
SAMPLE CHAPTER

Building the Web of Things
WITH EXAMPLES IN NODE.JS AND RASPBERRY PI

by Dominique D. Guinard
Vlad M. Trifa

Sample Chapter 2

Copyright 2016 Manning Publications

brief contents
PART 1 BASICS OF THE IOT AND THE WOT 1

1 ■ From the Internet of Things to the Web of Things 3
2 ■ Hello, World Wide Web of Things 29
3 ■ Node.js for the Web of Things 59
4 ■ Getting started with embedded systems 83
5 ■ Building networks of Things 109

PART 2 BUILDING THE WOT ..141

6 ■ Access: Web APIs for Things 143
7 ■ Implementing web Things 175
8 ■ Find: Describe and discover web Things 214
9 ■ Share: Securing and sharing web Things 248

10 ■ Compose: Physical mashups 279

Hello, World Wide Web
of Things
Before we dive head first into the Web of Things architecture and show how to
implement it from scratch, we want to give you a taste of what the Web of Things
looks like. This chapter is structured as a set of exercises where you’ll build tiny web
applications that use data generated by a real device. Each exercise will be a
smooth introduction to the many problems and technical issues that you’ll face
when building web-connected devices and applications that interact with them.

 In this chapter, you’ll have the opportunity to get your hands dirty and code some
simple (and less simple) Web of Things applications. Oh, you don’t have a device
yet? No problem; just use ours! To make it possible for you to do those exercises

This chapter covers
■ A sneak peek at the different levels of the Web of

Things architecture
■ Accessing devices with HTTP, URLs, WebSockets,

and browsers
■ Working with REST APIs to consume JSON data
■ Learning about the notion of web semantics
■ Creating your first physical mashup
29

30 CHAPTER 2 Hello, World Wide Web of Things
without having to buy a real device, we connected our own device to the web so you can
access it from your computer over the Web. Of course, if you already have a device, you
can also download the source code used in this chapter and run it on your own device.
How to run the code on the device will be detailed later, in chapter 7.

2.1 Meet a Web of Things device
This chapter is organized as a series of short and sweet exercises. Each exercise allows
you to interact with an actual Web of Things device in our office that’s live 24/7. This
will allow you to do the exercises without having a real device next to you.

The device in our office is the Raspberry Pi 2 (or just Pi for friends and family) shown
in figure 2.1, which we’ll describe in detail in chapter 4. If you’ve never seen one, you
can think of a credit card–sized computer board with a few sensors attached to it and
connected to our local network and the web via an Ethernet cable. In our setup, the Pi
acts as a gateway to various sensors or devices attached to it, so you can interact with
those resources through the Web. Gateways are described in detail in chapter 7, but

Temperature and humidity sensor

PIR sensor The Pi The camera

LCD

Figure 2.1 The Raspberry Pi and webcam you are accessing as they are set up in our London office

31Meet a Web of Things device
for now just remember that the Pi runs a web server that allows you to access those
resources over the Web, as shown in figure 2.2..

 At the time of writing, we have a liquid crystal display (LCD), a camera, a tempera-
ture sensor, and a PIR sensor connected to our Raspberry Pi. We’ll keep adding vari-
ous sensors and actuators to it over time, so you’re welcome to experiment and go well
beyond the examples we provide here. You’ll soon realize that the various techniques
and patterns described in this book will allow you to quickly extend and customize the
examples we provide to any device, sensor, or object you can think of.

2.1.1 The suspect: Raspberry Pi

We’ll introduce the Raspberry Pi in greater detail in chapter 4, so all you need to
understand for now is that a Pi is a small computer to which you can connect multiple
sensors and accessories. It offers all the features you would expect from a desktop
computer but with a lower power consumption and smaller form factor. Moreover,
you can attach all sorts of digital sensors or actuators to it using the input/output
(I/O) pins. Actuator is an umbrella term for any element attached to a device that has
an effect on the real world, for example, turning on/off some LEDs, displaying a text
on an LCD panel, rotating an electric motor, unlocking a door, playing some music,
and so on. In the Web of Things, just as you send write requests to a web API using
HTTP, you do the same to activate an actuator. Now back to our exercises. The first
thing you need to do is to download the examples used in these pages from our repos-
itory here: http://book.webofthings.io.

 You can check out the repository on your own computer, and in it you’ll find a few
folders—one for each chapter. The exercises in this chapter are located in the folder

Your HTTP
client application

devices.webofthings.io/camera
A Wi-Fi connected camera

Our office in London

devices.webofthings.io/pi/sensors/pir
Passive infrared sensor

HTTP

Your house

devices.webofthings.io/pi
Raspberry Pi 2 with LCD and sensors

devices.webofthings.io/pi/sensors/temperature
Temperature sensor

HTTP

devices.webofthings.io
Public URL of the Pi

in our office

Figure 2.2 The setup of devices and sensors used in the examples of this chapter

http://book.webofthings.io

32 CHAPTER 2 Hello, World Wide Web of Things
chapter2-hello-wot/client. If you’re wondering about the code for the server, worry
not! You’ll learn how to build this in the rest of the book.

2.2 Exercise 1—Browse a device on the Web of Things
We’ll start our exploration of the Web of Things with a simple exercise where you have
almost nothing to do but click on a few links in your browser. The first point we want
to illustrate is that on the Web of Things, devices can offer simultaneously a visual user
interface (web pages) to allow humans to control and interact with them and an appli-
cation programming interface (API) to allow machines or applications to do the same.

2.2.1 Part 1—The web as user interface

In this first exercise, you’ll use your browser to interact with some of the real Web
of Things devices connected in our office. First, have a glimpse of what the setup in
our office looks like through a webcam; see figure 2.3. Open the following link in
your favorite browser to access the latest image taken by the web cam: http://
devices.webofthings.io/camera/sensors/picture. This link will always return the latest
screenshot taken by our camera so you can see the devices you will play with (try it at
night—at night it’s even more fun!). You won’t see the camera itself, though.

 You probably noticed that the URL you typed had a certain path structure. Let’s play
a bit with this structure and go back to the root of this URL, where you’ll see the
homepage of the gateway that allows you to browse through the devices in our office
(figure 2.4). Enter the following URL in your browser: http://devices.webofthings.io.

How to get the code examples in this chapter

We use the GitHuba service to synchronize code between our computer and our Pi.
As an alternative, the Bitbucketb service works and is configured in a similar manner.
Both services are based on the Git source version control system, and the source
code for all the chapters is available from GitHub (here’s the link: http://book
.webofthings.io). The examples for this chapter are located in the chapter2-hello-wot
folder.

