name using the GHI.Pins assembly.

Rev. 0.02 Page 35 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(EMX.P0_6, true);
 while (true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);

 }
 }
}

Rev. 0.02 Page 36 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Inputs

Reading Input pins is as simple! This example will blink an LED only when the button is
pressed.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(EMX.P0_6, true);
 InputPort Button = new InputPort(EMX.P2_21,false, Port.ResistorMode.PullUp);
 while (true)
 {
 if (Button.Read() == true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);
 }
 }
 }
}

Note: The glitch filter feature is only available on interrupt-capable pins, any pin on port 0 or
port 2.

Rev. 0.02 Page 37 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Interrupt Pins

The beauty of modern and managed language shines with the use of events and threading.
This example will set a pin high when a button is pressed. It should be noted here that the
system in this example spends most its time a in a lower power state.

Note: Only pins on port 0 and port 2 are interrupt capable.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static OutputPort LED = new OutputPort(EMX.P0_6, true);
 public static void Main()
 {
 InterruptPort Button = new InterruptPort(EMX.P2_21,true, Port.ResistorMode.PullUp,
 Port.InterruptMode.InterruptEdgeBoth);

 Button.OnInterrupt += Button_OnInterrupt;
 // The system can do anything here, even sleep!
 Thread.Sleep(Timeout.Infinite);
 }

 static void Button_OnInterrupt(uint port, uint state, DateTime time)
 {
 LED.Write(state > 0);
 }
}

Rev. 0.02 Page 38 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.5. Analog Inputs/Outputs

Analog inputs can read voltages from 0V to 3.3V with a 10-Bit resolution. Similarly, the analog
output can set the pin voltage from 0V to 3.3V (VCC to be exact) with 10-Bit resolution. These
built in analog circuitry are not designed to be very accurate. For high accuracy, an external
ADC can be added, using the SPI bus perhaps.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 AnalogInput ain = new AnalogInput(Cpu.AnalogChannel.ANALOG_1);
 Debug.Print("Analog Pin =" + ain.Read());
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

7.6. PWM

The available PWM pins have a built-in hardware to control the ration of the pin being high vs
low, duty cycle. A pin with duty cycle 0.5 will be high half the time and low the other half. This
is used to control how much energy is transferred out from a pin. An example would be to dim
an LED. With output pins, the LED can be on or off but with PWM, it can be set to 0.1 duty
cycle to give the LED only 10% of the energy.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 PWM LED = new PWM(Cpu.PWMChannel.PWM_1, 10000, 0.10, false);
 LED.Start();
 }
}

Rev. 0.02 Page 39 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

This is available through the the Microsoft.SPOT.Hardware.PWM assembly.

Some PWM pin channels can exceed the available enumerations in NETMF. Casting can be
done to set the channel number is shown.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 PWM LED = new PWM((Cpu.PWMChannel)9, 10000, 0.10, false);
 LED.Start();
 }
}

Another use of PWM is to generate tones. In this case, the duty cycle is typically set to 0.5 but
then the frequency will be changed as desired.

In the case of servo motor control, or when there is a need to generate a pulse at a very
specific timing, PWM provides a way to set the high and low pulse with.

7.7. Signal Generator

Using Signal Generator, developers can produce different waveforms. This is available on any
digital output pin.

using System;
using System.Threading;
using Microsoft.SPOT;
using GHI.Pins;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 uint[] signal = new uint[4] {1000,2000,3000,4000};
 SignalGenerator pin = new SignalGenerator(EMX.P2_21, false);

 pin.Set(false, signal);

 Thread.Sleep(Timeout.Infinite);
 }
}

Rev. 0.02 Page 40 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

While handeled in software, the SignalGenerator runs through internal interrupts in the
background and so is not blocking to the system. Another Blocking methd is also provided for
higher accuracy. For example, the blocking method can generate acarrier frequency. This is
very useful for infrared remote control applications.

This is available through the GHI.Hardware assembly.

7.8. Signal Capture

Signal Capture monitors a pin and records any changes of the pin into an array. The recorded
values are the times taken between each signal change.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using GHI.Pins;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 uint[] signal = new uint[100];
 SignalCapture pin = new SignalCapture(EMX.P2_21,Port.ResistorMode.Disabled);

 pin.Read(false, signal);

 Thread.Sleep(Timeout.Infinite);
 }
}

This is available through the GHI.Hardware assembly.

Rev. 0.02 Page 41 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.9. Serial Port (UART)

One of the oldest and most common protocols is UART (or USART). EMX hardware exposes
four UART ports

Serial Port EMX Module UART Hardware Handshaking

COM1 UART0 Not Supported

COM2 UART1 Supported

COM3 UART2 Not Supported

COM4 UART3 Not Supported

Important Note: Serial port pins have 3.3V TTL levels where the PC uses RS232 levels. For
proper communication with RS232 serial ports (PC serial port), an RS232 level converter is
required. One common converter is MAX232.

