1. Connect battery and cable to blue module.
2. Turn it on.
3. Pink modules affect modules after them.
4. Green modules do something.

Let's go!
WARNING
• This product contains small magnets. Swallowed magnets can stick together across intestines causing serious infections and death. Seek immediate medical attention if magnets are swallowed or inhaled.
• Most littleBits are small parts. DO NOT allow children under 3 years old to play with or near this product.
• NEVER connect any littleBits or circuits to any AC electrical outlet.
• Do not touch or hold any moving parts of littleBits while they are operating.
• Keep conductive materials (such as aluminum foil, staples, paper clips, etc.) away from the circuit and the connector terminals.
• Always turn off circuits when not in use or when left unattended.
• Never use littleBits in or near any liquid.
• littleBits are subject to damage by static electricity. Handle with care.
• Some littleBits may become warm to the touch when used in certain circuit designs. This is normal. Rearrange modules or discontinue using if they become excessively hot.
• Discontinue use of any littleBits that malfunction, become damaged or broken.

VITAL NOTE
• Several projects in this kit involve the use of a box cutter, grill skewers and/or a hot glue gun.
• These tools should be used ONLY under direct adult supervision and ONLY by children capable of using them safely.

INSTRUCTIONS
We recommend using littleBits brand 9-volt batteries, but standard alkaline or standard rechargeable batteries may also be used. Properly discard and replace exhausted battery. Do not connect the two battery terminals with any conducting material.

CARE AND CLEANING
Clean Bits modules ONLY by wiping with a dry cloth. If necessary, isopropyl alcohol on a cloth may be used sparingly, and then wipe with a dry cloth.

SEND US YOUR LOVE
Contact support@littleBits.cc with any questions or comments.
www.littleBits.cc
littleBits Electronics Inc.
60 E. 11th Street
NY, NY 10003
(917)444-6577

YOU are a proud owner of the Deluxe Kit v1 from the Exploration Series. Over 5 million combinations?! Are you serious? Yep, www.littleBits.cc/mathmagic

An open source project under Creative Commons license and OSHW definition v1.1
littleBits Electronics, Inc.
Made in Dongguan City, China

littleBits, Bits, Circuits in Seconds, and Make Something That Does Something are trademarks of littleBits Electronics, Inc.
MAKE SOMETHING THAT DOES SOMETHING™
littleBits™ Basics

CIRCUITS IN SECONDS®
littleBits™ is an expanding library of modular electronics that snap together with magnets.

COLOR CODED
littleBits™ are grouped into 4 different categories, which are color coded:
- **POWER**: needed in every circuit and the start of all your creations.
- **INPUT**: these Bits modules accept input from you and the environment and send signals to the modules that follow.
- **OUTPUT**: these Bits modules DO something—light, buzz, move...
- **WIRING**: these Bits modules expand your reach and change direction—great for helping to incorporate littleBits into your projects.

ORDER IS IMPORTANT
Power Modules always come first and Input Modules only affect the Output Modules that come after them.

MAGNET MAGIC
littleBits™ snap together with magnets. The magnets are always right, you can’t put modules together the wrong way.

anything
littleBits™ are just the beginning. Combine them with craft materials, building sets, and other toys to electrify your life. We’ll show you how!
This power module lets you use a 9-volt battery to supply electricity to your littleBits. Snap in the battery + cable (both included) and flip the switch to turn it on.

This is the Deluxe Kit, Version 1
Learn more and shop for individual Bits Modules at littleBits.cc/Bits

It’s a classic: big, round, and springy for comfortable pressing! Push to turn on and release to turn it off – just like a button on a keyboard or elevator.

Move the slider from one end to the other. It functions just like a light dimmer you might find at home or a volume fader in a recording studio. Experiment with how it affects output modules that follow.
This module is like a settable timer. Try it after a button and follow it with a light. Press and release the button to start the countdown. In “on-off” mode, the light will go on and the timer will start counting down to turn-off time. In “off-on” mode, the light will go out when you release the button and will turn back on after the timer reaches the allotted time. The time ranges from approximately 1 second to 5 minutes.

