Interlink Electronics FSR™ 400 series is part of the single zone Force Sensing Resistor™ family. Force Sensing Resistors, or FSRs, are robust polymer thick film (PTF) devices that exhibit a decrease in resistance with increase in force applied to the surface of the sensor. This force sensitivity is optimized for use in human touch control of electronic devices such as automotive electronics, medical systems, and in industrial and robotics applications.

The standard 408 sensor is a strip sensor 622.3mm in length and can be cut down to a very short length.

Industry Segments

- Game controllers
- Musical instruments
- Medical device controls
- Remote controls
- Navigation Electronics
- Industrial HMI
- Automotive Panels
- Consumer Electronics

Features and Benefits

- Actuation force as low as 0.1N and sensitivity range to 10N.
- Easily customizable to a wide range of sizes
- Highly Repeatable Force Reading; As low as 2% of initial reading with repeatable actuation system
- Cost effective
- Ultra thin; 0.40mm
- Robust; up to 10M actuations
- Simple and easy to integrate
Device Characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Condition</th>
<th>Value*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuation Force</td>
<td></td>
<td>0.1 Newtons</td>
<td></td>
</tr>
<tr>
<td>Force Sensitivity Range</td>
<td></td>
<td>0.1 - 10.0² Newtons</td>
<td></td>
</tr>
<tr>
<td>Force Repeatability³</td>
<td>(Single part)</td>
<td>± 2%</td>
<td></td>
</tr>
<tr>
<td>Force Resolution³</td>
<td></td>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>Force Repeatability³</td>
<td>(Part to Part)</td>
<td>±6%</td>
<td></td>
</tr>
<tr>
<td>Non-Actuated Resistance</td>
<td></td>
<td>10M Ohms</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td>622.3 mm</td>
<td></td>
</tr>
<tr>
<td>Thickness Range</td>
<td></td>
<td>0.2 - 1.25 mm</td>
<td></td>
</tr>
<tr>
<td>Stand-Off Resistance</td>
<td></td>
<td>>10M ohms</td>
<td>Unloaded, unbent</td>
</tr>
<tr>
<td>Switch Travel</td>
<td>(Typical)</td>
<td>0.05 mm</td>
<td>Depends on design</td>
</tr>
<tr>
<td>Hysteresis³</td>
<td></td>
<td>+10%</td>
<td>(R_F+ - R_F-)/R_F+</td>
</tr>
<tr>
<td>Device Rise Time</td>
<td></td>
<td><3 microseconds</td>
<td>measured w/steel ball</td>
</tr>
<tr>
<td>Long Term Drift</td>
<td></td>
<td><5% per log₁₀(time)</td>
<td>35 days test, 1kg load</td>
</tr>
<tr>
<td>Temp Operating Range</td>
<td>(Recommended)</td>
<td>-30 - +70 °C</td>
<td></td>
</tr>
<tr>
<td>Number of Actuations</td>
<td>(Life time)</td>
<td>10 Million tested</td>
<td>Without failure</td>
</tr>
</tbody>
</table>

* Specifications are derived from measurements taken at 1000 grams, and are given as one standard deviation / mean, unless otherwise noted.

1. Max Actuation force can be modified in custom sensors.
2. Force Range can be increased in custom sensors. Interlink Electronics have designed and manufactured sensors with operating force larger than 50Kg.
3. Force sensitivity dependent on mechanics, and resolution depends on measurement electronics.

Applications

Detect & qualify press
Sense whether a touch is accidental or intended by reading force

Use force for UI feedback
Detect more or less user force to make a more intuitive interface

Enhance tool safety
Differentiate a grip from a touch as a safety lock

Find centroid of force
Use multiple sensors to determine centroid of force

Detect presence, position, or motion
Of a person or patient in a bed, chair, or medical device

Detect liquid blockage
Detect tube or pump occlusion or blockage by measuring back pressure

Detect proper tube positioning

Many other force measurement applications
Application Information

FSRs are two-wire devices with a resistance that depends on applied force.

For specific application needs please contact Interlink Electronics support team. An integration guide is also available.

For a simple force-to-voltage conversion, the FSR device is tied to a measuring resistor in a voltage divider configuration (see Figure 3). The output is described by the equation:

$$V_{OUT} = \frac{R_M V}{R_M + R_{FSR}}$$

In the shown configuration, the output voltage increases with increasing force. If R_{FSR} and R_M are swapped, the output swing will decrease with increasing force.

The measuring resistor, R_M, is chosen to maximize the desired force sensitivity range and to limit current. Depending on the impedance requirements of the measuring circuit, the voltage divider could be followed by an op-amp.

A family of force vs. V_{OUT} curves is shown on the graph below for a standard FSR in a voltage divider configuration with various R_M resistors. A (V+) of +5V was used for these examples.

Figure 3
Mechanical Data

Part No. 408
- Active Area: 609.22 x 5.08mm
- Nominal thickness: 0.28 mm

Section A-A
(NOT TO SCALE)