Note: If the serial port is connected between two TTL circuits, no level converter is needed
but they should be connected as a null modem. Null modem means RX on one circuit is
connected to TX on the other circuit, and vice versa.

using System;
using System.IO.Ports;
using System.Threading;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 SerialPort COM1 = new SerialPort("COM1");
 int c = COM1.ReadByte();

 // ...
 }
}

This is available through the Microsoft.SPOT.Hardware.SerialPort assembly.

Rev. 0.02 Page 42 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.10. SPI

EMX supports two SPI interfaces, SPI1 and SPI2. SPI Bus is designed to interface with
multiple SPI slave devices, the active slave is selected by asserting the Chip Select line on
the relative slave device.

Important note: SPI2 is shared internally with the flash memory EMX uses. Using a chip
select is required with devices connected using SPI2. Improper use of SPI2 will cause EMX to
not boot or not work properly. The use of SPI1 is recommended.

using System.Threading;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 SPI.Configuration MyConfig =
 new SPI.Configuration(Cpu.Pin.GPIO_Pin1,
 false, 0, 0, false, true, 1000, SPI.SPI_module.SPI1);
 SPI MySPI = new SPI(MyConfig);

 byte[] tx_data = new byte[10];
 byte[] rx_data = new byte[10];

 MySPI.WriteRead(tx_data, rx_data);

 Thread.Sleep(Timeout.Infinite);
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

Rev. 0.02 Page 43 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.11. I2C

I2C is a two-wire addressable serial interface.

The EMX supports one master I2C port. Refer to the Pin-Out Description chapter for more
information about I2C signals assignments to EMX hardware pins.

// Setup the I2C bus
I2CDevice.Configuration con =
 new I2CDevice.Configuration(0x38, 400);
I2CDevice MyI2C = new I2CDevice(con);
// Start a transaction
I2CDevice.I2CTransaction[] xActions =
 new I2CDevice.I2CTransaction[2];
byte[] RegisterNum = new byte[1] { 2 };
xActions[0] = I2CDevice.CreateWriteTransaction(RegisterNum);

This is available through the Microsoft.SPOT.Hardware assembly.

Rev. 0.02 Page 44 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.12. CAN

Controller Area Network is a common interface in industrial control and automotive. CAN is
remarkably robust and works well in noisy environments. All error checking and recovery
methods are done automatically on the hardware. TD (Transmit Data) and RD (Receive Data)
are the only pins needed. These pins carry out the digital signals that need to be converted to
analog before it can be used. There are different CAN transceivers. The most common one is
dual-wire high speed transceivers, capable of transferring data up to 1MBit/second.

using System.Threading;
using Microsoft.SPOT.Hardware;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 ControllerAreaNetwork.Message msg = new ControllerAreaNetwork.Message();
 msg.ArbitrationId = 0x123;
 msg.Data[0]= 1;
 msg.Length =1;
 msg.IsExtendedId = false;
 GHI.IO.ControllerAreaNetwork can = new ControllerAreaNetwork(
 ControllerAreaNetwork.Channel.One,
 ControllerAreaNetwork.Speed.Kbps500);

 can.SendMessage(msg);
 // ...
 }
}

This is available through the GHI.Hardware assembly.

There are two CAN channels on the EMX Module.

Rev. 0.02 Page 45 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.13. One-wire

Through one-wire, a master can communicate with multiple slaves using a single digital pin.
One-wire can be activated on any Digital I/O on EMX.

using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 // Change this to correct GPI pin for the onewire used in the project!
 OutputPort myPin = new OutputPort(GHI.Pins.EMX.P2_22, false);

 OneWire ow = new OneWire(myPin);

 while (true)
 {
 if (ow.TouchReset() > 0)
 {
 Debug.Print("Device is detected.");
 }
 else
 {
 Debug.Print("Device is not detected.");
 }

 Thread.Sleep(10000);
 }
 }
}

This is available through the Microsoft.SPOT.Hardware.OneWire.

Rev. 0.02 Page 46 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.14. Graphics

The EMX Module supports 16-Bit color TFT displays. Developers can use almost any digital
TFT display, up to 800x600. This is accomplished by connecting HSYNC, VSYNC, CLK,
ENABLE and 16Bit color lines. The color format is 5:6:5 (5Bits for red, 6Bits for green and
5Bits for blue). If the display has more than 16Bits, connect the MSB (high Bits) to EMX and
the extra LSB (low Bits) to ground.