This module senses the noise level in your room, and sends an ON signal when it gets over a certain level. You can make that threshold louder or softer using the included screwdriver.

The pulse is like an electronic heartbeat. It sends out a stream of short ON signals and you can make the speed of the pulses faster or slower using the included screwdriver. It’s great for making lights blink!

This module is like a settable timer. Try it after a button and follow it with a light. Press and release the button to start the countdown. In “on-off” mode, the light will go on and the timer will start counting down to turn-off time. In “off-on” mode, the light will go out when you release the button and will turn back on after the timer reaches the allotted time. The time ranges from approximately 1 second to 5 minutes.
Fork w7
The fork gives you more options for connecting your littleBits: it lets you connect the output of a single module to as many as three others. Use it when you want to trigger light, sound, and motion at the same time.

Inverter w10
It sends out the opposite of whatever it receives: send it an ON signal, and the inverter changes it to an OFF signal, or vice versa.

Latch w8
Use the latch to turn any momentary input, like a button, into an ON/OFF switch. If you place a button in front of the latch, and a light after, pressing the button once will turn it ON and keep it on. Pressing it again will turn it OFF.

Wire w1
The wire allows you to physically separate your Bits modules. Try it whenever you need to break up your chain of littleBits, like when you need to put a light at the top of a model building.
The RGB LED is a special light whose color you can adjust. Use the included screwdriver to adjust each of the color channels to get almost any color. RGB light is what produces every color from your computer monitor.

The light wire’s entire length glows a soft blue. It’s made of special stuff called “electroluminescent wire,” which is great to form into glowing shapes. Like safe neon, it’s best to use in the dark.

A controllable motor that can swing back and forth. It has two modes: in “Turn” mode, the input from other littleBits determines the position of the arm – try using your slide dimmer to set the angle you want. In “Swing” mode, the servo will move back and forth on its own - the input controls how fast it goes.

Try both modes

Try out the different servo arms included

Adjust with screwdriver

LED + light emitting diode

B - Blue

G - Green

R - Red

Light wire almost 4 feet of light

Bend it

RGB LED

SERVO MOTOR

LED = light emitting diode

LED Wire

LED Wire
The buzzer is like the sound in an alarm clock: it makes a noise that you just can’t ignore. It buzzes whenever it gets an ON signal. Try using it to make your own doorbell or alarm!

The DC (or “Direct Current”) motor rotates a shaft when you send it an ON signal. The left/right switch controls the direction of rotation. Try attaching various things to make windmills, cars, helicopters and more.

motorMate works with the DC motor. This makes it easy to attach wheels, paper, cardboard, and lots of other materials to the DC motor. Simply slide it on the “D” shape of the shaft. A LEGO™ axle also fits in the end.

Your servo motor comes with a couple great arms to help you in your projects. Use a Phillips screwdriver* to change the arms.

This little purple screwdriver is used to modify any module that has a micro adjuster.

*not included
TRY THESE CIRCUITS

Get started with these, but don’t let us hold you back – every module fits with every other module – feel free to experiment.
INTRO TO SERVO
Control your servo's position.

- power
- slide dimmer
- turn me on
- use screwdriver to adjust speed

ROBOT ARM
Learn how to change the speed & angle of your servo.

- power
- sound trigger
- pulse
- turn me on
- use screwdriver to adjust speed

NEON SIGN
Make a bright statement.

- power
- pulse
- Light wire
- turn me on
- bend it!

NOISE MAKER
Have fun making your own rhythm.

- power
- pulse
- buzzer
- in turn mode
- turn me on
- in using mode
- use screwdriver to adjust speed

TIMER
Learn how to make an alarm clock.

- power
- button
- timer
- buzzer
- turn me on
- off/on mode
- adjust time

INTRO TO DC MOTOR
Get to know the motor.

- power
- button
- wire
- DC motor
- turn me on
- don't forget to connect your battery to the power module
- spin it!