If you’re unfamiliar with Git and its commands, don’t worry—there’s plenty of infor-
mation about this on the web, but here are the most vital commands to work with it:

■ git clone—Fetches a version of a repository locally. For the book code you
need to use the recursive option that will clone all the sub-projects as well:
git clone https://github.com/webofthings/wot-book --recursive.

■ git commit –a –m "your message"—Commits code changes locally.
■ git push origin master—Pushes the last commits to the remote reposi-

tory (origin) on the master branch.

a GitHub is a widely popular, web-based, source code management system. Many open source
projects are hosted on GitHub, because, well, it’s pretty awesome. Here’s an excellent intro to
GitHub: http://bit.ly/intro-git.

b https://bitbucket.com

http://book.webofthings.io
http://book.webofthings.io
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io
http://bit.ly/intro-git
https://bitbucket.com

33Exercise 1—Browse a device on the Web of Things
Your logo here!

Your text here!

Figure 2.3 The web page of the camera used in our setup. The image is a live screenshot
taken by the camera.

The WoT Pi

Figure 2.4 The HTML homepage of the gateway of our WoT device. The two hyperlinks at the
bottom of the page allow you to access the pages of the devices connected to the gateway.

34 CHAPTER 2 Hello, World Wide Web of Things
This URL will always redirect you to the root page of the gateway running in our office,
which shows the list of devices attached to it. Here, you can see that two devices are
attached to the gateway:

■ A Raspberry Pi with various sensors and actuators
■ A webcam (the one you accessed earlier)

Note that this page is automatically generated based on which physical devices we
have attached to it, so you might see a few more devices or sensors as we attach them.
Yes, although it looks like any other web page, it’s actually real data served in real time
from real devices that are in a real office!

 Now, click the My WoT Raspberry Pi link to access the root page of the device
itself. Because you followed a link in your browser, you’ll see that the URL has changed
to http://devices.webofthings.io/pi, as shown in figure 2.5.

 This is another root page—the one of the device this time. In this case, we just
appended /pi to the root URL of the gateway.

 Coming back to our device root page, hover with your mouse above the various
links to see their structure, and then click The list of sensors link. You’ll see the URL
change again to this (figure 2.6): http://devices.webofthings.io/pi/sensors.

Other links

Sensors

Actuators

Device metadata

Figure 2.5 The homepage of the Raspberry Pi. Here, you can use the links at the bottom to browse and
explore the various resources offered by this device; for example, its sensors and actuators.

http://devices.webofthings.io/pi
http://devices.webofthings.io/pi/sensors

35Exercise 1—Browse a device on the Web of Things
So far, it’s pretty straightforward: your browser is asking for an HTML page that shows
the list of /sensors of the device /pi connected to the devices.webofthings.io gate-
way. Remember that there’s also a camera connected to this, so in your browser address
bar replace /pi/ with /camera/ in the URL and you’ll be taken directly to the Sensors
page of the camera: http://devices.webofthings.io/camera/sensors; see figure 2.7.

Temperature
sensor

Figure 2.6 The list of sensors on the Pi. You can click each of them and see the latest known value
for each.

Link to the sensor

Figure 2.7 The sensors on the camera. There’s only one sensor here, which is the current image.

http://devices.webofthings.io/camera/sensors

36 CHAPTER 2 Hello, World Wide Web of Things
Now, go back to the list of sensors on your Pi and see the various sensors attached to
the device. Currently, you can access three sensors: temperature, humidity, and pas-
sive infrared. Open the Temperature Sensor link and you’ll see the temperature sen-
sor page with the current value of the sensor. Finally, just like you did for the sensors,
go to the actuators list of the Pi and open the Actuator Details page (see figure 2.13)
at the following URL: http://devices.webofthings.io/pi/actuators/display.

 The display is a simple LCD screen attached to the Pi that can display some text,
which you’ll use in exercise 2.4. You can see the information about this actuator—in
particular the current value being displayed, the API description to send data to it, and
a form to display new data. You won’t use this form for now, but this is coming in sec-
tion 2.4.

2.2.2 Part 2—The web as an API

In part 1, you started to interact with the Web of Things from your browser. You’ve
seen how a human user can explore the resources of a device (sensors, actuators, and
so on) and how to interact with that device from a web page. All of that is done by
browsing the resources of a physical device, just as you’d browse the various pages of a
website. But what if instead of a human user, you want a software application or
another device to do the same thing, without having a human in the loop? How can
you make it easy for any web client to find a device, understand what it does, see what
its API looks like, determine what commands it can send, and so on?

 Later in the book, we’ll show you in detail how to do this. For now, we’ll illustrate
how the web makes it easy to support both humans and applications by showing you
what another device or application sees when it browses your device.

 For this exercise, you’ll need to have Chrome installed and install one of our favor-
ite browser extensions called Postman.1 Or you could use cURL2 if you’d rather use
the command line. Postman is a handy little app that will help you a lot when working
with a web API because it allows you to easily send HTTP requests and customize the
various options of these requests, such as the headers, the payload, and much more.
Postman will make your life easier throughout this book, so go ahead and install it.

 In part 1, your browser is simply a web client requesting content from the server.
The browser automatically asks for the content to be in HTML format, which is
returned by the server and then displayed by the browser.

 In part 2, you’ll do almost the same exercise as in part 1 but this time by requesting
the server to return JSON documents instead of an HTML page. JSON is pretty much
the most successful data interchange format used on the internet. It has an easy-to-
understand syntax and is lightweight, which makes it much more efficient to transmit

1 Get it here: http://www.getpostman.com/
2 cURL is a command-line tool that allows you to transfer data using various protocols, among which is HTTP.

If it’s not preinstalled on your machine, you can easily install it on Mac, Linux, or Windows. Website: http://
curl.haxx.se/

http://devices.webofthings.io/pi/actuators/display
http://www.getpostman.com/
http://curl.haxx.se/
http://curl.haxx.se/

37Exercise 1—Browse a device on the Web of Things
when compared to its old parent, XML. In addition, JSON is easy for humans to read
and write and also for machines to parse and generate, which makes it particularly
suited to be the data exchange format of the Web of Things. The process of asking for
a specific encoding is called content negotiation in the HTTP 1.1 specification and will be
covered in detail in chapter 6.

STEP 1—GETTING THE LIST OF DEVICES FROM THE GATEWAY

Just as you did before, you’ll send a GET request to the root page of the gateway to get
the list of devices. For this you’ll enter the URL of the gateway in Postman and click
Send, as shown in figure 2.8.