SPI-based displays can be utilized as well but using the native TFT interface allows for a
better user experience, especially when displays are 320x240 (QVGA) or larger.

For developers wanting to connect VGA or HDMI monitors, a simple circuit is still needed to
convert the 16Bit digital signals to analog RGB colors, such as Chrontel's CH7025.

With the EMX graphics support, users can leverage the NETMF graphics features such as:

● Windows Presentation Foundation (WPF)

● BMP, GIF (still) and JPEG image files.

● Fonts

● Simple Shapes

Rev. 0.02 Page 47 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

This simple example will run on the emulator and on the EMX Module similarly. It requires the
Microsoft.SPOT.Graphics and Microsoft.SPOT.TinyCore.

using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Presentation;
using Microsoft.SPOT.Presentation.Media;

public class Program
{
 public static void Main()
 {
 Bitmap LCD = new Bitmap(SystemMetrics.ScreenWidth, SystemMetrics.ScreenHeight);
 byte red = 0;
 int x = 0;
 while (true)
 {
 for (x = 30; x < SystemMetrics.ScreenWidth - 30; x += 10)
 {
 LCD.DrawEllipse(ColorUtility.ColorFromRGB(red, 10, 10), x, 100, 30, 40);
 LCD.Flush();
 red += 3;
 Thread.Sleep(10);
 }

 }
 }
}

Fonts

Thanks to NETMF, developers can convert TrueType font files to the TinyFNT format used on
NETMF. The end results will look professionally stunning.

Glide

GHI Electronics has developed a high speed, lightweight full featured graphics/GUI
framework called "Glide." The open-source code is available, with the Apache 2 license. This
allows for a commercial and non-commercial use. For convenience the compiled libraries are
included with GHI's SDK. This is the recommended method for graphics on the EMX Module.
Glide includes a window designer as well https://www.ghielectronics.com/glide.

Contained in the GHI.Glide assembly.

Rev. 0.02 Page 48 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/glide

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Touch Screen

EMX Module supports displays with a four-wire resistive touch screen without the need for
any additional hardware. However, the use of other touch displays can be supported by
adding the appropriate controller, typically on the SPI bus.

Refer to the Pin-Out Description chapter for more information about touch screen signals
(Touch_X_Left, T_X_Right, T_Y_Down, Touch_Y_UP) assignments to EMX hardware pins.

GHI Electronics' open-source graphics-library (Glide) is a good place to learn about touch
handling if direct handling is necessary.

Rev. 0.02 Page 49 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.15. USB Host

The USB Host allows the use of USB Hubs, USB storage devices, joysticks, keyboards, mice,
printers and more. Additionally, for USB devices that do not have a standard class, low level
raw USB access is provided for bulk transfers.

using System.Threading;
using GHI.Usb.Host;
using GHI.Usb;
using Microsoft.SPOT;

public class Program
{
 static Mouse mouse;

 public static void Main()
 {

 // Subscribe to USBH event.
 Controller.DeviceConnected += Controller_DeviceConnected;

 // Sleep forever
 Thread.Sleep(Timeout.Infinite);
 }

 static void Controller_DeviceConnected(object sender, Controller.DeviceConnectedEventArgs
e)
 {
 if (e.Device.Type == Device.DeviceType.Mouse)
 {
 Debug.Print("Mouse Connected");
 mouse = new Mouse(e.Device);
 mouse.CursorMoved += mouse_CursorMoved;
 mouse.ButtonChanged += mouse_ButtonChanged;
 }

 }

 static void mouse_CursorMoved(Mouse sender, Mouse.CursorMovedEventArgs e)
 {
 Debug.Print("(x, y) = (" + e.NewPosition.X + ", " +
 e.NewPosition.Y + ")");
 }
}

This is available through the GHI.Usb and GHI.Hardware assemblies.

Rev. 0.02 Page 50 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.16. Accessing Files and Folders

The File System feature in NETMF is near very similar to the full .NET and can be tested from
within the Microsoft NETMF emulator with minor changes. Changes include removing any of
the GHI library dependencies. There are no limits on file sizes and counts, beside the limits of
the FAT file system itself. NETMF supports FAT16 and FAT32.
Files are made accessible on SD cards and on USB memory devices through the USB Host
library.

Most online examples on how to use .NET to access files on PCs can be used to read and
write files on the EMX Module. The GHI Electronics' online documentation has further
examples as well. The only differences from the full .NET on the PC is the need to
mount the media and differences in media names. The easiest way to know and handle the
media names is by obtaining the root directly name and dynamically using that name.

This is available through the GHI.Hardware assembly for SD (or USB media); also required:
assemblies for the file system functions System.IO and Microsoft.SPOT.IO.