- sound trigger
- in sound trigger mode
- button
- power button
- light wire
- DC motor
CLAP IT Clap your lights on and off.

power sound trigger latch **RGB LED**

- **RGB LED**
- adjust sensitivity
- clap
- off/on

DO THE OPPOSITE Discover the magic of the inverter.

power button **RGB LED**

- **RGB LED**
- adjust color with the screwdriver
- button
- turn on/off

TIMED MOTION Set how long your DC motor spins for.

power sound trigger **timeout** **DC motor**

- **DC motor**
- adjust time with the screwdriver
- timeout
- off/on

CLOCK Learn how to make the DC motor tick.

power pulse **DC motor**

- **DC motor**
- adjust speed with the screwdriver
- pulse
- from 0 to 100

TO THE RESCUE Create sirens, light and motion!

power **slide dimmer** **buzzer**

- **buzzer**
- adjust sensitivity
- slide dimmer
- DC motor

RGB LED

- **RGB LED**
- do the opposite
- don't forget to connect your battery to the power module
- clock
- power inverter RGB LED
- button
- pulse
- fork
- wire
- DC motor
PROJECTS - TRY THESE AND INVENT YOUR OWN

1 Tickle Machine
2 Prank Handshake
3 Auto Greeter
4 Truck Crane
5 Art Bot
6 Dancing Signs
7 Glowing
8 Birthday Cake
9 Stomping Shoes
10 Surprise Party
11 Flickering Lantern
12 Cat Nap
13 Uni Horn Helmet
14 Honking Tricycle
15 Robot

PROJECT 1: How can electronics help spread laughs?

TICKLE MACHINE

1. Start with this circuit:

 - power
 - wire
 - DC motor

2. Always connect battery and cable to power module.

 - a wire to extend and bend
 - plus the motorMate
 - Attach feathers to the motor mate.

3. Tickle your friends (and dust your bookshelf)

 - Try other materials too!

Enhanced instructions plus tons more projects online, littleBits.cc/deluxe

TIME: 15 mins
DIFFICULTY: ☄️ ☄️ ☄️ ☄️
PROJECT 2: Want to trick a friend? We’ll show you how!

PRANK HANDSHAKE

1. Start with this circuit

2. Put the circuit on your hand and arm using rubber bands

3. Go ahead, shake a hand, surprise your friends!

TIME: 15 mins
DIFFICULTY: 3

YOU’LL NEED: rubber bands

How else can you surprise your friends using littleBits?
PROJECT 3: How can you use a servo to imitate a human wave?

AUTO GREETER

1. Start with this circuit:
 - power
 - pulse
 - servo (in swing mode)

2. Trace hand on paper and cut it out.
3. Tape paper hand to servo.
4. Use a screwdriver to adjust pulse if you want the wave faster or slower.

TIME: 15 mins
DIFFICULTY: 1

YOU’LL NEED:
- marker
- scissors
- tape
- construction paper
- servo

What else can you animate with the servo?

Wave to someone you love!
PROJECT 4: How can you use a servo to pick things up?

TRUCK CRANE

1. Start with this circuit:
 - Power
 - Slide dimmer
 - Servo
 - In turn mode

2. Rubber band the stick to the servo.

3. Rubber band the paperclip to the other end.
 - Bend the paperclip to make a hook!

4. Pick things up!
 - Use slide dimmer to control the crane arm.

What other materials can pick things up? Try tape or a fork!

Materials:
- Rubber bands
- Paper clip
- Popsicle stick

Time: 30 mins
Difficulty:

DUMuzzy
ART BOT

PROJECT 5: How can you build a device to draw for you?

1. Start with this circuit
 - power
 - DC motor

 Use the motorMate

 Don’t forget to connect your battery to the power module.

 Any kind of marking device is fine.

 You’ll need:
 - marker
 - charcoal
 - rubber bands
 - LEGO™ axle
 - wheel

2. Tuck battery under DC motor and attach with rubber band.

3. Put on the motorMate.

 Insert your charcoal or marker.

 Don’t have an axle or wheel? Make one!

4. Attach LEGO™ axle and wheel.

 Put it on paper, turn it on and let it draw!

 What other tools can you draw with?

 TIME: 30 mins
 DIFFICULTY: ★★★★★
PROJECT 6: How can you use the inverter to activate two different and opposite motions?