 Because most web servers return HTML by default, you’ll see in the body area the
HTML page content returned by the server (4). This is basically what happens behind
the scenes each time you access a website from your browser. Now to get JSON instead
of HTML, click the Headers button and add a header named Accept with applica-
tion/json in the value, and click Send again, as shown in figure 2.9. Adding this
header to your request is telling the HTTP server, “Hey, if you can, please return me

1. Verb 2. URL 3. Click Send

4. Tada! The response.

Figure 2.8 Getting the root page of the gateway using the Postman web client. The request is an HTTP GET (1)
on the URL of the gateway (2). The response body will contain an HTML document (4).

38 CHAPTER 2 Hello, World Wide Web of Things
the results encoded in JSON.” Because this is supported by the gateway, you’ll now see
the same content in JSON, which is the machine equivalent of the web page you’ve
retrieved before, but this time with only the content and no visual elements (that is,
the HTML code).

 The JSON body returned contains a machine-readable description of the devices
attached to the gateway and looks like this:

{
 "pi": {
 "id": "1",
 "name": "My WoT Raspberry Pi",
 "description": "A simple WoT-connected Raspberry Pi for the WoT book.",
 "url": "http://devices.webofthings.io/pi/",
 "currentStatus": "Live",
 "version": "v0.1",
 "tags": [
 "raspberry",
 "pi",
 "WoT"
],
 "resources": {
 "sensors": {
 "url": "sensors/",
 "name": "The list of sensors"
 },
 "actuators": {
 "url": "actuators/",
 "name": "The list of actuators"

1. Toggle the headers 2. Ask for JSON

Figure 2.9 Getting the list of devices connected to the gateway via Postman. The Accept header is now set to
application/json to ask for the results to be returned in JSON.

39Exercise 1—Browse a device on the Web of Things
 }
 },
 "links": {
 "meta": {
 "rel": "http://book.webofthings.io",
 "title": "Metadata"
 },
 "doc": {
 "rel": "https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
 "title": "Documentation"
 },
 "ui": {
 "rel": ".",
 "title": "User Interface"
 }
 }
 },
 "camera": {
 [... description of the camera object...]
 }
}

In this JSON document, you can see two first-level elements (pi and camera) that rep-
resent the two devices attached to the gateway, as well as a few details about them, such
as their URL, name, ID, and description. Don’t worry for now if you don’t understand
everything here; all of this will become crystal clear to you in a few chapters.

STEP 2—GETTING A SINGLE DEVICE

Now change the URL of the request in Postman so it points back to the Pi device
(which is exactly the same as the one you typed in your browser in part 1), and click
Send again, as shown in figure 2.10.

Figure 2.10 Getting the JSON representation of the Raspberry Pi. The JSON payload contains
metadata about the device as well as links to its sub-resources.

40 CHAPTER 2 Hello, World Wide Web of Things
The body now contains the JSON object of the Pi except with the same information as
shown previously, and you can see that the resources object has sensors, actuators,
and so on:

"resources": {
 "sensors": {
 "url": "sensors/",
 "name": "The list of sensors"
 },
 "actuators": {
 "url": "actuators/",
 "name": "The list of actuators"
 }
}

STEP 3—GETTING THE LIST OF SENSORS ON THE DEVICE

To get to the list of sensors available on the device, just as you did before, append
/sensors to the URL of the Pi in Postman and send the request again. An HTTP GET
there will return this JSON document in the response:

{
 "temperature": {
 "name": "Temperature Sensor",
 "description": "A temperature sensor.",
 "type": "float",
 "unit": "celsius",
 "value": 23.4,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "frequency": 5000
 },
 "humidity": {
 "name": "Humidity Sensor",
 "description": "A temperature sensor.",
 "type": "float",
 "unit": "percent",
 "value": 38.9,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "frequency": 5000
 },
 "pir": {
 "name": "Passive Infrared",
 "description": "A passive infrared sensor. True when someone present.",
 "type": "boolean",
 "value": true,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "gpio": 20
 }
}

You can see that the Pi has three sensors attached to it (respectively, temperature,
humidity, and pir), along with details about each sensor and its latest value.

41Exercise 1—Browse a device on the Web of Things
STEP 4—GET DETAILS OF A SINGLE SENSOR

Finally, you’ll get the details of a specific sensor, so append /temperature to the URL
in Postman and click Send again. The URL should now be http://devices.webofth-
ings.io/pi/sensors/temperature, as shown in figure 2.11.

 You will get detailed information about the temperature sensor, in particular the
latest value that was read (the value field). If you only want to retrieve the sensor
value, you can append /value to the URL of the sensor to retrieve it, which also work
for other sensors:

{
 "value":22.4
}

2.2.3 So what?

Now it’s time for you to play around with the different URLs you’ve seen so far in this
exercise. Look at how they differ and are structured, browse around the device, and try
to understand what data each sensor has, its format, and so on. As an extension look at
the electronic devices around you—the appliances in your kitchen or the TV or sound
system in your living room, the ordering system in the café, or the train notification sys-
tem, depending on where you’re reading this book from. Now imagine how the services
and data offered by all these devices could all have a similar structure: URLs, content,
paths, and so on. Try to map this system using the same JSON structure you’ve just seen,
and write the URLs and JSON object that would be returned.

1. URL of the temperature sensor

2. Latest sensor value 3. Timestamp when the value was measured

Figure 2.11 Retrieve the temperature sensor object from the Raspberry Pi. You can see the latest
reading (23.4 degrees Celsius) and when it took place (at 14:43 on October 4, 2015).

http://devices.webofthings.io/pi/sensors/temperature
http://devices.webofthings.io/pi/sensors/temperature

42 CHAPTER 2 Hello, World Wide Web of Things

Wait
page
then

t
e
r.
 What you have seen is that both humans and applications get data using exactly
the same URL but using different encoding formats (HTML for humans, JSON for
applications). Obviously, the data in both cases is identical, which makes it easy for
application developers to go back and forth from one format to the other. This is one
example of how simple—yet powerful—web technologies can be. Thanks to
immensely popular web standards such as HTTP and URLs, it becomes straightforward
to interact with the real world from any web browser. You'll learn much more about
these concepts in chapter 6 onward.

2.3 Exercise 2—Polling data from a WoT sensor
In the first exercise you learned about the structure of a WoT device and how it works.
In particular, you saw that every element of the device is simply a resource with a
unique URL that can be used by both people and applications to read and write data.
Now you’re going to put a developer hat on and start coding your first web application
that interacts with this Web of Things device.