Rev. 0.02 Page 51 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

using System;
using System.IO;
using Microsoft.SPOT;
using Microsoft.SPOT.IO;

using GHI.IO.Storage;

class Program
{
 public static void Main()
 {
 // ...
 // SD Card is inserted
 // Create a new storage device

 SD sdPS = new SDCard();

 // Mount the file system
 sdPS.Mount();

 // Assume one storage device is available, access it through
 // NETMF and display the available files and folders:
 Debug.Print("Getting files and folders:");
 if (VolumeInfo.GetVolumes()[0].IsFormatted)
 {
 string rootDirectory =
 VolumeInfo.GetVolumes()[0].RootDirectory;
 string[] files = Directory.GetFiles(rootDirectory);
 string[] folders = Directory.GetDirectories(rootDirectory);

 Debug.Print("Files available on " + rootDirectory + ":");
 for (int i = 0; i < files.Length; i++)
 Debug.Print(files[i]);

 Debug.Print("Folders available on " + rootDirectory + ":");
 for (int i = 0; i < folders.Length; i++)
 Debug.Print(folders[i]);
 }
 else
 {
 Debug.Print("Storage is not formatted. " +
 "Format on PC with FAT32/FAT16 first!");
 }
 // Unmount when done
 sdPS.Unmount();
 }
}

Rev. 0.02 Page 52 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

SD/MMC Memory

SD and MMC memory cards have similar interfaces. EMX supports both cards and also
supports SDHC/SDXC cards. The interface runs through a true 4-bit SD interface. SD cards
are available in different sizes but they are all of an identical function making them all
supported on the EMX Module.

USB Mass Storage

USB mass storage devices such as USB hard drives or memory sticks are directly supported
on EMX through the USB Host library.

7.17. Secure Networking (TCP/IP)

Networking is a crucial part of today's embedded devices and the internet of things IoT.
NETMF includes a full TCP/IP stack with socket support and high level protocols, such as
HTTP. The EMX Module networking functions works with media such as Ethernet and WiFi.
PPP adds networking to a large range serial media/devices.

Secure networking is accomplished with ease, thanks to SSL support.

The Extensions

The way networking works on NETMF is very similar to the full desktop .NET. Also, the
networking libraries work on the Microsoft NETMF emulator. This allows for testing and
developing right on the desktop, through the emulator. GHI Electronics adds few important
extensions to the system to initialize the networking interfaces. Developers can choose to add
Ethernet or WiFi; these additions are typically only needed in the initialization and setup
stage; they cannot be used on the emulator. If using the emulator, the few initialization lines
can be commented out.

MAC address setting

All EMX Modules ship with the same default MAC address. This is good for testing a single
device on internal networks. If using multiple devices or reaching the internet, a proper MAC
address must be set.

Rev. 0.02 Page 53 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

To set the MAC address, FEZ Config can be used. Also, the EMX Module can set its own
MAC through software.

byte[] newMAC = new byte[] { 0x00, 0x1A, 0xF1, 0x01, 0x42, 0xDD };
var enc = new GHI.Networking.EthernetBuiltIn();
enc.PhysicalAddress = newMAC;

This is available through the GHI.Networking assembly.

There is no need to set the MAC address when using WiFi as the system obtains the MAC
from the WiFi module itself.

Tip: Some MAC addresses are not legal. The internet includes MAC address generators that
can be used in testing.

IP address (DHCP or static):

DHCP (dynamic) IP and Static IP are both supported. If using dynamic IP, the EMX will not
obtain an IP lease at power up -- DHCP can only be enabled from software. FEZ Config has a
DHCP enable option but it has no effect on getting the IP lease on start-up.

var enc = new GHI.Networking.EthernetBuiltIn();
enc.EnableDhcp();
enc.EnableDynamicDns();

This is available through the GHI.Networking assembly.

Rev. 0.02 Page 54 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Ethernet

The support for Ethernet is Builtin.

using System;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;
using Microsoft.SPOT.Net;
using Microsoft.SPOT.Net.NetworkInformation;
using GHI.Pins;
using GHI.Networking;

public class Program
{
 static EthernetBuiltIn ebi;
 static bool hasAddress = false;
 static bool available = false;

 public static void Main()
 {
 NetworkChange.NetworkAvailabilityChanged += NetworkChange_NetworkAvailabilityChanged;
 NetworkChange.NetworkAddressChanged += NetworkChange_NetworkAddressChanged;

 var ebi = new GHI.Networking.EthernetBuiltIn);
 ebi.Open();
 ebi.EnableStaticIP("192.168.1.100", "255.255.255.0", "192.168.1.0");
 ebi.EnableStaticDns(new string[] { "192.168.1.0" });

 while (!hasAddress || !available)
 {
 Debug.Print("Initializing");
 System.Threading.Thread.Sleep(100);
 }
 //Network ready now.
 }
 static void NetworkChange_NetworkAvailabilityChanged(object sender,
 NetworkAvailabilityEventArgs e)
 {
 Debug.Print("Network available: " + e.IsAvailable.ToString());
 available = e.IsAvailable;
 }
 static void NetworkChange_NetworkAddressChanged(object sender, EventArgs e)
 {
 Debug.Print("The network address has changed.");
 hasAddress = ebi.IPAddress != "0.0.0.0";
 }
}

This is available through the GHI.Networking assembly.

