bladerRF - USB 3.0 Software Defined Radio

![Diagram of bladerRF - USB 3.0 Software Defined Radio with various components and connections, including DAC, GPIF 2, USB3, SPI FLASH, and power supply information (1.2V SMPS max 3A 90% eff, 3.58V SMPS max 1.3A 95% eff, 3.3V Analog 280mA/500mA Linear LDO for LMS TX, 3.3V Analog 220mA/500mA Linear LDO for LMS RX, 3.3V Digital 106mA/200mA Linear LDO for LMS RX/TX, 2.5V Analog 30mA/100mA Linear LDO VCO/PLLs, 1.8V Analog 100mA/200mA Linear LDO for LMS, 1.8V Digital 190mA/400mA Linear LDO for signalling).]
MSEL[3..0] pins should be connected directly to VCCA or GND.

MSEL[3..0] = PS-FAST = "1100" @ 3.3/3.0/2.5V
MSEL[3..0] = PS-STD = "0000" @ 3.3/3.0/2.5V
MSEL[3..0] = FPP-FAST = "1110" @ 3.3/3.0/2.5V
MSEL[3..0] = FPP-FAST = "1111" @ 1.8/1.5V (default)

MSEL pins should be connected directly to VCCA or GND.
FPGA "RIGHT" BANK

LMS_SIGNALS GO TO THE "RIGHT" OF THE C4 BANKS 4, 5, 6, 7

Avoid VREF pins due to their slow IO times.
This power condition is for the 115KE part at 3A.
In 32-bit GPIF mode UART is (FX3 data pg 33):
- GPIO[55](C2)=UART_TX
- GPIO[56](D5)=UART_RX

UART_CS was added to allow the FPGA to use the MISO/MOSI lines to communicate via UART with the FX3.

US can also be deasserted to write to flash after boot.
FX3 DEBUG + CLOCK SEL

DEBUG TPs

TCK TDO TMS TRST_N
FSLC[2..0]

FX3 JTAG

JTAG ICE_CONN

FX3 DEBUG + CLOCK SEL

.Debug LED

FSLC2 FSLC1 FSLC0

FSLC[2..0]

FX3 datasheet pg 8:
38.4MHz input CLK - FSLC[2:0] = "110"

FSLC2 FSLC1 FSLC0

30kΩ pullup clk = FSLC[2:0] = "110"

FPGA Version Resistor

R3 10K

VT_REF 1
N_TRST 3
N_SRST 5
DBGQ 7
DBGACK 9

V_SUPPLY 2
GND1 4
GND2 6
GND3 8
GND4 10
GND5 12
GND6 14
GND7 16
GND8 18
GND9 20

C232 0.01uF
USB CONNECTIONS

USB3.0 MICRO TYPE B

USB Positive Overvoltage Protection Controller

ESD DEVICE

PART_NUMBER = SP3010-04UTG
Manufacturer = Littlefuse
These caps have to be close to their respective Vref pins.
POWER DISTRIBUTION

The idea is to drop to 1.2V and 3.58V with SMPS. Then drop to 3.3, 2.5, 1.8 from the 3.58V SMPS.

1.2V
(min:200mA, typ:800mA) / 3100mA / 90% eff

Analog 3.3V
280mA / 500mA

Digital 3.3V
220mA / 500mA

Analog 3.58V
~800mA / 1300mA / 95% eff

Digital 3.58V
106mA / 200mA

Analog 1.8V
~100mA / 200mA
Ceramic caps will suffice

Digital 1.8V
190mA / 400mA

Analog 2.5V
30mA / 100mA

Power Distribution Diagram

- **3.58V** (~800mA / 1300mA / 95% eff)
- **1.2V** (min:200mA, typ:800mA) / 3100mA / 90% eff
- **Analog 3.3V** 280mA / 500mA
- **Digital 3.3V** 220mA / 500mA
- **Analog 1.8V** ~100mA / 200mA
- **Digital 1.8V** 190mA / 400mA

Notes:

- Analog 3.3V
- Digital 3.3V
- Analog 1.8V
- Digital 1.8V

Components:

- Resistors: R300, R301, R302, R303, R304, R305, R280, R281, R282, R283, R284, R285
- Inductors: L49, L45, L45
- Other Components: U48, U53, U54, U55, U56

Key:

- **Vcc:** Power Supply
- **Gnd:** Ground
- **Vin:** Input
- **Out:** Output
- **Fb:** Feedback
- **Avin:** Analog Input
- **Pgood:** Power Good
Jumpered power selection
DC barrel vs USB3 bus

Scatter these testpoints throughout the design.
Testpoints will be PTH

C121 100uF_10V
C122 100uF_10V
C123 330uF_10V
C124 330uF_10V

PART_NUMBER = RAPC712X
Manufacturer = Switchcraft Inc.

J70 PWR_HDR6

TP23
TP24