2.3.1 Part 1—Polling the current sensor value

For this exercise, go to the folder you checked out from GitHub into the chapter2-
hello-wot/client folder. Double-click the ex-2.1-polling-temp.html file to open it in a
modern browser.3 This page displays the value of the temperature sensor on the Pi in
our office and updates this value every five seconds by retrieving it in JSON, exactly as
you saw in figure 2.11.

 This file uses jQuery4 to poll data from the temperature sensor on our Pi. Now
open this file in your favorite code editor and look at the source code. You’ll see two
things there:

■ An <h2> tag showing where the current sensor value will be written.
■ A JavaScript function called doPoll() that reads the value from the Pi, displays

it, and calls itself again five seconds later. This function is shown in the follow-
ing listing.

$(document).ready(
 function doPoll() {
 $.getJSON('http://devices.webofthings.io/pi/sensors/temperature',
 function (data) {
 console.log(data);

3 We fully tested our examples on Firefox (>41) and Chrome (>46) and suggest you install the latest version of
these. Safari (>9) should also work. If you really want to use Internet Explorer, please be aware that you’ll need
version 10 onward; older versions won’t work.

4 jQuery is a handy JavaScript library that makes it easier to do lots of things, such as talk to REST APIs, manip-
ulate HTML elements, handle events, and so on. Learn more here: http://jquery.com/.

Listing 2.1 Polling for the temperature sensor

 until the
 is loaded and
call doPoll().

Use the AJAX helper to ge
the JSON payload from th

temperature senso

When the response arrives,
this function is called.

http://jquery.com/

43Exercise 2—Polling data from a WoT sensor

ent
ue)

d.
 $('#temp').html(data.value + ' ' + data.unit);
 setTimeout(doPoll, 5000);
 });
 });

When developing (and especially debugging!) web applications, it might be useful to
display content from JavaScript outside the page; for this you have a JavaScript con-
sole. To access it in Chrome, right-click somewhere on the page and select Inspect Ele-
ment; then look for the console that appears below where you can see the HTML code
of the current page. The console.log(data) statement displays the data JSON object
received from the server in this console.

2.3.2 Part 2—Polling and graphing sensor values

This is great, but in some cases you’d like to display more than the current value of the
sensor—for example, a graph of all readings in the last hour or week. Open the sec-
ond HTML file in the exercises (ex-2.2-polling-temp-chart.html). This is a slightly
more complex example that keeps track of the last 10 values of the temperature sen-
sor and displays them in a graph. When you open this second file in your browser,
you’ll see the graph being updated every two seconds, as shown in figure 2.12.

 We built this graph using Google Charts,5 a nice and lightweight JavaScript library
for displaying all sorts of charts and graphs. See our annotated code sample in the
next listing.

5 https://developers.google.com/chart/

Select the "temp" HTML
element and update its cont
using the data.value (the val
and data.unit (the unit)
returned in the JSON payloa

The doPoll() function sets a
timer to call itself again in 5

seconds (5000 milliseconds).

Figure 2.12 This graph gets a new value every few seconds from the device and
is updated automatically.

https://developers.google.com/chart/

Initia
Googl ray

tain
nts.
44 CHAPTER 2 Hello, World Wide Web of Things

$(document).ready(function () {
 var maxDataPoints = 10;
 var chart = new google.visualization.LineChart($('#chart')[0]);
 var data = google.visualization.arrayToDataTable([
 ['Time', 'Temperature'],
 [getTime(), 0]
]);

 var options = {
 title: 'Temperature',
 curveType: 'function',
 animation: {
 duration: 1000,
 easing: 'in'
 },
 legend: {position: 'bottom'}
 };

 function addDataPoint(dataPoint) {
 if (data.getNumberOfRows() > maxDataPoints) {
 data.removeRow(0);
 }
 data.addRow([getTime(), dataPoint.value]);
 chart.draw(data, options);
 }

 function getTime() {
 var d = new Date();
 return d.toLocaleTimeString();
 }

 function doPoll() {
 $.getJSON('http://devices.webofthings.io/pi/sensors/temperature/value',
 function (result) {
 addDataPoint(result);
 setTimeout(doPoll, 2000);
 });
 }

 doPoll();
 });

2.3.3 Part 3—Real-time data updates

In the previous exercises, polling the temperature sensor of the Pi worked just fine.
But this seems somewhat inefficient, doesn’t it? Instead of having to fetch the temper-
ature from the device every two seconds or so, wouldn’t it be better if our script was
informed of any change of temperature when it happens, and only if the value changes?

 As we’ll explore to a greater extent in chapter 6, this has been one of the major
impedance mismatches between the model of the web and the event-driven model of
wireless sensor applications. For now, we’ll look at one way of resolving the problem

Listing 2.2 Polling and displaying a sensor reading

lize the
e chart. Create an ar

that will con
the data poi

Configure the parameters
of the chart.

Add a data point to the chart
data and remove the oldest
one if needed (if there are
already 10 points available).

Redraw the chart
with the new data.

Poll the temperature
sensor like before.

When the new readings are
returned, use them to call the
addDataPoint() function.

45Exercise 2—Polling data from a WoT sensor
using a relatively recent add-on to the web: WebSockets. In a nutshell, WebSockets are
simple yet powerful mechanisms for web servers to push notifications to web clients
introduced as part of the efforts around the HTML5 standards.

 The WebSockets standard comprises two distinct parts: one for the server and one
for the client. Since the server is already implemented for us, the only specification
we’ll use here is the client part. The client WebSockets API is based on JavaScript and
is relatively simple and straightforward. The two lines of code in the following listing
are all you need to connect to a WebSocket server and display in the console all mes-
sages received.

var socket = new WebSocket('ws://ws.webofthings.io');
socket.onmessage = function (event) {console.log(event);};

Let’s get back to our examples. Go to the folder. Double-click the ex-2.3-websockets-
temp-graph.html file to open it in your favorite browser. What you see on the page is
exactly the same as in the previous exercise, but under the hood things are quite dif-
ferent. Have a look at the new code shown in the next listing.

var socket = new

WebSocket('ws://devices.webofthings.io/pi/sensors/temperature');

socket.onmessage = function (event) {
 var result = JSON.parse(event.data);
 addDataPoint(result);
};

socket.onerror = function (error) {
 console.log('WebSocket error!');
 console.log(error);
};

In this exercise, you don’t poll periodically for new data but only register your interest
in these updates by subscribing to the /sensors/temperature endpoint via Web-
Sockets. When the server has new temperature data available, it will send it to your cli-
ent (your web browser). This event will be picked up by the anonymous function you
registered and will be given as a parameter the event object that contains the latest
temperature value.