Rev. 0.02 Page 55 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Wireless LAN WiFi

Any WiFi module with built in TCP/IP stack can be used through NETMF, which has many
limitations; however, GHI Electronics adds support to WiFi internally through the NETMF's
TCP/IP and SSL stacks. To utilize these libraries, Redpine's RS9110-N-11-22-04 (chip
antenna) or RS9110-N-11-22-05 (uFL connector) must be used. The GHI Electronics' drivers
for this module allows for real "Socket" connection over WiFi. This is not a simple WiFi-Serial
bridge commonly used on embedded systems.

RS9110-N-11-21-01 WiFi module

This module from Redpine's Connect-io-n™ family is a complete IEEE 802.11bgn WiFi client
device with a standard SPI interface to a host processor or data source. It integrates a MAC,
baseband processor, RF transceiver with power amplifier, a frequency reference, an antenna,
and all WLAN protocol and configuration functionality in embedded firmware to provide a self-
contained 802.11bgn WLAN solution for a variety of applications. It supports WPA, WPA2,
and WEP security modes in addition to open networks.

//Create just like the ENC28 or Builtin
var wifi = new GHI.Networking.WiFiRS9110(SPI.SPI_module.SPI1,
 EMX.P0_6 // chip select
 EMX.P2_21, // external interrupt
 EMX.P2_22 // reset
); //change to target design
//Open and configure
wifi.Join("ssid", "password");
//...

This is available through the GHI.Networking assembly.

Rev. 0.02 Page 56 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.18. PPP

Point to Point (PPP) protocol is essential for devices needing to connect to mobile networks.
While typical embedded devices use the mobile modem's built-in and very limited TCP/IP
stack, systems with the EMX Module will enjoy the use of these modems through PPP and
the internal NETMF-TCP/IP stack with SSL.

7.19. USB Client (Device)

The USB client interface is typically used as the EMX Debug Access Interface and for
application deployment through Microsoft's Visual Studio (see The Loader and Firmware
Debug Access Interface section). However, developers have control over the USB client
interface. For example, the USB client can be made to simulate a USB keyboard or USB
mass storage.

Tip: The USB Host is what devices connect to. For example a PC is a Host to devices like a
mouse or a memory stick. The EMX has both interfaces, USB Host and USB Client (device).

This is available through the GHI.Usb along with the Microsoft.SPOT.Hardware.Usb

assemblies.

Rev. 0.02 Page 57 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

using System.Threading;
using GHI.Usb;
using GHI.Usb.Client;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware.UsbClient;
public class Program
{
public static void Main()
{
// Start keyboard
Keyboard kb = new Keyboard();
Debug.Print("Waiting to connect to PC...");
// Send "Hello world!" every second
while (true)
{
// Check if connected to PC
if (Controller.State ==
UsbController.PortState.Running)
{
// We need shift down for capital "H"
kb.Press(Key.LeftShift);
kb.Stroke(Key.H);
kb.Release(Key.LeftShift);
// Now "ello world"
kb.Stroke(Key.E);
kb.Stroke(Key.L);
kb.Stroke(Key.L);
kb.Stroke(Key.O);
kb.Stroke(Key.Space);
kb.Stroke(Key.W);
kb.Stroke(Key.O);
kb.Stroke(Key.R);
kb.Stroke(Key.L);
kb.Stroke(Key.D);
// The "!"
kb.Press(Key.LeftShift);
kb.Stroke(Key.D1);
kb.Release(Key.LeftShift);
// Send an enter key
kb.Stroke(Key.Enter);
}
Thread.Sleep(1000);
}

Rev. 0.02 Page 58 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.20. Extended Weak References (EWR)

EWR is a way for managed applications to store data on non-volatile memory. This is meant
to be used as a configuration holder that does not change frequently. The NETMF
documentation includes further details. A good example is included with the Microsoft .NET
Micro Framework SDK.

See also the Battery RAM section.

