24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales

DESCRIPTION

Based on Avia Semiconductor’s patented technology, HX711 is a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor.

The input multiplexer selects either Channel A or B differential input to the low-noise programmable gain amplifier (PGA). Channel A can be programmed with a gain of 128 or 64, corresponding to a full-scale differential input voltage of ±20mV or ±40mV respectively, when a 5V supply is connected to AVDD analog power supply pin. Channel B has a fixed gain of 32. On-chip power supply regulator eliminates the need for an external supply regulator to provide analog power for the ADC and the sensor. Clock input is flexible. It can be from an external clock source, a crystal, or the on-chip oscillator that does not require any external component. On-chip power-on-reset circuitry simplifies digital interface initialization.

There is no programming needed for the internal registers. All controls to the HX711 are through the pins.

FEATURES

- Two selectable differential input channels
- On-chip active low noise PGA with selectable gain of 32, 64 and 128
- On-chip power supply regulator for load-cell and ADC analog power supply
- On-chip oscillator requiring no external component with optional external crystal
- On-chip power-on-reset
- Simple digital control and serial interface: pin-driven controls, no programming needed
- Selectable 10SPS or 80SPS output data rate
- Simultaneous 50 and 60Hz supply rejection
- Current consumption including on-chip analog power supply regulator:
 - normal operation < 1.5mA, power down < 1uA
- Operation supply voltage range: 2.6 ~ 5.5V
- Operation temperature range: -40 ~ +85℃
- 16 pin SOP-16 package

APPLICATIONS

- Weigh Scales
- Industrial Process Control

Fig. 1 Typical weigh scale application block diagram

TEL: (592) 252-9530 (P. R. China)
EMAIL: market@aviaic.com
Pin Description

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSUP</td>
<td>Power</td>
<td>Regulator supply: 2.7 ~ 5.5V</td>
</tr>
<tr>
<td>2</td>
<td>BASE</td>
<td>Analog Output</td>
<td>Regulator control output (NC when not used)</td>
</tr>
<tr>
<td>3</td>
<td>AVDD</td>
<td>Analog Power</td>
<td>Analog supply: 2.6 ~ 5.5V</td>
</tr>
<tr>
<td>4</td>
<td>VFB</td>
<td>Analog Input</td>
<td>Regulator control input (connect to AGND when not used)</td>
</tr>
<tr>
<td>5</td>
<td>AGND</td>
<td>Ground</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>6</td>
<td>VBG</td>
<td>Analog Output</td>
<td>Reference bypass output</td>
</tr>
<tr>
<td>7</td>
<td>INA-</td>
<td>Analog Input</td>
<td>Channel A negative input</td>
</tr>
<tr>
<td>8</td>
<td>INA+</td>
<td>Analog Input</td>
<td>Channel A positive input</td>
</tr>
<tr>
<td>9</td>
<td>INB-</td>
<td>Analog Input</td>
<td>Channel B negative input</td>
</tr>
<tr>
<td>10</td>
<td>INB+</td>
<td>Analog Input</td>
<td>Channel B positive input</td>
</tr>
<tr>
<td>11</td>
<td>PD_SCK</td>
<td>Digital Input</td>
<td>Power down control (high active) and serial clock input</td>
</tr>
<tr>
<td>12</td>
<td>DOUT</td>
<td>Digital Output</td>
<td>Serial data output</td>
</tr>
<tr>
<td>13</td>
<td>XO</td>
<td>Digital I/O</td>
<td>Crystal I/O (NC when not used)</td>
</tr>
<tr>
<td>14</td>
<td>XI</td>
<td>Digital Input</td>
<td>Crystal I/O or external clock input, 0: use on-chip oscillator</td>
</tr>
<tr>
<td>15</td>
<td>RATE</td>
<td>Digital Input</td>
<td>Output data rate control, 0: 10Hz; 1: 80Hz</td>
</tr>
<tr>
<td>16</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital supply: 2.6 ~ 5.5V</td>
</tr>
</tbody>
</table>