2.3.4 So what?

Let’s take a step back and reflect on what you did in this exercise: you managed to
communicate with an embedded device (the Raspberry Pi) that might be on the other

Listing 2.3 Connecting to a WebSocket and listening for messages

Listing 2.4 Register to a WebSocket and get real-time temperature updates

Create a WebSocket subscription to the
temperature sensor. Note that the URL
uses the WebSocket protocol (ws://...).

Register this anonymous function
to be called when a message
arrives on the WebSocket.

Register this other anonymous
function to be triggered when an
error occurs on the WebSocket.

46 CHAPTER 2 Hello, World Wide Web of Things
side of the world (if you don’t happen to be living in rainy and beautiful England).
From a web page you were able to fetch, on a regular basis, data from a sensor
connected to the device and display it on a graph. Not bad for a simple web page of 60
lines of HTML, JavaScript, and CSS code. You didn’t stop there: with fewer than 10
lines of JavaScript you also subscribed to notifications from our Pi using WebSockets
and then displayed the temperature in our office in real time. As an extension of this
exercise, you could write a simple page that automatically fetches the image from the
camera (ideally, you’d avoid doing this 25 times per second!).

 If this was your first encounter with the Web of Things, what should strike you at
this stage is the simplicity of these examples. Let’s imagine for a second that our Pi
wasn’t actually providing its data through HTTP, JSON, or WebSockets but via a “vin-
tage” XML-based machine-to-machine application stack such as DPWS (if you’ve never
heard about it, don’t worry; that’s exactly our point!). Basically, you wouldn’t be able
to talk directly to the device from your browser without a lot more effort. You would
have be forced to write your application using a lower-level and more complex lan-
guage such as C or Java. You wouldn’t have been able to use widespread concepts and
languages such as URLs, HTML, CSS, and JavaScript. This is also what the Web of
Things is about: making things from the real world programmable and universally
accessible by bringing them closer to the masses of web developers, where a lot of
today’s innovations are happening.

 As mentioned before, in this book you’ll learn a lot more about the art of API craft-
ing for physical things. In chapter 6 we’ll look at HTTP, REST, and JSON as well as at
the real-time web, and in chapter 7 we'll discover how to use gateways to bring other
protocols and systems closer to the goodness of the web.

2.4 Exercise 3—Act on the real world
So far, you’ve seen various ways to read all sorts of sensor data from web devices. What
about “writing” to a device? For example, you’d like to send a command to your
device to change a configuration parameter. In other cases, you might want to control
an actuator (for example, open the garage door or turn off all lights).

2.4.1 Part 1—Use a form to update text to display

To illustrate how you can send commands to an actuator, this exercise will show you
how to build a simple page that allows you to send some text to the LCD connected to
the Pi in our office. To test this functionality first, open the actuator page of the LCD:
http://devices.webofthings.io/pi/actuators/display.

 On this page (shown in figure 2.13), you now see the various properties of the LED
actuator. First, you see brightness, which you could change (but can’t, because we
made it read-only). Then, you have content, which is the value you want to send, and
finally there is the duration, which specifies how long the text will be displayed on
our LCD. Use Postman to get the JSON object that describes the display actuator by

http://devices.webofthings.io/pi/actuators/display

47Exercise 3—Act on the real world
entering the URL shown in the last paragraph, as you learned in the first exercise of
this chapter:

{
 "name": "LCD Display screen",
 "description": "A simple display that can write commands.",
 "properties": {
 "brightness": {
 "name": "Brightness",
 "timestamp": "2015-02-01T21:06:02.913Z",
 "value": 80,
 "unit": "%",
 "type": "integer",
 "description": "Percentage of brightness of the display. Min is 0
 which is black, max is 100 which is white."
 },
 "content": {
 "name": "Content",
 "timestamp": "2015-02-01T21:06:32.933Z",
 "type": "string",
 "description": "The text to display on the LCD screen."
 },
 "duration": {
 "name": "Display Duration",
 "timestamp": "2015-02-01T21:06:02.913Z",
 "value": 5000,
 "unit": "milliseconds",
 "type": "integer",
 "read-only": true,
 "description": "The duration for how long text will be displayed
 on the LCD screen."
 }
 },
 "commands": [
 "write",
 "clear",
 "blink",
 "color",
 "brightness"
]
}

Obviously, it wouldn’t be much fun to display something in our office if you couldn’t
see what was being displayed. For this reason, we’ve set up a webcam where you can
see the LCD on our Pi, so you can always see what is displayed on it. Here’s the URL:
http://devices.webofthings.io/camera/sensors/picture. Go ahead; open this page,
and you’ll see the latest picture of the camera you saw in figure 2.3 (to see the latest
image, refresh the page).

 Now you’ll send a new message to the Pi for it to be displayed by the LCD. The
content property is always the current message displayed on the LCD, so to update it

http://devices.webofthings.io/camera/sensors/picture

48 CHAPTER 2 Hello, World Wide Web of Things
you POST a new value for that property with the message to be displayed (for example,
{"value": "Hello World!"}) as a body. You can go ahead and try this in Postman, but
the simplest way to do it is through the page of the display actuator in your browser:
http://devices.webofthings.io/pi/actuators/display. See figure 2.13 for the details of
the LCD actuator.

 On this page you can see the various properties of the LCD actuator. Some are
editable, and some aren’t. The content property is the one you want to edit, so enter
the text you’d like to display and click Update. If all works fine, you’ll see a JSON pay-
load like this:

{
 "id":11,
 "messageReceived":"Make WoT, not war!",
 "displayInSeconds":20
}

The returned payload contains the message that will be displayed, a unique ID for
your message, and an estimated delay for when your text will appear on the LCD
screen (in seconds), so you know when to look at the camera image to see your text.

2.4.2 Part 2—Create your own form to control devices

Now let’s build a simple HTML page that allows you to send all sorts of commands to a
web device using a simple form. From your browser, open the file ex-3.1-actuator-
form.html in the exercises folder and you’ll see the screen shown in figure 2.14.

Enter some
text here.

Figure 2.13 The details of the LCD actuator, with the various properties that you can set, for example,
the text that should be displayed next on the device

http://devices.webofthings.io/pi/actuators/display

49Exercise 3—Act on the real world

The f
the
expe
This page has an input text field and a Send to Pi button, as shown in the following
listing. Whatever text you enter will be displayed on the LCD screen of the Pi in our
office. Please keep it courteous, and because the API of our Pi is open to the public, we
decline all responsibility for what people write there.