DANCING SIGNS

1. Start with this circuit

 - Power
 - Pulse
 - DC motor
 - Inverter
 - MotorMate
 - Servo
 - Tape
 - Construction paper

 2. Make 2 signs out of paper

 3. Attach the signs to the Bits modules

 4. Tape onto servo

 - Watch what they do!

TIME: 30 mins
DIFFICULTY: ●●●●●

Get creative! Try different shapes or characters.

Insert into MotorMate

Get creative! Try different shapes or characters.

Watch what they do!
PROJECT 7: How can you brighten up your bike for night rides?

GLOWING HANDLEBARS

1. Start with this circuit:

- power
- light wire

 ![Circuit Diagram]

 Don’t forget to connect your battery to the power module.

2. Rubber band battery case around the battery.

3. Tie the battery and circuit to your front handlebar post with string.

 ![Diagram of battery and circuit tied to handlebars]

 Where else can you wrap the light wire?

4. Wrap the light wire around your handlebars and RIDE ON!

 ![Diagram of bike with glowing handlebars]

 STRAY SAFE! Use additional lights at night.

YOU’LL NEED:
- rubber bands
- string
- bike

TIME: 30 mins

DIFFICULTY: ★★★★★
PROJECT 8: Create an electronic alternative to the classic birthday candle.

BIRTHDAY CANDLE

1. **Start with this circuit**
 - power
 - wire
 - sound
 - trigger
 - latch
 - inverter
 - RGB
 - LED

2. **Use rubber bands to connect a popsicle stick to the back of the littleBits**

3. **Cut out tissue paper in the shape of a flame**
 - Tape the flame to the front of the RGB LED

4. **How old are you? Create a custom candle shape.**

TIME: 30 mins

DIFFICULTY: 🟢🟢🟢🟢

- **You will need:**
 - rubber bands
 - tape
 - scissors
 - popsicle stick
 - tissue paper

Always connect your battery and turn me on.

- **Adjust sensitivity**
- **Change colors**

I will need:

- Stick the popsicle stick in a cake...

- Blow on the flame to turn it on and off!
PROJECT 9: Going to a dance party? Create a fun accessory!

STOMPING SHOES

1. Start with this circuit

 - power
 - sound trigger
 - latch
 - light wire

 Bend it

2. Rubber band the circuit to your lower leg

 What other clothing can you attach the light wire to?

 Then weave the light wire through the holes, use tape when needed

3. Start dancing!

TIME: 60 mins
DIFFICULTY: 1

YOU'LL NEED
- rubber bands
- tape
- shoes
PROJECT 10: Throwing a surprise party? Use the timeout!

SURPRISE PARTY

1. Start with this circuit:
 - POWER
 - BUTTON
 - TIMEOUT

2. Decorate and cut out a sign
 - Put sign in the motorMate
 - Use tape to keep the shape
 - Bend light wire into the shape of the message
 - Create a custom message. Try writing a friend’s name with the light wire.

3. Cut out a sign
 - Bend light wire into the shape of the message
 - Use tape to keep the shape

4. Surprise your friend!

TIME: 60 mins
DIFFICULTY: ••••

MATERIALS NEEDED:
- Marker
- Scissors
- Tape
- Construction paper
- Light wire

DC motor
Buzzer
Fork
Wire

Surprise your friend!
And now a brief intermission from the projects.

VISIT US AT LITTLEBITS.CC/TIPS FOR SOME AMAZING TIPS & TRICKS

10 coolest ways to wear the light wire... Find out why the pulse is the life of the party... 5 ways to attach materials to the servo motor... 10 techniques for creating the goofiest eyeballs... 6 things you didn’t know about the button... Find out why the wire is the second most important littleBit... You are a musician! Learn the mystical art of playing the buzzer... bitFeet® + cardboard – 5 different attachment techniques... Don’t throw that away! It could transform your next project... What household item enhances any lighting project? We’ll show you... 7 fun ways to set off the sound trigger... Play with your food by attaching it to the DC motor... How many wires would it take to circle the globe? Find out...
FLICKERING LANTERN

PROJECT 11: How can you use littleBits to imitate a flame?