Table 1 Pin Description
Table 2 Key Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notes</th>
<th>MIN</th>
<th>TYP (±0.5(AVDD/GAIN))</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full scale differential input range</td>
<td>V(inp)-V(inn)</td>
<td>±0.5(AVDD/GAIN)</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common mode input</td>
<td>AGND+1.2</td>
<td>AVDD-1.3 V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output data rate</td>
<td>Internal Oscillator, RATE = 0</td>
<td>10 Hz</td>
<td>10 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Oscillator, RATE = DVDD</td>
<td></td>
<td>80 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal or external clock, RATE = 0</td>
<td></td>
<td>f clk/1.105,920</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal or external clock, RATE = DVDD</td>
<td></td>
<td>f clk/138,240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output data rate</td>
<td>RATE = 0</td>
<td>400 ms</td>
<td>400 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RATE = DVDD</td>
<td></td>
<td>50 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input offset drift</td>
<td>Gain = 128</td>
<td>0.2 mV</td>
<td>0.2 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain = 64</td>
<td>0.4 mV</td>
<td>0.4 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input noise</td>
<td>Gain = 128, RATE = 0</td>
<td>50 nV(rms)</td>
<td>50 nV(rms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain = 128, RATE = DVDD</td>
<td></td>
<td>90 nV(rms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature drift</td>
<td>Input offset (Gain = 128)</td>
<td>±6 nV/°C</td>
<td>±6 nV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gain (Gain = 128)</td>
<td>±5 ppm/°C</td>
<td>±5 ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input common mode rejection</td>
<td>Gain = 128, RATE = 0</td>
<td>100 dB</td>
<td>100 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply rejection</td>
<td>Gain = 128, RATE = 0</td>
<td>100 dB</td>
<td>100 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference bypass (<V BG>)</td>
<td></td>
<td>1.25 V</td>
<td>1.25 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal or external clock frequency</td>
<td></td>
<td>1 MHz</td>
<td>1 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>DVDD</td>
<td>2.6 V</td>
<td>2.6 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVDD, V SUP</td>
<td>5.5 V</td>
<td>5.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog supply current (including regulator)</td>
<td>Normal</td>
<td>1400 µA</td>
<td>1400 µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power down</td>
<td>0.3 µA</td>
<td>0.3 µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital supply current</td>
<td>Normal</td>
<td>100 µA</td>
<td>100 µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power down</td>
<td>0.2 µA</td>
<td>0.2 µA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Settling time refers to the time from power up, reset, input channel change and gain change to valid stable output data.
Analog Inputs

Channel A differential input is designed to interface directly with a bridge sensor's differential output. It can be programmed with a gain of 128 or 64. The large gains are needed to accommodate the small output signal from the sensor. When 5V supply is used at the AVDD pin, these gains correspond to a full-scale differential input voltage of ±20mV or ±40mV respectively.

Channel B differential input has a fixed gain of 32. The full-scale input voltage range is ±80mV, when 5V supply is used at the AVDD pin.

Power Supply Options

Digital power supply (DVDD) should be the same power supply as the MCU power supply.

When using internal analog supply regulator, the dropout voltage of the regulator depends on the external transistor used. The output voltage is equal to $V_{AVDD} = V_{BG}*(R1+R2)/ R1$ (Fig. 1). This voltage should be designed with a minimum of 100mV below VSUP voltage.

If the on-chip analog supply regulator is not used, the VSUP pin should be connected to either AVDD or DVDD, depending on which voltage is higher. Pin VFB should be connected to Ground and pin BASE becomes NC. The external 0.1uF bypass capacitor shown on Fig. 1 at the VBG output pin is then not needed.

Clock Source Options

By connecting pin XI to Ground, the on-chip oscillator is activated. The nominal output data rate when using the internal oscillator is 10 (RATE=0) or 80SPS (RATE=1).