<form action="http://devices.webofthings.io/pi/actuators/display/content/"
 method="post">
 <label>Enter a message:</label>
 <input type="text" name="value" placeholder="Hello world!">
 <button type="submit">Send to Pi</button>
</form>

This is a simple HTML form that sends an HTTP POST (value of method) to the URL of
the display (the value of action). The input text bar is called value (name="value") so
that the Pi knows what text to display. This method works well for a basic website. Unfor-
tunately, what you don’t see behind the scenes is that web browsers do not submit (nor
do they make it possible to submit) data to the server using a JSON payload body (as you
could easily do with Postman previously) but instead use a format called application/
x-www-form-urlencoded. The Pi needs to be able to understand this format in addition
to application/json in order to handle data input from HTML forms.

 HTML forms can use only the verbs POST or GET, not DELETE or PUT. It’s rather
unfortunate that even modern browsers don’t send the content of HTML forms as
JSON objects because of some obscure legacy reasons, but hey, c’est la vie!

 As you’ll see later in this book, the ability for all entities on the Web of Things to
receive and transmit JSON content is essential to guarantee a truly open ecosystem.
For this reason, we’ll show you how to send actual JSON from an HTML form page (by
using AJAX and JavaScript), because doing so is an essential part of communicating
with web devices.

 Open the ex-3.2-actuator-ajax-json.html file to see a similar form but this time with
a large piece of JavaScript, shown in the following listing.

(function($){ function processForm(e){
 $.ajax({
 url: 'http://devices.webofthings.io/pi/actuators/display/content/',
 dataType: 'json',
 method: 'POST',

Listing 2.5 Simple HTML form to send a command to an actuator

Listing 2.6 Send an HTTP POST with JSON payload from a form

Figure 2.14 This simple client-side
form allows you to send new text to
be displayed by the Pi.

The URL the request will be sent to

ormat of
data you
ct to get

The HTTP verb this
request will send

50 CHAPTER 2 Hello, World Wide Web of Things

The ac
you ar

(th
of

The c
inv

requ
 contentType: 'application/json',
 data: JSON.stringify({"value": $('#value').val()}),
 processData: false,
 success: function(data, textStatus, jQxhr){
 $('#response pre').html(JSON.stringify(data));
 },
 error: function(jqXhr, textStatus, errorThrown){
 console.log(errorThrown);
 }
 });
 e.preventDefault();
 }
 $('#message-form').submit(processForm);
})(jQuery);

In this code, a function called processForm() is defined, which takes the data from
the form, packs it into a JSON object, POSTs it to the Pi, and displays the result if suc-
cessful (or displays an error in the console otherwise). The url parameter specifies
the end-point URL (the Pi display), the method is the HTTP method to use, and the
contentType is the format of the content sent to the server (in this case application
/json). The last line attaches the event generated by a click of the Submit button of
the form #message-form to call the processForm() function.

 There is a variation of this code, ex-3.2b-actuator-ajax-form.html, which encodes
the data in the application/x-www-form-urlencoded format in place of JSON, as it’s
done with the simple form we showed in part 1 of exercise 3.

2.4.3 So what?

In this section you learned the basics of how to send data and commands to a device,
both using a form on a web page and from an API. You had a crash course in the limi-
tations, challenges, and problems of the modern web (don’t worry; there are many
more ahead!), in particular how different web browsers can interpret and implement
the same web standards differently. Finally, you learned how to use AJAX to bypass
these limitations and send JSON commands to a Raspberry Pi and control it remotely.

 We hope that after doing this exercise you realize that it’s straightforward to send
actuator commands over the web to all sorts of devices—as long as these are con-
nected to the web and offer a simple HTTP/JSON interface. But the last problem is
how to find a device nearby, understand its API, determine what functions are offered
by the device, and know what parameters you need to include in your command,
along with their type, unit, limitations, and the like. The next section will show you
how to solve this problem, so keep reading.

2.5 Exercise 4—Tell the world about your device
In the previous exercises you learned how devices can be easily exposed over the web
and then explored and used by other client applications. But those examples assumed
that you (as a human developer or as the application you wrote) know what the fields

The encoding of the
data you are sendingtual data

e sending
e content
the form) The callback to

invoke if the request
was successfulallback to

oke if the
est failed

Attach the processForm()
function to be called when
someone clicks Submit.

51Exercise 4—Tell the world about your device
of the JSON objects (for example, sensor or actuator) mean and how to use them. But
how is this possible? What if the only thing you know about a device is its URL and
nothing else?

 Imagine you’d like to build a web application that can control home automation
devices present in your local network. How can you ensure this application will always
work, even if you’re in someone else’s network and you don’t know anything about
the devices there?

 First, you need to find the devices at a network level (the device discovery problem).
In other words, how can your web application discover the root URL of all the devices
around you?

 Second, even if you happen to know (by some magic trick) the root URL of all Web
of Things–compatible devices around you, how can your application “understand”
what sensors or actuators these devices offer, what formats they use, and the meaning
of those devices, properties, fields, and so on?

 As you saw in exercise 2 (section 2.3.2), if you know the root URL of a device, you
can easily browse the device and find data about it and its sensors, services, and more.
This is easy because you’re a human, but imagine if you had a JSON document with
unintelligible words or characters and no documentation that explain what those
words mean—how would you know what the device does? And how would you know
it’s a device, for that matter?

 Open ex-4-parse-device.html in your browser and you’ll see a form prepopulated
with the URL of the Pi (figure 2.15). Click Browse This Device.

 This JavaScript code of ex-4-parse-device.html will read the root document of the
Raspberry Pi (as JSON) and generate a simple report about the device and its sensors,

Figure 2.15 A mini-browser that parses your device metadata and displays the results

52 CHAPTER 2 Hello, World Wide Web of Things

U
"m
e
th
in
d

GE
all
along with link to the documentation for this device. First, let’s look at the HTML code
to display the report, as shown in the next listing.

<form id="message-form">
 <input type="text" id="host" name="host" value="http://devices.webofth-

ings.io/pi"
placeholder="The URL of a WoT device" />
 <button type="submit">Browse this device</button>
</form>

<h4>Device Metadata</h4>
<p>Metadata. A general model used by this device can be found here:
<div id="meta"></div></p>
<p>Documentation. A human-readable documentation specifically for
this device can be found here: <div id="doc"></div></p>
<p>Sensors. The sensors offered by this device:

<div id="sensors"></div></p>
<ul id="sensors-list">

The first thing you can see is a form where you can enter the root URL of a device with
a Browse button. Then, there are some HTML text elements that will act as placehold-
ers (meta, doc, and so on). Now let’s look at the AJAX calls in the following listing.