7.21. Real Time Clock

The LPC2478 processor includes a real-time clock (RTC) that can operate while the
processor is off, through a backup battery or a super capacitor. Appropriate circuitry is added
to EMX so that the clock only needs power (3.3V VBAT) to operate. The NETMF system has
its own time keeping that is independent from the real time clock. If actual time is need, the
software should read the RTC and set the system's time.

Tip: The system time can also be set using time services through the internet.

Rev. 0.02 Page 59 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

using System;
using GHI.Processor;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 DateTime DT;
 try
 {
 DT = RealTimeClock.GetDateTime();
 Debug.Print("Current Real-time Clock " + DT.ToString());
 }
 catch
 {
 // If the time is not good due to powerloss
 // an exception will be thrown and a new time will need to be set
 Debug.Print("The date was bad and caused a bad time");
 // This will set a time for the Real-time Clock clock to 1:01:01 on 1/1/2012
 DT = new DateTime(2012, 1, 1, 1, 1, 1);
 RealTimeClock.SetDateTime(DT);
 }

 if (DT.Year < 2011)
 {
 Debug.Print("Time is not resonable");
 }

 Debug.Print("Current Real-time Clock " + RealTimeClock.GetDateTime().ToString());
 // This will set the clock to 9:30:00 on 9/15/2011
 DT = new DateTime(2011, 9, 15, 7, 30, 0);
 RealTimeClock.SetDateTime(DT);
 Debug.Print("New Real-time Clock " + RealTimeClock.GetDateTime().ToString());
 }
}

Rev. 0.02 Page 60 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.22. Watchdog

Watchdog is used to reset the system if it enters an erroneous state. The error can be due to
internal fault or the user's managed code. When the Watchdog is enabled with a specified
timeout, the user must keep resetting the Watchdog counter within this timeout interval or
otherwise the system will reset.

// Enable with 10 second timeout
GHI.Processor.Watchdog.Enable(10 * 1000);
while (true)
{
 // Do some work
 GHI.Processor.Watchdog.ResetCounter();
}

7.23. Power Control

Embedded devices often must limit power usage as much as possible. Devices may lower
their power consumption in many ways:

1.Reduce the processor clock
2.Shutdown the processor when system is idle (keep peripherals and interrupts
running)
3.Shutdown specific peripherals
4.Hibernate the system

A common way to wake a device is using the RTC alarm. Whenever the alarm goes off, it will
wake the device. These examples require the GHI.Hardware and Microsoft.SPOT.Hardware
assemblies.

Rev. 0.02 Page 61 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

Use Microsoft.SPOT.Hardware.HardwareEvent.OEMReserved2 for RTC alarm. When the
program starts, it will set an RTC alarm for 30 seconds in the future and then hibernate until
then.

using GHI.Processor;
using Microsoft.SPOT.Hardware;
using System;

public class Program
{
 public static void Main()
 {
 RealTimeClock.SetAlarm(DateTime.Now.AddSeconds(30));

 PowerState.Sleep(SleepLevel.DeepSleep, HardwareEvent.OEMReserved2);

 ///Continue on with your program here
 }
}

The device will awaken whenever an interrupt port is triggered. Some devices can use
interrupts internally that can cause spurious wakeups if not disabled. Use
Microsoft.SPOT.Hardware.HardwareEvent.OEMReserved1 for interrupts.

NETMF's interrupt ports only function when their glitch filter is enabled or they have an event
handler subscribed.

using Microsoft.SPOT.Hardware;
using System;

public class Program
{
 public static void Main()
 {
 var interrupt = new InterruptPort(Cpu.Pin.GPIO_Pin0, true, Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeHigh);
 interrupt.OnInterrupt += interrupt_OnInterrupt;

 PowerState.Sleep(SleepLevel.DeepSleep, HardwareEvent.OEMReserved1);

 ///Continue on with your program here
 }

 private static void interrupt_OnInterrupt(uint data1, uint data2, DateTime time)
 {
 //Interrupted
 }
}

Rev. 0.02 Page 62 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

7.24. In-Field Update

The In-field update feature allows the EMX Module to update itself! This powerful and flexible
feature is very simple to use. The managed application or even the TinyCLR NETMF firmware
can be updated. When need, this feature basically allocates a large memory buffer to hold the
new software in RAM. The new software can be obtained from any source. It can be loaded
from the network, from a file on a USB memory or SD card, and even from a serial port. There
is no need to receive the entire new software at once. It can be received in chunks and the
update process can be aborted at anytime. Power loss is safe during the new software load
process as everything is done in RAM.

Once the entire new software is received and buffered in RAM, the already running software
(old software) can execute a method in the in-field update library to copy all ram to flash. This
happens in couple seconds and then the system reboots, running the new software.

The online documentation includes further details.