If accurate output data rate is needed, crystal or external reference clock can be used. A crystal can be directly connected across XI and XO pins. An external clock can be connected to XI pin, through a 20pF ac coupled capacitor. This external clock is not required to be a square wave. It can come directly from the crystal output pin of the MCU chip, with amplitude as low as 150 mV.

When using a crystal or an external clock, the internal oscillator is automatically powered down.

Output Data Rate and Format

When using the on-chip oscillator, output data rate is typically 10 (RATE=0) or 80SPS (RATE=1).

When using external clock or crystal, output data rate is directly proportional to the clock or crystal frequency. Using 11.0592MHz clock or crystal results in an accurate 10 (RATE=0) or 80SPS (RATE=1) output data rate.

The output 24 bits of data is in 2’s complement format. When input differential signal goes out of the 24 bit range, the output data will be saturated at 800000h (MIN) or 7FFFFFFh (MAX), until the input signal comes back to the input range.

Serial Interface

Pin PD_SCK and DOUT are used for data retrieval, input selection, gain selection and power down controls.

When output data is not ready for retrieval, digital output pin DOUT is high. Serial clock input PD_SCK should be low. When DOUT goes to low, it indicates data is ready for retrieval. By applying 25–27 positive clock pulses at the PD_SCK pin, data is shifted out from the DOUT output pin. Each PD_SCK pulse shifts out one bit, starting with the MSB bit first, until all 24 bits are shifted out. The 25th pulse at PD_SCK input will pull DOUT pin back to high (Fig.2).

Input and gain selection is controlled by the number of the input PD_SCK pulses (Table 3). PD_SCK clock pulses should not be less than 25 or more than 27 within one conversion period, to avoid causing serial communication error.

<table>
<thead>
<tr>
<th>PD_SCK Pulses</th>
<th>Input channel</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>A</td>
<td>128</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>32</td>
</tr>
<tr>
<td>27</td>
<td>A</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 3 Input Channel and Gain Selection
Reset and Power-Down

When chip is powered up, on-chip power on reset circuitry will reset the chip.

Pin PD_SCK input is used to power down the HX711. When PD_SCK Input is low, chip is in normal working mode.

Application Example

Fig.1 is a typical weigh scale application using HX711. It uses on-chip oscillator (XI=0), 10Hz output data rate (RATE=0). A Single power supply (2.7~5.5V) comes directly from MCU power supply. Channel B can be used for battery level detection. The related circuitry is not shown on Fig. 1.
Reference PCB Board (Single Layer)

Fig. 4 Reference PCB board schematic

Fig. 5 Reference PCB board layout
Reference Driver (Assembly)

```assembly
PUBLIC ReadAD
HX711ROM segment code
rseg HX711ROM

sbit ADDO = P1.5;
sbit ADSK = P0.0;

OUT: R4, R5, R6, R7 R7=>LSB

ReadAD:
    CLR ADSK
    SETB ADDO
    JB ADDO,$
    MOV R4,#24
    ShiftOut:
    SETB ADSK
    NOP
    CLR ADSK
    MOV C, ADDO
    XCH A, R7
    RLC A
    XCH A, R7
    XCH A, R6
    RLC A
    XCH A, R6
    XCH A, R5
    RLC A
    XCH A, R5
    DJNZ R4, ShiftOut
    SETB ADSK
    NOP
    CLR ADSK
    RET
END
```
Reference Driver (C)

//---
sbit ADDO = P1^5;
sbit ADSK = P0^0;
unsigned long ReadCount(void){
 unsigned long Count;
 unsigned char i;
 ADDO=1;
 ADSK=0;
 Count=0;
 while(ADDO);
 for (i=0;i<24;i++){
 ADSK=1;
 Count=Count<<1;
 ADSK=0;
 if(ADDO) Count++;
 }
 ADSK=1;
 Count=Count^0x800000;
 ADSK=0;
 return(Count);
}
Package Dimensions

SOP-16L Package