(function ($) {
 function processForm(e) {

 var sensorsPath = '';

 $.ajax({
 url: $('#host').val(),
 method: 'GET',
 dataType: 'json',
 success: function (data) {
 $('#meta').html(data.links.meta.title + " <a href=\"" +
 data.links.meta.rel + "\">" + data.links.meta.rel + "");
 $('#doc').html(data.links.doc.title + " <a href=\"" +
 data.links.doc.rel + "\">" + data.links.doc.rel + "");

 sensorsPath = data.url + data.resources.sensors.url;

 $.ajax({
 url: sensorsPath,
 method: 'GET',
 dataType: 'json',
 success: function (data) {
 var sensorList = "";

 $('#sensors').html(Object.keys(data).length + " sensors
 found!");

Listing 2.7 A basic device browser

Listing 2.8 Retrieve and parse device metadata using AJAX JSON calls

GET the ROOT JSON of the device
and extract data from it.

pdate the
eta" and "doc"

lements with
e links found
 the root JSON
ocument. Store the URL

of the sensors
resource.T the list of

 sensors on
the device.

Callback function that
processes the sensors JSON
document; 'data' contains the
JSON object of the sensors.

53Exercise 4—Tell the world about your device
 for (var key in data) {
 sensorList = sensorList + "<a href=\"" + sensorsPath +
 key + "\">" + data[key].name + "";
 }

 $('#sensors-list').html(sensorList);
 },
 error: function (data, textStatus, jqXHR) {
 console.log(data);
 }
 });
 },
 error: function (data, textStatus, jqXHR) {
 console.log(data);
 }
 });

 e.preventDefault();
 }

 $('#message-form').submit(processForm);
})(jQuery);

Looking at this code, you can see that you first set the root JSON document of the
device using the URL entered in the form ($('#host').val()). If the JSON file has
been successfully retrieved, the success callback function will be triggered with the
data variable containing the root JSON document of the device (which was shown in
step 2 of section 2.2.2). Then you parse this JSON to extract the elements you’re look-
ing for; in this case the code is looking for a links element in the returned JSON
object (hence the data.links), which contains various links to get more information
about this device, which looks like the following code:

"links": {
 "meta": {
 "rel": "http://book.webofthings.io",
 "title": "Metadata"
 },
 "doc": {
 "rel":
"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
 "title": "Documentation"
 },
 "ui": {
 "rel": ".",
 "title": "User Interface"
 }
}

In particular, the meta element contains a link (value of rel) to the general model
used by this device (which describes the grammar used to describe the elements of
this device) and then a doc that links to a human-readable documentation that
describes the meaning (the semantics) and specific details of this particular device
(that is, which sensors are present and what they measure).

Loop through
all sensors.

Display the list
in the HTML.

54 CHAPTER 2 Hello, World Wide Web of Things
 The metadata document linked in the previous code is nothing more than a
machine-readable JSON document model that allows users to describe WoT devices in
a structured manner, along with a definition of the logic elements all WoT devices
must have. If hundreds of device manufacturers would use this same data model to
expose the services of their devices, it would mean that any application that can read
and parse this file would be able to read the JSON file returned by the device and
understand the components of the devices (how many sensors it has, their names or
limitations, their type, and so on).

 Now, what about the sensors or actuators themselves? The links element only
defined metadata (such as documentation) about the device, not the device contents
itself. To find the sensors contained in the device, you’ll have to parse the sensors
field of the resources element, which is what happens in the second AJAX call where
you do a GET on the sensors resource of the device. Once you get the sensors JSON
document, you iterate over each sensor and create a link to it using this pattern:

"+data[key].name+"

Here sensorsPath is the URL of the sensors resource (in this case http://devices
.webofthings.io/pi/sensors) to which you add the sensor ID of each sensor (key),
along with the name of the respective sensor (data[key].name).

2.5.1 So what?

If you didn’t understand all the details of the previous exercises, it’s perfectly fine—
there’s nothing wrong with you! What happened is that you got your first hands-on
crash course on the Semantic Web, or rather, on the hard problems it tries to solve. The
reason you’ve heard a lot about it yet never seen or used it (or understood it, for that
matter) is that it’s a complex problem for computers and people who program them:
how the hell do you explain the real world—and its existential questions—to a com-
puter? Well, it turns out you can’t really teach philosophy to your machine yet. But as
we’ve shown here and will detail in chapter 8, there are quite a few small tricks that you
can apply successfully that make the web—and computers—just a little smarter.

 You’ve seen how web devices can advertise their basic capabilities, data, and ser-
vices in a machine-readable manner. The fact that we used well-known web patterns
made it easy to build a web app interacting with our Things. Unfortunately, there’s no
single standard to define this information universally, and the JSON model we use is
something born out of trial and error over the years. In order to unlock the full poten-
tial of the Web of Things, we must be able to define all the details about an object
using a single data model with clear semantics that all machines and applications can
understand without any room for ambiguity. We’ll explore how to get there using web
and lightweight Semantic Web technologies in much more detail in chapter 8.

2.6 Exercise 5—Create your first physical mashup
In the previous exercises, you learned how to access a web device, understand the ser-
vice and data it offers, and read and write data from devices. In this exercise, we’ll

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/pi/sensors

55Exercise 5—Create your first physical mashup

temp
in t

from

Prep
to

use
th

the
show you how to build your first mashup. The concept of mashups originates from the
hip-hop scene to describe a song composed by taking samples of other songs. Simi-
larly, a web mashup is a web application that gets data from various sources, processes
it, and combines it to create a new application.

 Here, you’ll create not only a web mashup but a physical mashup—a web applica-
tion that uses data from a real sensor connected to the web. In this exercise you’re
going to take local temperature data from the Yahoo! Weather service, compare it
with the temperature sensor attached to the Pi in our office, and publish your results
to the LCD screen attached to the Pi in London. Finally, to see what your message
looks like, you’ll use the web API of the webcam to take a picture and display it on our
web page! See figure 2.16 for an illlustration of this process.

 Go ahead and open the file ex-5-mashup.html in both your editor and your
browser. This code is a little longer than what you’ve seen so far but not much more
complicated, as shown in the following listing.