Start with this circuit

1. power wire pulse RGB LED

always connect your battery to the power module

Stay safe! Always use with an adult.

Tips for success:
- Always connect your battery to the power module.
- Adjust speed of flicker.
- Adjust color.
- Trace big side of cup on cardboard 3-4 times.
- Trace big side of cup on cardboard 3-4 times.
- Then cut them out.
- Draw bigger circle around and cut it out! Don’t cut the inner circle.
- Make 3-4 of these big circles!

TIME: 60 mins
DIFFICULTY: ★★★★★

You’ll need:
- Box cutter
- Glue
- Cardboard
- Plastic cup
- Marker
- Pipe cleaners

How can you use littleBits to imitate a flame?

2. Make the top of the lantern

3. Glue circles on top of cup

4. Make bottom of lantern

Instructions:
1. Start with this circuit.
2. Make the top of the lantern.
3. Glue circles on top of cup.
4. Make bottom of lantern.

Materials:
- Box cutter
- Glue
- Cardboard
- Plastic cup
- Marker
- Pipe cleaners

Stay safe!

- Always use with an adult.
- Be careful!
- STAY SAFE!
5. Put littleBits in lantern
First, glue together big circles
littleBits sit on top of circles
Do you want a blue strobe or red blinking light? Use the screwdriver to experiment.

6. Put top of lantern on cardboard base

7. Cut hole to reach the power switch
Tape littleBits in place

8. Glue or tape cup to base

9. Decorate!
Create your own handle

10. Make an “X” out of pipe cleaner. You could also try using ribbon or string or paper strips!

GO EXPLORE OUTSIDE!
PROJECT 12: How can you use littleBits to create an alarm without sound?

CAT NAP

1 Start with this circuit

- power
- wire
- button
- timeout
- wire
- servo

2 Find box

- Cut a hole in the back of the box
- Leave room there!
- Poke holes to feed wires through

3 Place these littleBits on the front of the box

- Cut hole for the servo then tape in place
- Poke hole for power switch

STAY SAFE! Always use with an adult.

MATERIALS NEEDED:
- box
- scissors
- tape
- rubber bands
- pen
- box
- feathers
- popsicle sticks
- string
- push pin

TIME: 60 mins
DIFFICULTY: ⭐⭐⭐⭐

PRO TIP: You can disconnect the wire here
4. Place the other littlebits inside the back of the box.
5. Rubber band the servo to the popsicle stick.
7. Hang above bed or try playing with your cat!

What other material can wake you up?

Set time and take a nap!
PROJECT 13: Invent a magical accessory for nighttime bike riding.

UNIHORN HELMET

Start with this circuit:

1. Measure and cut a piece of cardboard to fit along the top of your helmet.
2. Cut cardboard triangles that will interlock.
3. Make the inner horn structure.
4. Roll the inner horn structure in colored paper.

What shape and size will your horn be?

Inner Horn Structure

Stay safe! Always use with an adult.

STAY SAFE! Always use with an adult.

Time: 2.5 hrs
Difficulty: 4
5. Feed light wire up through the base of the horn and out through the top.

6. Wrap the light wire down around the horn, leave some extra at the end.

7. Tape the base of the horn to the cardboard and tape the rest of the Bits modules as well.

8. Use the excess light wire to secure the cardboard to the helmet at the front.

9. Tie the cardboard base with the light wire.

10. Add hair! Fold and cut tissue paper. Give it a fluff and tape it to the top of the cardboard.

11. Tie the back of the cardboard down with a pipe cleaner.

RIDE OFF INTO THE SUNSET!

Make your own creature. How many horns does it have?
PROJECT 14: Build an intelligent vehicle with multiple functions.