7.25. SQLite Database

SQLite is a software library that implements a self-contained server-less SQL database
engine. SQLite is the most widely deployed SQL database engine in the world. Thanks to GHI
Electronics' efforts, SQLite is part of the EMX Module's built in libraries. The SQLite website
include further details and documentation. http://www.sqlite.org

using System;
using System.Collections;
using Microsoft.SPOT;
using GHI.SQLite;

public class Program
{
 public static void Main()
 {
 // Create a database in memory,
 // file system is possible however!
 Database myDatabase = new GHI.SQLite.Database();

 myDatabase.ExecuteNonQuery("CREATE Table Temperature"+
 " (Room TEXT, Time INTEGER, Value DOUBLE)");

 //add rows to table
 myDatabase.ExecuteNonQuery("INSERT INTO Temperature (Room, Time, Value)"+
 " VALUES ('Kitchen', 010000, 4423)");
 myDatabase.ExecuteNonQuery("INSERT INTO Temperature (Room, Time, Value)"+
 " VALUES ('Living Room', 053000, 9300)");

Rev. 0.02 Page 63 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/
http://www.sqlite.org/

GHI Electronics,LLC EMX SoM User Manual

The Libraries

 myDatabase.ExecuteNonQuery("INSERT INTO Temperature (Room, Time, Value)"+
 " VALUES ('bed room', 060701, 7200)");

 // Process SQL query and save returned records in SQLiteDataTable
 ResultSet result = myDatabase.ExecuteQuery("SELECT * FROM Temperature");

 // Get a copy of columns orign names example
 String[] origin_names = result.ColumnNames;

 // Get a copy of table data example
 ArrayList tabledata = result.Data;

 String fields = "Fields: ";
 for (int i = 0; i < result.RowCount; i++)
 {
 fields += result.ColumnNames[i] + " |";
 }
 Debug.Print(fields);

 object obj;
 String row = "";
 for (int j = 0; j < result.RowCount; j++)
 {
 row = j.ToString() + " ";
 for (int i = 0; i < result.ColumnCount; i++)
 {
 obj = result[j, i];

 if (obj == null)
 row += "N/A";
 else
 row += obj.ToString();

 row += " |";
 }
 Debug.Print(row);
 }

 myDatabase.Dispose();
 }
}

This requires the GHI.SQLite assembly.

Rev. 0.02 Page 64 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Advanced use of the Microprocessor

8. Advanced Use Of The Microprocessor
The EMX Module is based on the LPC2478 microcontroller. There are times when direct
programming is needed. GHI has extended NETMF to allow assembly level access from
managed code to the LPC2478. This chapter describes those features.

Important: All examples in this chapter use the GHI.Hardware assembly; add it to
“References” in Visual Studio, see the Loading Assemblies section.

8.1. Register

This class is used for manipulating the processor registers directly. This example
demonstrates access to the battery backed RAM:

 // write a 32 bit value into virtual uint[512] array mapped over RTC battery RAM
 // offset is the index into the array.
 void WriteBatteryRam(uint offset, uint a_value)
 {

 BatteryRam = new Register(0xE0084000 + (offset << 2));
 BatteryRam.Write(a_value);
 }

8.2. AddressSpace

Allows applications to read and write memory directly. This code reads a byte from address
0xA0000000.

GHI.Processor.AddressSpace.Read(0xA0000000);

8.3. Battery RAM

On the same power domain as the RTC (Real Time Clock) there is 2KB of RAM. The data on
this RAM is retained on power loss as it is powered through the backup battery used by the
RTC.

The Battery RAM's address range is 0xE0084000 to 0xE00847FF. The SRAM can be
accessed word-wise (32-bit) only. the GHI Register class can be used to read and write to
battery RAM.

The LPC2478 datasheet includes full details.

Rev. 0.02 Page 65 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Advanced use of the Microprocessor

8.4. Runtime Loadable Procedure

Similar to code loaded by using a DLL (Dynamic Link Library), RLP (Runtime Loadable
Procedure) allows compiled assembly code, perhaps from C/C++, to be loaded and run from
the embedded application. For example a checksum or crypto procedure. While it can be
done on the managed side, a native procedure will run a much faster. RLP also provides
extensions that allow the native procedure to hook back into some of the services available in
the managed side, like memory allocation.

RLP is very advanced and requires understanding of compilers and C/Assembly
programming. It is documented in detail in the online documents and the reference guides.

Rev. 0.02 Page 66 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

design Consideration

9. Design Consideration

Required Pins

The following pins are recommended to be exposed or noted in any design:

● EMX access interface Serial COM1 (pins 5, 6), USB Device (pins 41, 42) or both.

● LMODE (Pin 16) can be set to high or low (high if left unconnected).