$(document).ready(function () {
 var rootUrl = 'http://devices.webofthings.io';

 function mashup(name, location) {
 var yahooUrl = "https://query.yahooapis.com/v1/public/yql?q=select item
 from weather.forecast where woeid in (select woeid from geo.places(1)
 where text='" + location + "') and u='c'&format=json";
 $.getJSON(yahooUrl, function (yahooResult) {
 var localTemp =
 yahooResult.query.results.channel.item.condition.temp;
 console.log('Local @ ' + location + ': ' + localTemp);
 $.getJSON(rootUrl + '/pi/sensors/temperature', function (piResult) {
 console.log('Pi @ London: ' + piResult.value);
 publishMessage(prepareMessage(name, location, localTemp,
 piResult.value));
 });
 });
 }

Listing 2.9 Mashup function

Temperature
sensor

+
Yahoo

Weather

Message on
LCD screen

Webcam

Figure 2.16 A physical mashup
application. First (1), you retrieve the
local temperature from Yahoo Weather
and then the remote temperature from the
sensor attached to our Pi (2). You
compare it with the temperature in
London and send the results to an LCD
screen (3). When the screen displays the
text you’ve sent, you retrieve a picture of
the screen form the webcam (4) and
display it on the mashup.

Get the
erature
he user
location
 Yahoo. Get the

temperature
from the WoT
Pi in London.are the text

 publish and
 it to update
e content of
 LCD screen.

56 CHAPTER 2 Hello, World Wide Web of Things

Se

seco
LC
b

Retr
curren

f
we
 ou
 function publishMessage(message) {
 $.ajax(rootUrl + '/pi/actuators/display/content', {
 data: JSON.stringify({"value": message}),
 contentType: 'application/json',
 type: 'POST',
 success: function (data) {
 $('#message').html('Published to LCD: ' + message);
 $('#wait').html('The Webcam image with your message will appear
 below in : ' + (data.displayInSeconds+2) + ' seconds.');
 console.log('We will take a picture in ' +
 (data.displayInSeconds+2) + ' seconds...');
 setTimeout(takePicture, (data.displayInSeconds+2) * 1000);
 }
 });
 }

 function prepareMessage(name, location, localTemp, piTemp) {
 return name + '@' + location + ((localTemp < piTemp) ? ' < ' : ' > ')
 + piTemp;
 }

 function takePicture() {
 $.ajax({
 type: 'GET',
 url: rootUrl + '/camera/sensors/picture/',
 dataType: 'json',
 success: function (data) {
 console.log(data);
 $('#camImg').attr('src', data.value);
 },
 error: function (err) {
 console.log(err);
 }
 });
 }

 mashup('Rachel', 'Zurich, CH');
});

The mashup() function is responsible for running the different bits of the mashup. It
takes two parameters: the first parameter is your name; the second one is the name of
the city where you live formatted as city, country code (for example, Zurich, CH;
London, UK; or New York, US). It’s then essentially composed of two HTTP GET calls
over AJAX requesting a response as application/json representations. The first call is
to the Yahoo! Weather Service API, which given a location returns its current weather
and temperature.

 Once this call has returned (that is, the anonymous callback function has been
invoked), the second function is called to fetch the latest value from the Pi tempera-
ture sensor, just as you did in section 2.3.1.

 Next, you call prepareMessage(), which formats your message and passes the
result to publishMessage(). This last function runs an HTTP POST call over AJAX with

POST the message
to the LCD actuator.

t a timer that
will call the

takePicture()
function in N

nds (after the
D content has
een updated).

Generate the text to display
with the user name, location,

and Pi temperature.
ieve the
t image
rom the
bcam in
r office.

Update the HTML
tag with the image URL.

57Summary
a JSON payload containing the message to push to the LCD screen, as done in Exercise
3—Act on the real world.

 Because you need to wait in the queue for your message to be displayed, you set a
timer that will trigger the takePicture() function. This last function runs a final
HTTP GET request to fetch a picture of what the LCD screen shows, via the web-
enabled camera. You then dynamically add the returned picture to the image con-
tainer of your HTML page.

 To start this chain of real-world and virtual-world events, all you need to do is edit
the source code so it invokes the mashup(x,y) function using your own name and city.
For example, Rachel from Zurich in Switzerland needs to call this function as follows:

mashup('Rachel', 'Zurich, CH')

Then open the file in your browser, and voilà! Within a few seconds, you’ll see a live
image from the webcam with your message appearing on the screen of the Pi in our
office.

2.6.1 So what?

You’ve built your first web-based physical mashup using data from various sources,
both physical and real-time, and run a simple algorithm to decide whether your
weather is better than ours (although competing against London on the weather is
somewhat unfair). Think about it for a second. This mashup involves a temperature
sensor connected to an embedded device, a video camera, an LCD screen, and a vir-
tual weather service, yet you were able to create a whole new application that fits into
80 lines of HTML and JavaScript, UI included! Isn’t that nice? All this thanks to the fact
that all the actors (devices and other services) expose their APIs on the web and there-
fore are directly accessible using JavaScript! You’ll learn much more about physical
mashups throughout the book and especially in chapter 10, where we’ll survey the var-
ious tools and techniques available.

2.7 Summary
■ You experienced your first hands-on encounter with web-connected devices

across the world and could browse their metadata, content, sensors, actuators,
and so on.

■ Web-connected devices can be surfed just like any other website. Real-time data
from sensors can be consumed via an HTTP or WebSocket API just like other
content on the web.

■ It’s much easier and faster to understand the basics of HTTP APIs than the vari-
ous and complex protocols commonly used in the IoT.

■ In only a few minutes you were able to read and write data to a device across the
world by sending HTTP requests with Postman.

■ Connecting the physical world to the web enables rapid prototyping of interac-
tive applications that require only a few lines of HTML/JavaScript code.

58 CHAPTER 2 Hello, World Wide Web of Things
■ As data and services from various devices are made available as web resources, it
becomes easy to build physical mashups that integrate content from all sorts of
sources with minimal integration effort.

We hope you enjoyed this first encounter with the Web of Things enough to read the
ensuing chapters and learn how to implement these concepts on your own device. In
the next chapters, we’ll look at how to implement JavaScript on devices and we’ll pro-
vide a short and sweet introduction to Node.js. Then, we’ll look into configuring your
own device and making it fit for the Web of Things. We’ll show you how to create and
deploy a Node.js application on a Raspberry Pi device, and you’ll be able to create
your first web-connected device and adapt these examples for your own use case.

	SC-front
	SampleChapterPages2
	SCh-02
	Back