HONKING TRICYCLE

1. Start with this circuit:
 - power
 - sound trigger
 - RGB LED
 - latch
 - wire
 - DC motor
 - wire
 - inverter
 - pulse
 - buzzer

 2. Cut foamcore base using cutter and ruler.

 3. Make axle holder with foamcore and glue to the back of the base.

 4. Cut slot down center that is wide enough for a piece of foamcore to slide in.

 5. This is the back, leave space here.

 6. STAY SAFE! Always use with an adult.

 TIME: 2 hrs
 DIFFICULTY: ⭐⭐⭐⭐

MATERIALS NEEDED:
- box cutter
- hot glue
- wood drill shapers
- tape
- marker
- ruler
- hole puncher
- plastic cup
- foamcore
- colored paper
- popsicle sticks

ADJUST SPEED OF THE HONK with screwdriver to be less sensitive.

ATTACH TO THE BASE with glue and nail.
4 Make back wheels
- Trace a cup
- Cut out 2 circles
- Poke skewer through circle and put a dab of glue...
 ... carefully cut the point off...
 ... then thread through axle holder and then add the other wheel

5 Make the back axle
- Cut off end of popsicle stick, then attach wheel to motorMate

6 Make and mount the front wheel
- Place a larger wheel and stick popsicle stick through the center
- Decorate and RIDE ON!

7 Cut off end of popsicle stick, then attach wheel to motorMate

8 Place littleBits on top of base
- Make a loud noise to ride on, make another loud noise to stop and honk

9 Tape down
- Make a loud noise to ride on, make another loud noise to stop and honk

Try different sized circles for your wheels
PROJECT 15: Give life to a cardboard box.

ROBOT PROJECT 15: Give life to a cardboard box.

TIME: 2 hrs
DIFFICULTY: 1

1. Start with this circuit
 - power
 - sound trigger
 - wire
 - pulse
 - timeout
 - slide dimmer
 - wire
 - DC motor

2. Cut a flap in the back of a box.
 - wire
 - box cutter
 - hot glue
 - paper
 - popsicle sticks
 - DC motor

3. Use a small cup to trace 3 circles on cardboard.
 - cardboard
 - popsicle sticks
 - hot glue

STAY SAFE! Always use with an adult.

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

We used a tissue box. What do you have at home?

Use screwdriver to set how long your robot rolls.

Set robot's speed

Turn off/mode

Adjust sensitivity

Sharp! Be careful!

STAY SAFE!

Always use with an adult.

Plus the motorMate

We used a tissue box.

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!

Ruler

See this tutorial with video extras at littleBits.cc/deluxe

These are your robot's wheels!

What do you have at home?

Try other sizes!
4. Cut slots for cardboard wheels in base of the box.

5. Poke holes in center of smaller wheels. Stick the skewer through wheels and cut to size.

6. Stick a popsicle stick through the center of the 2.5 inch cardboard wheel.

7. Place motor with motor-Mate and wheel in the center slot of the box base.

8. Place a cardboard shelf inside box.

We recommend this size, but you can try others!

You can bend a piece of cardboard to make the shell!
1. Use a smaller box to make the robot head.
2. Cut out small holes for the eyes.
3. What will your robot’s eyes look like?
4. Adjust sound trigger with screwdriver.
5. Connect Bits modules and tape down inside on shelf.
6. Cut hole for servo and stick through box, tape in place.
7. Slide dimmer adjusts speed of robot wheel.
8. Make 2 arms and tape to servo and other side of the box.
9. Tape or glue head to the top of the box.
10. Set pulse.
11. Set time to whatever you like.
12. keep making noise to get him waving to you!
LITTLEBITS.CC/UPLOAD
Upload your project and you may be handsomely rewarded. We regularly feature awesome community projects and send out exclusive gifts.

Visit us online where we’ve got tons more projects and tips and tricks for every Bits module. Check out other littleBits in the expanding library.

Online we’ll show you how to make this great SWIMMING SHARK www.littleBits.cc/shark

and TONS MORE PROJECTS at www.littleBits.cc/deluxe

This booklet’s over but the fun’s not done.

EXPLORATION SERIES
Base Kit
Premium Kit

INDIVIDUAL BITS™ MODULES
pressure sensor
motion trigger
bargraph
fan

Want More? You got it!

Make more! Some great additions to your Deluxe Kit. www.littleBits.cc/products