● Boot control (pins 3, 7, 53).

Interrupt Pins

Only pins on ports 0 and 2 support interrupts.

Rev. 0.02 Page 67 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Soldering EMX

10. Soldering EMX
The EMX Module was designed to be easily machine-placed and hand-soldered. Static
sensitive precautions should take place when handling the modules.

EMX Modules are not sealed for moisture, it is recommended to bake the module before
reflow. The process of reflow can damage the EMX Module if the temperature is too high or
exposure is too long. This lead-free reflow is used by GHI Electronics when machine-placing
the EMX Module.

NOTE: The profiles shown are based on SAC 305 solder (3% silver, 0.5% copper). The
thermal mass of the assembled board and the sensitivity of the components on it affect the
total dwell time. Differences in the two profiles are where they reach their respective peak
temperatures, as well as the time above liquids (TAL). The shorter profile of the two would
apply to smaller assemblies, where as the longer profile would apply to larger assemblies,
such as back-planes or high-density boards. The process window is described by the shaded
area. These profiles are starting-points (mainly guidance), the particulars of an oven and the
assembly will determine the final process.

Rev. 0.02 Page 68 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC EMX SoM User Manual

Legal Notice

Legal Notice

Licensing

The EMX Module, with all its built in software components, is licensed for commercial and
non-commercial use. No additional fee or licensing is required.

Disclaimer
IN NO EVENT SHALL GHI ELECTRONICS, LLC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. SPECIFICATIONS ARE SUBJECT TO CHANGE

WITHOUT ANY NOTICE. GHI ELECTRONICS, LLC LINE OF PRODUCTS ARE NOT DESIGNED FOR

LIFE SUPPORT APPLICATIONS.

EMX is a Trademark of GHI Electronics, LLC

.NET Micro Framework, Visual Studio, MFDeploy, and Windows are registered or
unregistered trademarks of Microsoft Corporation.

Other Trademarks and Registered Trademarks are Owned by their Respective Companies.

Rev. 0.02 Page 69 of 69 www.GHIElectronics.com

http://www.ghielectronics.com/

	1. Introduction
	1.1. The .NET Micro Framework
	1.2. GHI Electronics and NETMF
	1.3. EMX Module Key Features
	1.4. Example Applications

	2. The Hardware
	2.1. LPC2478 Microcontroller
	2.2. SDRAM
	2.3. FLASH

	3. Pin-Out Description
	3.1. Pin-out Table

	4. EMX on boot up
	4.1. Boot Mode Pins
	4.2. GHI Boot Loader vs. TinyBooter vs. EMX Firmware (NETMF/TinyCLR)
	4.3. The Loader and Firmware Debug Access Interface

	5. The GHI Boot Loader
	5.1. The Commands
	5.2. Updating TinyBooter
	Updating TinyBooter using FEZ Config.
	Updating EMX Manually
	Loading using XMODEM

	5.3. TinyBooter
	5.4. TinyCLR (firmware) Update Using FEZ Config
	5.5. Firmware Update Using MFDeploy

	6. NETMF TinyCLR (firmware)
	6.1. Assemblies Version Matching
	6.2. Deploying to the Emulator
	6.3. Deploying to the EMX Module
	6.4. Targeting Different Versions of the Framework

	7. The Libraries
	7.1. Finding NETMF Library Documentation
	7.2. Loading Assemblies
	7.3. Important Information for the Following Examples
	7.4. Digital Inputs/Outputs (GPIO)
	Outputs
	Inputs
	Interrupt Pins

	7.5. Analog Inputs/Outputs
	7.6. PWM
	7.7. Signal Generator
	7.8. Signal Capture
	7.9. Serial Port (UART)
	7.10. SPI
	7.11. I2C
	7.12. CAN
	7.13. One-wire
	7.14. Graphics
	Fonts
	Glide
	Touch Screen

	7.15. USB Host
	7.16. Accessing Files and Folders
	SD/MMC Memory
	USB Mass Storage

	7.17. Secure Networking (TCP/IP)
	The Extensions
	MAC address setting
	IP address (DHCP or static):
	Ethernet
	Wireless LAN WiFi

	7.18. PPP
	7.19. USB Client (Device)
	7.20. Extended Weak References (EWR)
	7.21. Real Time Clock
	7.22. Watchdog
	7.23. Power Control
	7.24. In-Field Update
	7.25. SQLite Database

	8. Advanced use of the Microprocessor
	8.1. Register
	8.2. AddressSpace
	8.3. Battery RAM
	8.4. Runtime Loadable Procedure

	9. design Consideration
	Required Pins
	Interrupt Pins
	

	10. Soldering EMX
	Legal Notice
	Licensing
	Disclaimer

